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Abstract. Experiments are described which use genetic algorithms op-
erating on the parameter settings of an FM synthesizer, with the aim of
mimicking known synthesized sounds. The work is considered as a pre-
cursor to the development of synthesis plug-ins using evolution directed
by a user. Attention is focussed on the fitness functions used to drive the
evolution: the main result is that a composite fitness function — based on
a combination of perceptual measures, spectral analysis, and low-level
sample-by-sample comparison — drives more successful evolution than
fitness functions which use only one of these types of criterion.

1 Introduction

1.1 Motivation

A first-time user of synthesis software is typically overwhelmed with options.
Synthesizer plug-ins with 30, 40, or more parameters are not uncommon, and
the problem is often compounded by their non-linear interactions. Even an ex-
perienced user, while composing with a complex synthesizer, might sometimes
prefer to pursue a desired sound through an intuitive process with immediate
feedback rather than switching into analytical, “parameter-setting” mode. This
is partly because the acoustic and psychoacoustic effects of moving within a
synthesizer’s parameter space are not well-understood.

EAs are often thought of as good methods for searching poorly-understood
or oddly-shaped search spaces. Recalling that an EA can be driven by a user (as
in, for example, [13]), rather than by a computer-calculated fitness function, we
can say that EAs have the potential to control synthesis parameters “on behalf
of” a user.

1.2 Previous work

Several authors (see [11] for an overview) have applied the techniques of Evolu-
tionary Algorithms (EAs) to musical problems, including composition, musicol-
ogy, and of most relevance here, synthesis.

Johnson [9] created a stand-alone graphical interface to the CSound FOF
synthesis algorithm, which allows the user to direct the evolution of a population



of 9 sounds. He reports good results, including that the system allows easy and
intuitive exploration of the FOF algorithm’s possibilities.

Horner, Beauchamp and Haken [5] used Genetic Algorithms (GAs) in at-
tempting to emulate the spectra of real instruments using FM synthesis. The
GA was used to determine the best carrier-to-modulator frequency ratios and
(time-invariant) modulation indices. They achieved good results, especially when
using several carriers.

Horner, Cheung and Beauchamp [6] used GAs to find additive synthesis
envelope breakpoints, and found that a GA performed better than a greedy
algorithm, a “sensible” equal-spacing algorithm, and a simple random search
algorithm in all cases.

Takala et al. [13] used LISP-like tree expressions (“Timbre Trees”) to generate
sounds. Evolving the sounds was then an application of Genetic Programming
(GP), where evolution is directed not by an explicit fitness function but by user
choices, made with reference to accompanying animations.

Blackwell and Young [1] used a particle swarm algorithm to control granular
synthesis: their system is also capable of “interpretation”, so that live musicians
can improvise with the system.

Miranda [12] used cellular automata to control granular synthesis parameters
in the Chaosynth program.

1.3 Method

In this paper we use unconstrained synthesizer representations which are closer
to those seen by the typical end-user: filters, envelopes, amplitudes, etc, are
controlled by continuously-variable parameters, in contrast to the free-form tree
representation used by Takala et al. Thus, our approach is more general than
[5] or [6], but more applicable to real synthesizer design than [13]. [1] and [12]
are not directly comparable, since they do not use GA’s; and finally, [9] is a
user-directed system, which therefore does not use automatic fitness functions
as developed here.

We see the development of synthesis software controlled by a user-directed
EA as a three-step process. The first step, to be reported here, is simply to mimic
known sounds using EA techniques. Several fitness functions, which measure the
success of candidate sounds with respect to the target, are implemented and
compared. The functions can be considered as moving from low-level, detail-
oriented ones towards higher-level and perceptually-oriented ones, so leading
towards our second step: attempting to generate sounds with a purely human
fitness function (i.e. under user control). Here, the user will be attempting to
generate sounds “to order” - whether the target is a sound with a particular
metaphorical or verbally-described quality, or just “what sounds good”. Success
in this will be have to be measured in terms of both human satisfaction with the
results, and psychoacoustically-based measures of timbre.

Finally, we hope to use the software in the design of experiments investigat-
ing timbral invariance: the phenomenon that psychoacoustic attributes such as



centroid and roughness constitute a many-to-one mapping from sounds to real
values.

2 Experimental setup

2.1 Synthesizers

We choose to work with three different synthesizers (simple additive, granular,
and FM), partly to ensure that any idiosyncracies of a single one don’t have too
large an effect on the results; however in this paper, for clarity, we report results
for the FM synthesizer only, partly because FM is a more familiar and intuitive
method of synthesis than granular. We use a single-carrier, single-modulator FM
synthesizer with a peaking EQ filter: including envelopes and LFOs, it has 24
continuously-variable parameters.

2.2 Target sounds

The target sound for preliminary experiments was a 3-second sine wave at 440Hz,
with an amplitude of 0.305 (where digital full scale is 1.0). For the main body
of experiments, we used targets with 1, 4, 8 16, and finally 50 partials (the
upper limit for a 440Hz fundamental and a sampling rate of 44.1kHz), where
the amplitude of partial n is given by 1/n. The 50-partial target is therefore a
bandlimited sawtooth wave.

We shorten the targets to 0.5 seconds for efficiency: this is justified since we
treat length as a user-specified input parameter (see section 2.4).

As a preliminary test, we confirmed by hand that the synthesizer was capable
of closely matching the simplest, 1-partial target sound.

2.3 Genotypic representation

Individual genomes were represented in GALib [14] as arrays of floating-point
numbers, where the length and ordering of the array is fixed for the synthesizer.
The genotype-to-phenotype mapping is performed by the synthesizer as it parses
the genome into its own parameter format, and generates the corresponding
sound.

2.4 Fitness functions

A fitness function, in this context, is a measure of similarity between the individ-
ual sound and a target. Several fitness functions were implemented and tested,
each returning results of the form 1/(1+d) (€ [1/2,1]), where d (€ [0,1]) is the
distance between the two sounds and is calculated in a different way for each
function.



Uniform metric Digital audio signals can be thought of as discrete versions
of real-valued functions of time. The uniform metric on Ly, the space of such
functions, is defined as

supi_ |z(t) — y(t)|
2

dU (xa y) = (1)
for two functions or sequences x and y; the same expression can be used whether ¢
varies discretely or continuously. We divide by a factor of 2 since the audio signal
varies in [—1, 1]. The Uniform metric is commonly used in analytical mathematics
but is too “severe” for this application, and is not used in this study.

Pointwise metric The most obvious definition for d, and the simplest gener-
alisation of the Uniform metric, might be

ta.g) = Zicale ) =50 o)

which is of course the discrete equivalent to integrating the difference between
the two functions. We divide by a factor of 2 for the same reason as in the
Uniform metric, and by T in order to keep dp(z,y) € [0,1]. We'll call this the
pointwise metric.

Discrete Fourier Transform metrics We define DFT metrics as follows:
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where L is the transform length, X; and Y} are the normalised outputs from the
jth transforms of the input signals x and y, and N, the number of transforms for
each sound, is determined on the basis of 2x-overlapping Hann windows. Cp,, a
normalisation factor, is determined by experiment.

Initial experiments showed that the transform of length L = 256 gave the
best results.

Perceptual metric Research including [3], [8], and [10] shows that timbral
attributes such as centroid, harmonicity, attack time and so on can be defined,
measured, and used to measure the degree of human-perceived similarity between
pairs of sounds. We define a simple perceptual metric (named dp, to indicate
that we intend to define further human-perception oriented measures later) as
follows:

dm, (z,y) = (1/3)(da(z,y) + dc(z,y) + du (2, y)) (4)

with the attack time, centroid and mean amplitude metrics defined as follows:

|attack(x) — attack(y)|
Ca

dA(l‘,y) = (5)
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where the normalisation constants C4 and C¢ are determined by experiment.
Finally, we define

attack(x) = min{t : z(t) = ?EI(; |z(s)[} (8)
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where f(i) is the centre frequency of the ith frequency bin in the DFT X.

Composite metric We define a composite metric by summing the weighted
results of several simpler measures:

dComp(fE, y) = (1/9)dD255 (Z‘, y) + (1/9)dD1024 (Z‘, y) + (1/9)dD4095 (Z‘, y)
+(1/3)dH1(way) + (1/3)dp(l‘,y) (11>

2.5 Pitch and length parameters

Early experiments showed that a fitness function based on the pointwise metric
led fairly consistently to the evolution of silence. This happens because unless
the candidate individual and the target are very close in frequency, they will
go in and out of phase over the length of the sounds. Using a target sine wave
3 seconds long with a frequency of 440Hz, we found that candidate sine waves
have fitness values as shown in fig. 1.
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Fig. 1. Fitness values for silence and for sine waves, using a pointwise fitness function
and a 440Hz sine wave target



Clearly, there is only a very small area of the entire frequency axis on which
the GA can follow an upward gradient towards the target frequency. Evolution
becomes a random search, and since silence scores higher than any wave outside
this area, populations converge on silence from various directions.

We solve this problem by deeming pitch to be a fixed parameter of the syn-
thesis. That is, we fix it at a certain value (here, 440Hz) and do not place it
under the control of the GA.

A similar problem occurs in the case of the length of the sounds. It is not clear
how to compare two sounds of different lengths - the obvious approaches (zero-
padding the shorter is one; truncating the longer is another) both constitute
“loopholes” that a GA can exploit in producing individuals which score highly
but have obvious defects, such as trivial length. So, we deem length to be a fixed
parameter also.

These decisions are justified since both pitch and note-length are typically
controlled by the player of an instrument (eg by choosing a key to strike, and
by holding it for a certain length of time), rather than by the sound designer.
Even when these two jobs are performed by the same person, they’re usually
performed at different times and in different contexts.

2.6 GA parameters

We use a steady-state GA with 100 generations, population size 300, and re-
placement probability 0.5. The crossover probability is 0.5, while the Gaussian
mutation operator is applied with a per-gene probability of 0.1. Selection is by
a roulette wheel scheme.

2.7 Running the GA

For each target waveform, and for each of the 4 fitness functions pointwise, per-
ceptual, DF'T 256, and composite, we run the evolution 30 times. Each evolution
is driven by a single fitness function: at the end of each run we have a single best
individual, and its fitness according to the fitness function driving that run. For
the purpose of comparison, we also evaluate the fitness of the best individual
under each of the other 3 fitness functions.



3 Results

3.1 Results using 4 fitness functions

These graphs show the averaged best results over 30 runs using the FM syn-
thesizer and targets consisting of 1, 4, 8, 16, and 50 partials. Each graph shows
evolution driven by each of the four fitness functions evaluated by the function
indicated in the caption. Error bars indicate the standard deviation for each
data set.
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Since our purpose is to compare the fitness functions (and find “the best”),
we must be careful not to compare the fitness values they report against each
other directly. Each fitness function performs better than all others when it is
used as the evaluator.

The results are open to interpretation: there does not seem to be a single right
way to objectively interpret them to decide which fitness function is better than
the others. However, the main result is that the composite and perceptual fitness
functions score quite well overall. They also exhibit smaller standard deviations,



as indicated by the error bars, while the DFT-based fitness function gives very
high standard deviations.

In general all fitness functions are successful for the simplest targets, and

performance drops off for the complex targets composed of many partials. Also,
there is a strong anti-correlation between the perceptual and pointwise functions:
the perceptual function scores well when evaluated by itself, and badly when
evaluated by the pointwise function — and vice versa. This reflects the different
kinds of information exploited by the two functions.

3.2 Scatter plots showing contrasting fitness scores for individuals

under different measures

Each of these scatter plots shows 600 random individuals and 600 “best” individ-

uals (30 for each of the 5 targets and 4 methods

of driving evolution), evaluated

under the two fitness measures indicated in the captions.
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The fact that these plots do not exhibit a strong concentration on the bottom-
left—top-right diagonal is evidence that the fitness functions are not strongly
correlated: i.e. an individual scoring highly in one measure doesn’t necessarily
score highly in another. This is expected: if all fitness functions were highly
correlated there would be no need to use more than one.

Where random individuals clump together, we can infer that large areas of
the search space contain individuals whose scores coincide under one measure
and under another: these features warrant further investigation. Where “best”
individuals clump together, we can infer either of two things: local maxima in
the search space, or patterning according to the target being pursued.

The vertical and horizontal bands, especially in the first two plots, indicate
the non-uniqueness of the perceptual measure. (see section 1.2).

The small concentrations of best individuals in the top-right corner of each
graph are probably the collections of individuals which were very successful in
imitating the 1-partial target. For this target (only), all fitness functions do seem
to be correlated.

4 Conclusions and Further Work

We consider that evolution has been successful enough to justify further work.
Investigation is required to understand the paths which the GA follows towards
its targets, and to explain some patterns in the search space suggested by the
scatter plots.

Informal, subjective listening tests do suggest that all measures can drive
successful evolution; and that the perceptual and combined measures might be
the best by a slight margin. However, more rigorous listening experiments will
be required to test this.

The perceptual measure performs adequately and of the three fitness mea-
sures it is the most transferable to evolving novel sounds rather than mimicking
existing sounds. The version used in our experiments is a very simple one, being
based on only 3 of the more important perceptual measures: attack time, cen-
troid, and mean amplitude. It could be extended by adding components based
on harmonicity, roughness, irreqularity, the odd/even harmonic ratio, and per-
haps others. Also, the components are currently weighted equally, but listening
experiments performed with human subjects are expected to show that some
components should be given more weight than others. After making these im-
provements, we hope to show that a perceptually-motivated measure can drive
more successful evolution than any other measure.

The GA parameters mentioned in section 2.5 have fairly generic values.
Tweaking one or more of them may help evolution to proceed more efficiently.
Of particular interest will be the changes required to make evolution practical
when under user control.

Other planned work includes applying the same methods to the parameters
of a non-linear filter, instead of a synthesizer; implementing synthesizer and filter



plug-ins with GUIs; and running experiments in the area of timbral invariance
(as explained in section 1.2).
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