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Abstract. Neuro-evolution of augmenting topologies (NEAT) is a re-
cently developed neuro-evolutionary algorithm. This study uses NEAT
to evolve dynamic trading agents for the German Bond Futures Market.
High frequency data for three German Bond Futures is used to train and
test the agents. Four fitness functions are tested and their out of sample
performance is presented. The results suggest the methodology can out-
perform a random agent. However, while some structure was found in the
data, the agents fail to yield positive returns when realistic transaction
costs are included. A number of avenues of future work are indicated.

1 Introduction

Bond markets play a significant role in capital allocation in developed economies.
As an illustration of the scale of these markets, the total value of outstanding
marketable bond debt in the US was approximately $29.2 trillion [1] as of the
30th of September 2007. In comparison, the total amount of marketable equity
of all US companies on the same date was approximately $22.3 trillion [1]. Mul-
tiple issuers use bond markets to raise funding including companies, financial
institutions, government agencies and central government. Given the scale and
liquidity of bond markets they attract substantial trading interest.

The construction of an intraday trading system for bond futures is a difficult
task as the time series of prices from this market is quite volatile and we do not
have strong theory to describe the exact nature of the price-generation process.
This suggests that a model-induction methodology such as a multi-layer percep-
tron may have utility in uncovering this process from the underlying data. A
practical difficulty in developing a multi-layer perceptron is that the creation of
a quality network for a specific application can be time-consuming. Hence, there
has been significant interest in the possibility of automating some or all of this
development process by means of evolving neural net structures. A key issue in
doing this efficiently is the matching of the design of the diversity-generating
operator(s) to the choice of representation for the neural network. This is not a
trivial task and a diverse range of approaches have been suggested. In this study
we adopt the NEAT methodology [14,13] which adopts a principled approach to
this issue.
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Evolutionary algorithms have been used to evolve trading rules for a number
of markets with varying degrees of success. Previous studies which apply evolu-
tionary algorithms to the problem of trading try a number of fitness functions
which vary from a simple total return value, to a risk adjusted return based ratio.
This study employs a neuro-evolutionary methodology to model a dateset of high
frequency bond futures data in an attempt to automatically trade the market.
In addition, we investigate whether or not better out of sample performance can
be gained by using different fitness functions. Four such functions were tested
and their performance is compared against a zero intelligence random agent.

1.1 Structure of Paper

The rest of this paper is organised as follows. The next section provides an
overview of the bond futures market along with a short literature review of EC
applied to trading. We then outline our experimental approach. This is followed
by a results section. The paper finishes with a conclusion and future work section.

2 Background

2.1 Trading Bond Futures

A futures contract is a standardised agreement between two counter-parties
where the buyer (seller) is agreeing to take delivery of (deliver) a specific quan-
tity of the underlying (for example, a financial security, a foreign currency or a
commodity etc.) on a specific date in the future (called the maturity date), for
a price agreed upon now. Futures can, for example, be used by producers and
consumers in order to hedge their respective future income and exposures by
providing assurance as to the future price they will receive/pay for some item.
This is essential for businesses when trying to manage projected cashflows and
associated risks. Traders in financial markets can also use futures to hedge cer-
tain exposures in their portfolio. For example, a Fixed Income dealer might want
to protect a portfolio of government bonds from adverse changes in interest rates
by purchasing, or selling, bond futures. Futures can also be used by speculators
who want to express a view on the direction of the market.

In the case of fixed income futures the underlying is a fixed income product
such as a government bond. The future’s market price is quoted in the same way
as the underlying bond, i.e. as a percentage of the face value of the bond.

In this study we look at three particular fixed income futures which derive
their value from German government bonds and which are traded on Eurex;
the Euro-Schatz (FGBS), Euro-Bobl (FGBM), and Euro-Bund (FGBL) Bond
Futures. All three futures trade the next 4 maturities in a quarterly (March,
June, September, December) delivery cycle and expire on the 10th day of the
delivery month.

2.2 Literature Review

There have been numerous previous studies which employ EC methodologies
such as GA and GP to evolve trading rules. Most of these works have either
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Table 1. An overview of the fitness functions employed by previous work

Reference Market Frequency Fitness Function

Dittmar & Neely et al 97 [8] FX Daily Log Returns

Allen & Karjalainen 99 [9] Stock Index Daily Log Returns

Neely 99 [11] Stock Index Daily Log Returns & Sharpe Ratio & X*

Dempster & Jones 00 [6] FX Intraday Sterling Ratio

Dempster et al 01 [7] FX Intraday Log Returns

Bhattacharyya & Pictet et al 02 [3] FX Intraday Sharpe Ratio & UtilityFunc

Brabazon & O’Neill 04 [4] FX Daily Return - MaxDrawdown

Neely & Weller 03 [10] FX Intraday Log Returns

Dempsey & O’Neill et al 04 [5] Stock Index Daily Sharpe Ratio

Azzini & Tettamanzi 08 [2] Stocks Daily Sortino Ratio

evolved trading rules for spot foreign exchange or stock markets. There has been
little or no investigation into applying these algorithms to the problem of trading
derivatives such as futures.

A key decision when setting up an EC experiment is choosing a suitable fitness
function. This function acts as a selection criterion which biases the stochastic
search process. A number of different fitness functions have been utilised in pre-
vious work. These can be broadly categorised as being risk, or non risk adjusted
measures of fit.

Table 1 lists some of the more recent applications of EC to trading. Most of the
literature referenced in table 1 does not compare the out of sample performance
under different fitness functions, with the exception of [3] where it is found
that risk adjusted metrics yield more stable out of sample performance. This
study aims to investigate whether or not different fitness functions do in fact
yield different out of sample behavior. In addition, we are applying our chosen
methodology to a dataset of high frequency Bond Futures data to see if profit
can be captured from the futures market.

3 Experimental Approach

3.1 Methodology

In this study we employ the neuro-evolution of augmenting topologies (NEAT)
methodology to evolve multi-layer perceptrons (MLP) for the purposes of devel-
oping a trading system for the German bond market. NEAT was developed in
2002 by Stanley and Miikkulainen [14,13] and attempts to overcome the prob-
lems of evolving MLPs using a direct encoding of an MLP structure. NEAT
simultaneously evolves both MLP topology and weights. Proponents of NEAT
claim that it:

1. applies a principled method of crossover (i.e. attempts to overcome the per-
mutation problem),

2. protects structural innovations (i.e. attempts to overcome noisy fitness prob-
lem), and

3. grows MLPs from a minimal structure (i.e. attempts to ensure that final
MLP is no more structurally complex than necessary).
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In order to achieve this NEAT uses three mechanisms, a novel MLP encoding
which allows for ‘sensible crossover’, a speciation concept which offers some pro-
tection for structural innovations, and a seeding process whereby all initial MLP
structures are of miminal size.

3.2 Data Review

The dataset used in this study consists of 5,000 5 minute bars of intraday data
for the three German bond futures mentioned in Sect. 2; the Euro-Schatz, Euro-
Bobl, and Euro-Bund. A bar contains a value for the open, high, low, and close
prices for the interval, and also the number of contracts traded in the 5 minute
period (volume). The series exhibit a variety of price behaviors, including bullish,
bearish, and choppy periods. This varied behavior poses a difficult learning en-
vironment for NEAT.

The bond futures market is one of the most active fixed income markets.
Table 2 shows a number of basic statistics on the volume of activity (volume
of contracts traded) on the market for the period 13/06/2008 to 25/07/2008.
The Bund tends to be more volatile, and more heavily traded than the Schatz
and Bobl. Total volume for the given period of trading in the Schatz is over 15
million contracts, compared to the Bund where over 25 million contracts were
traded. The average number of contracts traded per 5 minute block ranges from
2,887 (Bobl) to 4,812 (Bund). Each of these corresponds to a bond with a face
value of Euro 100,000 and hence represents a substantial ‘gross’ position in the
underlying (bond) instrument.

Table 2. Volume statistics (measured in number of contracts traded per 5 min block)

Schatz Bobl Bund

Total 15,186,286 14,432,952 24,057,734
Mean 3,037 2,887 4,812
Std 3,817 3,146 5,367
Max 59,738 40,240 57,818
Min 1 1 1

A move in a bond future price from 99.31 to 99.32 corresponds to a full ‘tick’.
As already noted, the Bund moves in full ticks, but the Schatz and Bobl con-
tracts move in half ticks. Table 3 describes the behavior of the first differences
of the closing price data. The volatility varies across contracts, with the Bund
being the most volatile with an average move of 0.274 of a tick between each
5 minute block. As can be seen, the standard deviation of the number of tick
changes between five minute blocks is quite high relative to the mean, illus-
trating the volatile nature of price changes in even short time periods for these
futures.
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Table 3. Ticks in five minute block

Schatz Bobl Bund

Mean 0.0099 0.0208 0.0274
Std. Dev 1.1825 2.6142 3.5879
Max Up 11.5000 24.5000 22.0000

Max Down -8.5000 -24.0000 -34.0000

3.3 Experimental Parameters

In setting the parameters for the NEAT system used to generate the MLPs,
we considered parameter settings reported in prior applications of NEAT and
supplemented this with some trial and error experimentation. We have not at-
tempted to optimise the parameter settings but experimentation indicated that
the results obtained were not hypersensitive to small changes in these settings.
Table 4 lists the most important parameter settings we employed. The elitism
proportion parameter was set to 20% which means that the top 20% of the
population are passed on to the next generation without being altered by ge-
netic operators. This ensures that the population does not lose high performing
individuals to destructive mutation and crossover. The “min/max species thresh-
old” settings allow the user to keep the number of species within a certain range.
The upper limit was set to 10 and the lower limit was set to 6. As the popu-
lation evolves, the number of neurons and connections in the average network
increases according to the mutation probabilities in Table 4. Over time the level
of complexity can increase to a level which brings with it major computational
overhead. To combat this problem the average complexity is tracked, and once
it breaks the complexity threshold the search switches from complexification to
pruning mode. Pruning reduces the population’s average complexity until it falls
below the specified threshold (100 in our case). This is achieved by randomly
removing nodes and edges from more complex individuals.

Table 4. Experimental Parameters

Parameter Value

Pop size 500
Mutate weights .005

Add neuron .01
Add connection .1

Crossover .9
Elitism Proportion .2

Complexity threshold 150

3.4 Trading Methodology

In this paper we concentrate on inputs which are developed from the price time
series of the futures. A total of 75 inputs are available for use by the MLPs being
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evolved. The inputs were calculated by firstly taking the first differences (between
two succeeding five minute blocks) of the open, high, low, close, and volume time
series for each of the three futures, and then dividing each observation in each
time series by their respective minimum price change, which is .01 in the Bund,
and .005 in the Schatz and Bobl. This results in a series of tick changes for each
future. Five lags of each series is then input to the network.

The networks are all initialised with 5% of the inputs chosen at random and
a single bias node, connected to a single output node. Thus, the population of
MLPs are initialised with minimal complexity. This leaves evolution to decide
which of the other inputs should be switched on and the number of hidden nodes
that should be added. The evolved MLPs output an integer between 0 and 1,
which is post-processed using:

y =

⎧
⎨

⎩

1 if a ≥ 0.6
0 if 0.3 < a < 0.6

−1 if a ≤ 0.3

where y is the final network output and a is the MLP output before postprocess-
ing. The resulting value of y is then input to the trading simulator. The trading
simulator is used to evaluate the performance of a network over a given dataset.
The simulator accepts three signals; buy (1), sell (-1), and do nothing (0). At
any point in time the system is either long or short 1 future contract, or flat. If
the trade position is long and we get a sell signal, the long position is closed out
at the current market price. Conversely, if we are short and get a buy signal we
close out the short position and go flat. This behavior results in a simple trading
strategy where the network is allowed to stay out of the market. The maximum
position is limited to a single future to make post trade analysis of results easier.

The trading simulator records the state of the system at the end of each five
minute interval. A number of state variables are recorded including the realised
profit and loss, the position (long/short), and any trade executed. Upon reaching
the end of the dataset the simulator prints the state vector to a csv file for further
analysis.

Fitness functions. The moving window approach yields an out-of-sample re-
alised equity curve for agent A

R(A) = (r(A, t) : 0 <= t < N) (1)

where t are evenly spaced 5 minute intervals, N is the size of the equity curve,
and r(A, t) is the realised profit and loss (PnL) including cost deductions at
interval t.

Total return. The first fitness function tested was the finishing PnL of the
system r(A, N − 1). This is a naive measure of fit as it ignores the equity curve
up to and including N-2.

FF1 = r(A, N − 1) (2)
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Total return minus max drawdown. A better approach is to subtract the
maximum drawdown in R(A) from the finishing PnL r(A, N − 1). Subtracting
the max drawdown will put a selection pressure on the search which favours
networks that avoid devastating losses.

FF2 = r(A, N − 1) − MDD(A, R(A)) (3)

Although this measure is an improvement over total return, it ignores informa-
tion from the equity curve.

Information ratio. The third fitness function we tested is a variation the mean
change in return in a 5 minute period divided by the volatility of these changes.
First, we calculate the first differences of the equity curve

RD(A) = (rd(A, t) : 1 <= t < N) (4)

where rd(A, t) = r(A, t) − r(A, t − 1). We then divide the mean of the first
differences by the standard deviation of the same series.

FF3 =
¯RD(A)

σRD(A)
(5)

This ratio translates to the average change in the realised PnL in a 5 minute
interval divided by the average deviation from this level. This fitness function
favours networks with a good risk to reward relationship, thus deselecting agents
with volatile performance. Unlike FF1 and FF2, this metric considers the entire
equity curve in its calculation. The denominator in equation 5 is the standard
deviation statistic, which gives an equal weighting to positive and negative de-
viations from the mean.

Sortino ratio. Another risk adjusted ratio is the Sortino Ratio [12] which does
not include positive deviations in its measurement of risk. This makes sense as
positive volatility results in profit and should not be penalised. For the purpose
of this study we define a slight variation of the original ratio

FF4 =
¯RD(A)

DSR(A, RD(A))
(6)

where

DSR(A, RD(A)) =

√
√
√
√ 1

N

n∑

i=1

[rd(A, i) < 0][rd(A, i)]2 (7)

4 Results

A total of 30 runs were carried out for each of the four fitness functions discussed
in Section 3.4 using the experimental parameters listed in Section 3.3. Each
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Fig. 1. Out of sample performance for fit-
ness function 1: Total Return
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Fig. 2. Out of sample performance for fit-
ness function 2: Total Return - Max Draw-
down
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Fig. 3. Out of sample performance for fit-
ness function 3: Info Ratio
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Fig. 4. Out of sample performance for fit-
ness function 4: Sortino Ratio

run results in an out of sample equity curve for the best network, which may
change between moving window increments. Figs. 1 to 4 show the equity curves
for the aforementioned fitness functions averaged over the 30 runs, which are
plotted against a random agent. The random agent buys, sells, or does nothing
at each interval with equal probability. An average of 30 simulations is used as
a benchmark.

The networks outperform the random agent both with and without transac-
tion costs. However, the networks fail to finish in positive territory once transac-
tion costs are included. Realistic transaction costs were used as specified by Eu-
rex: a single contract round trip costs 40 cents (20 cents each way). As is evident
from Figs. 1 to 4 the four fitness functions did not yield significantly different re-
sults. However, the trading strategy was limited to a single contract position, and
it would be interesting to let the system buy/sell a variable number of contracts
depending on the strength of the signal and see if the different fitness functions
result in different behavior. It is possible that agents evolved with risk adjusted
metrics of return as their fitness function would yield more conservative trading
behavior relative to those agents evolved using fitness functions based on non risk
adjusted measure of return and this will be investigated in future work.
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5 Conclusion and Future Work

This study presents a novel application of a neuro-evolutionary methodology for
the purposes of the intraday trading of German government bond futures. To
date, few studies have examined the potential utility of computational intelli-
gence methodologies for the purpose of trading on this market and none have
adopted a neuro-evolutionary approach. In spite of restricting attention to a very
limited set of potential inputs, the results suggest that the resulting model is
capable of uncovering structure in the time series of bond futures prices and is
capable of using this information to trade with some success. The out of sample
results for the four fitness functions were not significantly different. However, due
to the fact that the trading strategy was limited to a 1 lot position there was
not much room for evolution to induce different levels of trading aggressiveness.
An interesting piece of future work might be to allow the agents to buy/sell a
variable number of contracts depending on the strength of the signal.

Of course, no conclusive assessment of the utility of this methodology can be
made on the basis of the initial experiments we have undertaken in this study and
we intend to pursue multiple avenues to further extend this work. For example,
the current trading simulator only uses a limited range of inputs and its power
could be further enhanced by use of established filter rules for price data such as
technical indicators. We also note that we adopt a simple trading strategy in this
study, whereby the simulator can only go long or short one contract in response
to a buy/sell signal. We intend to refine this in order to allow the system to build
up a larger long / short position in response to successive buy/sell signals and
also to allow the system to buy/sell varying numbers of contracts depending on
the strength of the signal generated by the system. We also intend to investigate
the application of grammar-based GP for trading this market.
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