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Abstract. This paper presents a realistic study of applying a gene
regulatory model to financial prediction. The combined adaptation of
evolutionary and developmental processes used in the model highlight
its suitability to dynamic domains, and the results obtained show the
potential of this approach for real-world trading.

1 Introduction

Recent work in the Evolutionary Computation field has seen a surge of interest in
Genetic Regulatory Networks (GRNs) as models for computation [1,4,9,10,13].
In nature, GRNs are a key element of temporal gene expression regulation in
biological organisms, providing the remarkable capacity of cells to respond to
their ever-changing surrounding environment.

GRN-based algorithms combine the adaptive power of evolutionary processes
with regulatory mechanisms that differential gene expression provides, leading to
life-long conditional adaptation to the environment. This makes these algorithms
especially useful for noisy and dynamic environments.

One such dynamic and hard to predict environment are financial markets.
In this study, a GRN model is applied to the problem of index trading. Exper-
iments were designed to make this problem as realistic as possible, hence using
only raw historical prices and their transformations, and relatively short trading
periods, focusing on the dynamic adaptation of the system. The results obtained
again highlight the advantages and limitations of current GRN models, and their
potential as computational devices, and further pave the future for their contin-
ued adaptation in the EC community.

This paper starts with a brief introduction to GRNs and the model used, in
Section 2. This is followed by an overview of index trading and the methodology
used (Section 3). Section 4 presents and analyses the results obtained, and finally
conclusions and future work directions are drawn in Section 5.

2 Artificial Gene Regulatory Model

2.1 Background

Gene Regulatory Networks (GRNs) refer to the complex networks of gene regu-
lation occurring in cell environments. Given a suitable environment, segments of
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DNA encoding genes are transcribed into RNA strands, which, through a trans-
lation process, are used to form sequences of amino-acids, thus creating proteins.
Some of these proteins are called Transcription Factors, and their role is to help
create an environment that either enhances or inhibits the expression of genes.
This leads to complex networks of regulation, with genes encoding proteins that
themselves enhance or inhibit the expression of proteins from other genes.

2.2 The Model

Typically, artificial GRN models are a broad simplification of their biological
counterpart. In this work, a model originally presented by Wolfgang Banzhaf
[1] is used; it was shown to exhibit similar dynamics to real world GRNs [2],
and has been applied to dynamic control problems (such as the pole-balancing
benchmark [13] and index trading [12]).

The model consists of a binary linear genome, which is scanned for 32 bit
binary promoter sequences, identifying gene locations. Once a promoter is found,
the 2 × 32 bits preceding it represent two regulatory sites (an enhancer and a
inhibitor), and the following 5 × 32 bits represent the gene contents (used to
encode a protein); this is shown in Fig. 1.
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Fig. 1. Bit string encoding of a gene. If a promoter site is found, the gene information
is used to create a protein, whose quantity is regulated by the attachment of proteins
to the enhancer and inhibitor sites.

Each protein encoded by a gene is a Transcription Factor (TF), that is,
it is a regulatory protein, whose role is to affect the rate of expression of all
genes (including the one that produced it). Proteins are 32 bit binary sequences,
extracted using a majority rule from the 5 sequences of 32 bits that compose
the gene information (i.e., if 3 or more equally located bits are set to 1, then the
corresponding bit in the protein is also set to 1).
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Proteins are bound to regulatory sites via an exclusive-or matching of their
respective 32 bit signatures (i.e., the number of different bits in protein signatures
and regulatory sites determines the regulatory strength). The enhancing and
inhibiting signals regulating the production of each protein pi are calculated as:

ei, hi =
1
N

N∑

j=1

cj exp(β(uj − umax)) , (1)

where N is the total number of proteins, cj is the concentration of protein j,
uj is the number of complementary bits between the (enhancing or inhibitory)
regulatory site and protein j, umax is the maximum match observed in the
current genome, and β is a positive scaling factor.

The concentration of protein pi is calculated using a differential equation:

dci
dt

= δ(ei − hi)ci , (2)

where δ is a positive scaling factor (representing a time unit). All the concentra-
tions are normalised at each time step, ensuring that

∑
i ci = 1.0 at all times;

this results in competition for resources within the cell environment.

Input and Output. This model has been extended with the notion of inputs
and outputs [13], to facilitate its application to computation. In order to encode
inputs, extra regulatory proteins (EPs) are injected into the system. These are
not produced by any gene, yet also contribute to the regulation of gene expres-
sion. They represent the variables required to describe the state of the environ-
ment, and their concentrations reflect the (normalised) value of those inputs.

To extract output signals, genes are divided into two classes: TF-genes (genes
encoding transcription factors), and P-genes (encoding product proteins). The
concentration of proteins produced by P-genes can then be used as output signals
of the system. The approach taken here is the same as in previous studies [12].

3 Index Trading

In the Financial domain, an index is a composite measure of price changes in a
portfolio of shares in a market. Investors who wish to proxy the return of the
index can trade it using index funds (EFTs), which offer low expense ratios and
high liquidity. These investments are very popular and are the focus of our study.

Evolutionary algorithms have been successfully applied to financial mod-
elling; the reasons for their applicability include their ability to efficiently explore
the search space, and uncover dependencies between input variables, leading to
their proper inclusion in the final models [5]. Brabazon and O’Neill [3] provide an
overview of the application of evolutionary computation to financial modelling.
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3.1 Methodology

The trading methodology is based in previous studies [7,12,14], where a trader
issues buy, sell, or do nothing signals for each day of the training or test periods.
Starting with a capital of $10000, if a buy signal is issued, 10% of the total
funds (initial capital plus earnings) are invested in the index; this position is
automatically closed after a ten day period. If a sell signal is issued, an investment
of 10% is sold short, and also closed after ten days. This ensures that the system
cannot overtrade at any point (i.e., issue a trade signal with no funds available)1.

The profit or loss at the end of each trading period uses a conservative
estimate of one-way trading costs and slippage of 0.2% and 0.3%, respectively.
Uncommitted funds take into account a risk-free rate of return, which is approx-
imated using the average interest rate over the entire dataset.

3.2 Datasets

The work presented here follows closely the methodology of previous applica-
tions of Grammatical Evolution [3,14] and GRNs [12] to index trading, and uses
three datasets, from the UK FTSE 100 index, the Japan Nikkei index, and the
German Dax index. To keep the results comparable, all data is drawn from the
period between 16/4/1991 and 21/10/1996; Fig. 2 plots each dataset. These were
divided into four training periods and twelve test periods, of 90 days each, with
the latter representing the period where the system has gone live.

These datasets highlight the potential risk of overfitting the training period.
The FTSE training period exhibits a very unstable, slightly downwards trend,
whereas the test period exhibits a clear growth trend. The Dax index shows a
slight growth in the training period, with a sudden drop towards the end, which
is somewhat consistent with the test period. Finally, the Nikkei training period
exhibits a very strong decline in index value, followed by an unstable test period,
consisting of medium term upwards and downwards trends.

3.3 Data Preprocessing

In previous studies [3,12], the data was pre-processed prior to evolution, with
the raw prices initially transformed into a moving average with a 75 day gap,
and then normalised into the range of 0 to 1. However, as the current study
focuses on application to real market trading, both of these pre-processing steps
are troublesome, as detailed below, and hence were not used.

Moving Average. Working with a moving average smoothes the price curve,
but at a cost - the description of trends is also smoothed out. This is exemplified
in Fig. 3, for the FTSE market. In the first year of data, for example, the market
switches from upwards to downwards trends in a short period of time. This is
clearly visible at the beginning of test period 1 (T1), where the index value is
1 In the final 10 days of each period, all trade actions are ignored.
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Fig. 2. Plots of the three markets used in this study, along with their training and live
(test) periods. Each period consists of 90 traiding days; data ranges from 16/4/1991
to 21/10/1996.
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growing, but the MA(75) is still reflecting the previous downwards trend. As the
current experiment uses fairly short trading periods (90 days), a 75 day moving
average is too slow to indicate the current trend of the index. Working with a
smaller value (MA(10)) reduces this problem, but as all trading periods are of
10 days, the indication of trends is still sometimes deceptive.
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Fig. 3. Index closing values and 10 and 75-day moving average, for the FTSE market

Normalisation. Normalisation can also introduce problems. As the range of
future index values cannot be known, a minimum and maximum value must be
set for normalisation. On certain markets, this is problematic for model induc-
tion, because the range of values encountered in training might be quite different
from the range of the test period. Fig. 4 highlights this problem on the FTSE
market. As the training period has the range [2281.0, 2737.8], normalising over
this range would mean that all normalised values from test period T2 onwards
would have a capped value of 1.0. Even if the full range of prices [2281.0, 4073.1]
were somehow guessed at the start, this would still be problematic, as the train-
ing period would only expose the models to a [0, 0.255] range.

3.4 Technical Indicators

Rather than just working with raw and historical market price data, it is typi-
cal in the financial domain to derive information from the raw data series into
technical indicators. These look to predict future price levels, or more generally
market trends. Although a potentially infinite number of such indicators may
exist, certain classes of indicators are regularly used by investors [7,15]. The
following were used in this study2:

2 To minimise price range issues, all price data used is logarithmic; the n-day periods
used are typical values from the literature.
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– Moving Average Convergence Divergence (MACD). The MACD [11]
is a popular indicator: it is typically calculated by subtracting the exponen-
tial moving average (EMA) of the last 12 days from the 26-day EMA.

– Relative Strength Index (RSI). The RSI is a momentum indicator; it
calculates an upward or downward charge per trading period, and returns
the ratio of the EMA of these charges [17]. A 14-day RSI is used.

– Stochastic Oscillator (sOsc). This indicator returns the relative location
of the current price in relation to its full price range over a period of n days
(a 14-day period was used); it tries to predict price turning points [6].

– Premier Stochastic Oscillator (psOsc). The psOsc is based on an 8-day
sOsc, which is smoothed using a 5-day double EMA [8]. This smooths and
evens out the response to market changes.

4 Setup and Results

4.1 Encoding

The four technical indicators used (MACD(26, 12), RSI(14), sOsc(14) and
psOsc(8, 5)) were encoded using EPs, as explained in section 2.2. The choice
of binary signature for the EPs can influence the system. In previous studies
[12], signatures as different as possible from each other were chosen, but this
created dependencies between them (i.e., for a regulatory site to fully match
one, it had to fully ignore another). To try to minimise these dependencies, the
following encodings were used:

MACD(26, 12): 00000000000000000000000000000000
RSI(14): 00000000000000001111111111111111

sOsc(14): 00000000111111110000000011111111

psOsc(8, 5): 00000000111111111111111100000000
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The initial rate of expression of all genes in a model was initially the same,
and the system was first allowed to settle for a maximum of 100000 regulatory
iterations, or until all protein concentrations were stabilised; after this period,
the trading session begins. To synchronise the GRN with the trading simulator,
a trading signal was extracted every 2000 protein iterations.

To extract a trading signal from the network, the concentration of a given
P-gene is used (all P-genes are tested, and the best result is chosen):

ci >= 66% → BUY 66% > ci > 33% → D/N ci <= 33% → SELL

This methodology thus encodes technical indicators as regulatory proteins,
which influence the internal regulatory process of the genome, and therefore
influence the resulting concentration of P-genes, which can then be interpreted
as a trading signal. It is a very similar process as seen in previous applications
of GRNs to time-series datasets [12,13].

4.2 Evolutionary Setup

A (250+250)−ES evolutionary strategy was used to evolve the binary genomes:
a population of 250 individuals is used to create 250 offspring, and the best 250
of all parents and offspring are used as the new parent population (a maximum of
100 iterations were allowed). The variation operator used was a bit-flip mutation,
set to 1% and adapted by the 1/5 rule of Evolution Strategies [16].

4.3 Evaluation

Two approaches were used when deriving models: the first denominated Fixed,
and the second Dynamic. Each was run independently on the three markets; the
training periods (TR1→TR4, see Fig. 2) were used to derive a trading model.

At the end of the evolutionary process, the best Fixed approach model is
applied to all test periods (T1→T12). The Dynamic approach, however, is only
tested on period T1; it is then reprocessed in a smaller evolutionary process (50
ES iterations), using a moving window of 4 training periods each time: train in
TR2→T1, test in T2; train in TR3→T2, test in T3; and so on.

As noted in Section 3, long term investments tend to produce good returns
in historically upwards return indexes. A common passive investment strategy
is Buy & Hold (B&H), where an investment is made and held for a long time.
In order to evaluate the performance of the evolved traders, their performance
was compared to a B&H strategy in both the training and test datasets.

As seen in previous studies [3,12,14], it would be inadequate to simply calcu-
late fitness as the profit return, as this does not consider the risk of deploying an
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evolved trader. A measurement of this risk is provided by the maximum draw-
down, that is, the maximum cumulative loss of the system during each of the
datasets. This can be incorporated into the fitness calculation by subtracting
the maximum cumulative loss from the profit of each period.

4.4 Results and Analysis

For both approaches, 50 independent runs were done for each market. Table 1
shows the best models in each market, chosen by their TR1→TR4 training
performance. As expected, both evolved traders do quite well on the train-
ing periods, both due to the obvious fact that they were optimised for those
periods, but also because of the downwards trend of period TR1→TR4 on all
markets (as highlighted in Section 3.2), which hampers the gains of the B&H
benchmark.

Once the traders go live, the figures change considerably. In upwards trend
markets like FTSE and DAX, the B&H benchmark performs very well, and
is very hard to improve on that performance; only the dynamic approach was
able to achieve better test performance, in the FTSE market. In the Nikkei
market, however, with its fluctuating and slightly downwards trend, both traders
achieved better performance. The Dynamic trader in particular is on par or
superior to similar EC approaches found in the literature [3,12,14].

It is interesting to observe the behaviour of both evolved traders; Fig. 5 plots
the best Fixed and Dynamic FTSE traders. As the training period TR1→TR4
has no clear trend, cautious traders that mostly take no risk are evolved, profiting
from rate of interest returns in funds not invested. Only the TR4 period exposes
the system to a downwards trend.

Once the evolved Fixed trader goes live, it can be seen that it keeps the same
cautious behaviour. However, in the periods T1→T12, the market exhibits an
upwards trend, which the trader seldom identifies. This is clearly visible in the
period T8→T12. The Dynamic trader, however, is constantly exposed to the
changing market trend, and adapts to a more aggressive (and profitable) buying
behaviour. This is again clearly visible in the period T8→T12, where at each
new live period, more and more buy actions are generated.

Although the better approach, the Dynamic trader is not always the best.
In the Nikkei market, for example, it is not fast enough to adapt to the insta-
bility of the index, leading to periods (T3, T4, T6, T9 and T11) where the
Fixed approach generates more profit; these are periods of sudden trend change,
where the Dynamic trader has been trained on the previous period. At the
end of all test periods, however, the Dynamic trader performance is still clearly
superior.
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Fig. 5. Best Fixed (top) and Dynamic (bottom) traders for the FTSE market. The
top of each plot shows the index value and the generated trade action (buy, sell or do
nothing), and the bottom shows the inputs to the GRN (technical indicators) and the
generated output signal.
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5 Conclusion

In this study, a realistic simulation of applying a GRN model to index trading
was presented. Different aspects of feature selection were analysed, and two
approaches were applied to three market indexes.

The results obtained show the potential of applying developmental systems
to real-world dynamic problems, but also their limitations, The applied devel-
opmental system seems unable to adapt to all market fluctuations in unseen
data (Static approach), and still requires an extra evolutionary process to adapt
to new market tendencies (Dynamic approach). But even the latter approach
exhibits signs of overfitting its training data.

Future work will address these issues. The field of Epigenetics shows us that
states of cellular organisms can be transmitted to offspring: a similar artifi-
cial process could transmit the regulatory state of parents to offspring (in the
Dynamic approach), transferring the state of the market to new models, which
will trade in later periods. This will allow newly created models to retain a better
historical state, derived from trading in all previous periods.
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