
L. Vanneschi et al. (Eds.): EuroGP 2009, LNCS 5481, pp. 292–302, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Semantic Aware Crossover for Genetic Programming:
The Case for Real-Valued Function Regression

Quang Uy Nguyen1, Xuan Hoai Nguyen2, and Michael O’Neill1

1 Natural Computing Research & Applications Group, University College Dublin, Ireland
2 School of Computer Science and Engineering, Seoul National University, Korea
quanguyhn@yahoo.com, nxhoai@gmail.com, m.oneill@ucd.ie

Abstract. In this paper, we apply the ideas from [2] to investigate the effect of
some semantic based guidance to the crossover operator of GP. We conduct a
series of experiments on a family of real-valued symbolic regression problems,
examining four different semantic aware crossover operators. One operator
considers the semantics of the exchanged subtrees, while the other compares the
semantics of the child trees to their parents. Two control operators are adopted
which reverse the logic of the semantic equivalence test. The results show that
on the family of test problems examined, the (approximate) semantic aware
crossover operators can provide performance advantages over the standard sub-
tree crossover adopted in Genetic Programming.

Keywords: crossover, semantic, and genetic programming.

1 Introduction

Since genetic programming was born, it has been seen by some researchers in and out
of the field that GP is a potentially powerful method for automated synthesis of
computer programs by evolutionary means. The ‘program’ is usually presented in a
language of syntactic formalism such as s-expression trees [7], a linear sequence of
instructions, grammars, or graphs [1, 12]. The genetic operators in such GP systems
are usually designed to ensure the syntactic closure property, i.e. to produce syntacti-
cally valid children from any syntactically valid parent(s). Using such purely syntacti-
cal genetic operators, GP evolutionary search is conducted on the syntactical space of
programs with the only semantic guidance from the fitness of program measured by
the difference of behavior of evolving programs and the target programs (usually on a
finite input-output set called fitness cases). Although GP has been shown to be
effective in evolving programs for solving different problems using such (finite) be-
havior-based semantic guidance and pure syntactical genetic operator, this practice is
somewhat unusual from real programmers’ perspective. Computer programs are not
just constrained by syntax but also by semantics. As a normal practice, any change to
a program should pay heavy attention to the change in semantics of the program and
not just those changes that guarantee to maintain the program syntactical validity. To
amend this deficiency in GP resulting from the lack of semantic guidance on genetic

 Semantic Aware Crossover for Genetic Programming 293

operators, recently, Beadle and Johnson have proposed a semantic-based crossover
operator for genetic programming [2]. They showed that their semantically driven
crossover operator could help GP in achieving better results and less code bloat on
some standard Boolean test problems.

In this paper, we extend the ideas from [2] to investigate the effect of some seman-
tic based guidance on the crossover operator in GP on a family of real-valued sym-
bolic regression problems. We also propose a new form of semantic-aware crossover
for Genetic Programming, which considers approximations of the semantics of the
exchanged subtrees. In contrast to the approach of Beadle and Johnson [2], the new
semantic-aware crossover can be applied to both Boolean and continuous problem
domains.

The paper is organized as follows. In the next section, we give a review of related
work on crossover operators and semantic based operations in GP. Section 3 contains
the descriptions of some possible methods for using semantic information to guide the
crossover operator in GP. These methods are used in experiments described in section
4 of the paper. The results of the experiments are then given and discussed in section
5. Section 6 concludes the paper and highlights some potential future extension of
this work.

2 Related Work

In a series of work, Johnson has advocated for the use of semantic information in the
evolutionary process of GP [3, 4, 5, 6]. He proposed a number of possible ways for
incorporating program semantics extracted by static analysis techniques into the
fitness function of GP. In [2], the authors elaborated on their suggestions by investi-
gating the effect of using semantic information to guide the crossover operation in
GP for Boolean domains, the resultant operator is called semantically driven cross-
over (SDC). Their main idea is to check the semantic equivalence between newly
born children as the results of the crossover operator with their parents. The semantic
equivalence checking of two Boolean expression trees is done by transforming the
trees to reduced ordered binary decision diagrams (ROBDDs). They have the same
semantic if and only if they are reduced to the same ROBDD. The semantic equiva-
lence checking is then used to determine which of the individual participating in
crossover operation will be copied to the next generation. If the children born as the
result of crossover are semantically equivalent with their parents, they are not copied
to the next generation, instead their parents are copied. By doing this, the author
argued that it helps to increase the semantic diversity of evolving population of pro-
grams. Indeed the idea is rather similar to deterministic fitness crowding, one of the
common mechanisms for promoting diversity in evolutionary algorithms [8, 9]. In
the deterministic fitness crowding method, the children must compete directly with
the parents to be copied to the next generation and they are copied only if they
are different enough (usually measured by a distance function) from their parents.
The important difference between work in [2] and deterministic fitness crowding is
the use of semantic information (which seems to be attributed to GP only). Semantic
driven crossover was reported useful in [2] in both increasing GP performance but

294 Q.U. Nguyen, X.H. Nguyen, and M. O’Neill

also reducing code bloat on some standard Boolean test problems (even though it
seems that reducing bloat was not intentionally the motivation for the introduction of
semantic driven crossover).

Prior to Beadle and Johnson [2], there were a number of works on analyzing the ef-
fect of crossover and attempts to improve them. However, the main focus of this
work has been on code bloat, fitness-destructive effect of crossover [15, 16, 19] and
length distributions, and how to improve it in this respect [17, 18].

The work on semantic driven crossover operators in this paper is different from [2]
in two ways. Firstly, the domain for testing semantically driven crossovers is real-
valued rather than Boolean. For real-valued domains, the idea of checking semantic
equivalence by reducing to common ROBDDs is no longer possible. Secondly, the
semantic guidance of the crossover operator is not just derived from the whole pro-
gram tree behavior but also from subtrees. This is inspired by recent work in [10] for
calculating subtree semantics. This method is used in [14] as a way for measuring the
fitness in GP. However, the subtree semantic calculated in this paper is for real-
valued domains but not Boolean domains as in [2, 10].

3 Methodologies

The aim of this study is to extend earlier work [2, 10] to real-valued domains. For
such problems it is not easy to compute the semantics or semantic equivalence of two
expression trees by reducing them to a common structure as for Boolean domain as in
[2]. In fact, the problem of determining semantic equivalence between two real-
valued expressions is known to be NP-hard [20]. Similarly, the problem of completely
enumerating and comparing fitness of subtree expressions as in [10] is also impossi-
ble on real domains. We have to calculate the approximate semantics. In this paper, a
simple method for measuring and comparing the semantics of two expressions is used
both for individual trees and subtrees and the two methods are compared experimen-
tally. To determine the semantic equivalence of two expressions, we measure them
against a random set of points sampled from the domain. If the output of the two trees
on the random sample set are close enough (subject to a parameter called semantic
sensitivity) then they are designated as semantically equivalent. It can be written in
pseudo-code as follows:

If Abs(Value_On_Random_Set(P1)-
 Value_On_Random_Set(P2))<∑ then
 Return P1 is semantically equivalent to P2.

Where Abs is the absolute function and ∑ is a predefined constant called the semantic
sensitivity. This method is inspired by the simple technique for simplifying
s-expression program trees proposed in [11] called equivalence decision simplifica-
tion (EDS), where complicated subtrees could be replaced by much simpler and tem-
plate subtrees if they are semantically equivalent. The method of checking semantic
equivalence of EDS is similar to the method used here and EDS has shown to be an

 Semantic Aware Crossover for Genetic Programming 295

efficient tool for removing redundant codes for tree-based genetic programming1 [11].
To test the effect of using semantic information to guide the subtree crossover in
genetic programming, we propose 4 possible scenarios based on [2, 10].

In scenario 1, we constrain the crossover in such a way that if two crossover points
are chosen the two subtrees under the crossover points are checked for semantic
equivalence. If they have equivalent semantics, the operator is forced to be executed
on two new crossover points. The pseudo-code for this scenario can be summarized as
follows:

1.1.Select two parents: P1, P2

1.2.Choose at random crossover points at Subtree1 in P1

 Choose at random crossover points at Subtree2 in P2

 if(Subtree1 is not equivalent with Subtree2{

 Execute crossover

 Add the children to the new population

 Return TRUE

 }

 else{

 Add P1 and P2 to new population

 Return TRUE

 }

The motivation for scenario 1 is to encourage GP individual trees to exchange sub-
trees that have different semantics, which is expected to encourage the change in
semantics of the whole trees after each crossover.

In the second scenario, we reverse the semantic bias in the crossover operator
compared to the first scenario in that the two subtrees are selected for crossover if and
only if they are semantically equivalent. The only change in code is the condition of
if statement in 1.2 as follows:

 if (Subtree1 is equivalent with Subtree2)

The third scenario is similar to the method used in [2]. Here the semantics of newly
created children are checked against the semantics of their parents. If their semantics
are found to be equivalent with their parents then they are discarded and the parents
would be passed to the new generation instead. The objective of such an implementa-
tion of crossover, as stated in [2], is to enforce the semantic diversity (i.e., keep
generating new individual programs with new behavior). The pseudo-code for this
scenario is as follows:

1 The JAVA code of EDS could be freely downloaded from: sc.snu.ac.kr

296 Q.U. Nguyen, X.H. Nguyen, and M. O’Neill

2.1. Select two parents: P1, P2

2.2. If (condition to make crossover is satisfied)

 {

 Make Crossover to have Children C1 and C2

 if (C1 is equivalent with P1 Or P2)

 Add P1 to the new population

 else

 Add C1 to the new population

 if (C2 is equivalent with P1 Or P2)

 Add P2 to the new population

 else

 Add C2 to the new population

 }

 else

 Add P1 and P2 to new population

The last and fourth scenario tested in this paper is the reverse of the third, where the
children are accepted to go in to the new population if and only if they are semanti-
cally equivalent with their parent(s).

4 Experiments

To investigate the possible effects of semantic aware crossovers given in the previous
section, they are tested on the symbolic regression problems with target functions in a
family of polynomials of increasing degree given in [13] and they are:

F1= X3+X2+X.
F2= X4+X3+X2+X.
F3= X5+X4+X3+X2+X
F4=X6+ X5+X4+X3+X2+X

The parameters setting for GP in the experiment is as follows:

- Population size: 500.

- Number of generation: 50

- Tournament selection size: 3

- Crossover probability: 0.9

- Mutation probability: 0.1

 Semantic Aware Crossover for Genetic Programming 297

- Max depth of program tree at the initial generation: 6

- Max depth of program tree at all time: 15

- Non-terminals: +, -, *, / (protected version), sin, cos, exp, log (protected)

- Terminals: X, 1

- Number of sample: 20 random points from [-1…1].

- Hit: when an individual has an absolute error < 0.01 on a fitness case.

- Termination: when a program score 20 hits or running out of generations.

The semantic sensitivities (∑) used in the experiments are: 0.01, 0.02, 0.04, 0.05,
0.06, 0.08, 0.1, 0.5, and 1. For each crossover scenario, each target problem, and
semantic sensitivity, 100 runs are performed, which makes the total number of runs
14800.

5 Results and Discussion

The number of successful runs (out of 100 runs) is given in Table 1. It can be seen
that the effect of using semantic aware crossover depends on the manner in which it is
applied. When semantics is calculated on subtrees (Scenario 1), it can improve the
performance of GP in terms of the number of successful runs (e.g., 71 versus 62 on
F1, and 36 versus 28 on F2). While semantics as used in a similar way to [2] by com-
paring the resulting children to their parents only give slight improvements in some
cases (Scenario 3). When we reverse the logic of the semantic equivalence test in the
Control Scenarios 2 and 4 no improvement in the number of successful runs is
achieved when compared with standard GP.

However, the improvement in Scenario 1 also depends on the value of semantic
sensitivity (∑).The results suggest that the value of sensitivities from 0.01 to 0.1 are
suitable for all four test functions, and the greater sensitivities seem to confer less
improvement.

In Table 2 we show mean and standard deviation of best fitness for the 50th
generation of each run. The results shown in this table is consistent with the results
in Table 1. The semantic aware crossover as used in scenario 1 where the semantics
of subtrees to be exchanged are compared, can slightly improve the performance of
GP in terms of the mean and standard deviation of best fitness. Whereas in Scenario
3, where the semantics of children are compared to their parents only results in an
improvement in some settings of semantic sensitivity. Again, no improvements are
observed for the control scenarios 2 and 4 where the logic of the equivalence test is
reversed. From these results it would appear that the more difficult problems benefit
more in terms of the mean and standard deviation of the best fitness when semantic
aware crossover is adopted. This claim can be confirmed when we consider the
result of performing t-tests of the results in Scenario 1. These results are shown in
Table 3.

298 Q.U. Nguyen, X.H. Nguyen, and M. O’Neill

Table 1. The number of successful runs over 100 runs

Scenario Sensitivity F1 F2 F3 F4
GP 62 28 15 10

0.01 68 33 22 10

0.02 70 33 22 14

0.04 70 34 20 19

0.05 71 33 19 14

0.06 71 32 20 17

0.08 70 35 20 17

0.1 66 36 17 14

0.5 62 33 17 12

Scenario 1

1 65 27 12 8
0.01 41 31 13 7

0.02 40 18 13 10

0.04 40 15 14 8

0.05 44 26 12 7

0.06 41 17 13 7

0.08 41 19 15 7

0.1 42 24 12 10

0.5 45 18 10 10

Scenario 2

1 55 25 18 5

0.01 52 24 18 12

0.02 57 32 16 12

0.04 52 32 23 8

0.05 54 33 15 7

0.06 52 29 16 10

0.08 50 26 13 11

0.1 44 26 13 8

0.5 38 15 15 5

Scenario 3

1 39 17 14 3

0.01 2 0 0 0

0.02 3 0 0 0

0.04 3 0 0 0

0.05 2 0 0 0

0.06 2 0 1 0

0.08 3 1 0 0

0.1 3 1 1 0

0.5 7 0 0 1

Scenario 4

1 12 1 0 1

 Semantic Aware Crossover for Genetic Programming 299

Table 2. Mean and standard deviation of the best fitness at 50 generations

 Sensitivity F1
Mean

(Stdev)

F2
Mean

(Stdev)

F3
Mean

(Stdev)

F4
Mean

(Stdev)
GP 0.128

(0.170)
0.262

(0.241)
0.302

(0.252)
0.397

(0.355)
0.01 0.135

(0.205)
0.230

(0.214)
0.274

(0.215)
0.335

(0.271)
0.02 0.133

(0.209)
0.236

(0.218)
0.275

(0.216)
0.329

(0.275)
0.04 0.125

(0.182)
0.231

(0.214)
0.268

(0.212)
0.328

(0.278)
0.05 0.126

(0.185)
0.224

(0.206)
0.266

(0.213)
0.330

(0.277)
0.06 0.121

(0.181)
0.227

(0.207)
0.265

(0.215)
0.319

(0.270)
0.08 0.137

(0.215)
0.223

(0.205)
0.279

(0.218)
0.333

(0.281)
0.1 0.133

(0.185)
0.225

(0.208)
0.274

(0.215)
0.334

(0.268)
0.5 0.120

(0.157)
0.217

(0.203)
0.276

(0.213)
0.336

(0.266)

Scenario 1

1 0.123
(0.174)

0.214
(0.149)

0.287
(0.215)

0.397
(0.292)

0.01 0.258
(0.357)

0.275
(0.222)

0.325
(0.235)

0.459
(0.421)

0.02 0.221
(0.318)

0.307
(0.234)

0.330
(0.237)

0.458
(0.348)

0.04 0.229
(0.321

0.310
(0.238)

0.332
(0.244)

0.435
(0.314)

0.05 0.253
(0.356)

0.289
(0.216)

0.336
(0.256)

0.439
(0.395)

0.06 0.241
(0.333)

0.302
(0.237)

0.327
(0.238)

0.443
(0.314)

0.08 0.239
(0.325)

0.315
(0.256)

0.334
(0.245)

0.434
(0.305)

0.1 0.250
(0.355)

0.279
(0.197)

0.337
(0.260)

0.436
(0.396)

0.5 0.236
(0.395)

0.280
(0.237)

0.314
(0.195)

0.377
(0.293)

Scenario 2

1 0.168
(0.205)

0.328
(0.300)

0.294
(0.237)

0.398
(0.262)

0.01 0.229
(0.373)

0.239
(0.215)

0.321
(0.321)

0.362
(0.305)

0.02 0.208
(0.326)

0.218
(0.184)

0.229
(0.286)

0.348
(0.292)

0.04 0.224
(0.334)

0.229
(0.211)

0.306
(0.311)

0.353
(0.241)

0.05 0.212
(0.312)

0.216
(0.197)

0.303
(0.232)

0.364
(0.307)

Scenario 3

0.06 0.204
(0.333)

0.229
(0.230)

0.280
(0.241)

0.315
(0.218)

300 Q.U. Nguyen, X.H. Nguyen, and M. O’Neill

Table 2. (Continued)

0.08 0.234
(0.350)

0.248
(0.225)

0.335
(0.302)

0.347
(0.251)

0.1 0.224
(0.329)

0.252
(0.214)

0.359
(0.302)

0.418
(0.305)

0.5 0.225
(0.332)

0.297
(0.211)

0.344
(0.310)

0.406
(0.275)

1 0.216
(0.224)

0.343
(0.247)

0.378
(0.266)

0.460
(0.247)

0.01 1.144
(0.911)

1.287
(0.959)

1.590
(1.219)

1.641
(1.215)

0.02 1.153
(0.908)

1.304
(0.964)

1.569
(1.251)

1.662
(1.228)

0.04 1.122
(0.911)

1.280
(1.002)

1.561
(1.247)

1.650
(1.214)

0.05 1.204
(0.946)

1.259
(0.967)

1.513
(1.203)

1.658
(1.236)

0.06 1.127
(0.914)

1.281
(0.997)

1.473
(1.236)

1.640
(1.223)

0.08 1.121
(0.910)

1.205
(0.999)

1.495
(1.999)

1.604
(1.225)

0.1 1.144
(0.938)

1.180
(0.980)

1.519
(1.191)

1.650
(1.216)

0.5 0.994
(0.895)

1.038
(0.834)

1.249
(1.015)

1.575
(1.233)

Scenario 4

1 0.752
(0.787)

0.870
(0.645)

1.177
(1.107)

1.350
(1.277)

Table 3. Mean and standard deviation of best fitness and p-value of t-test

Scenario Sensi-
tivity

f1
Mean
Stdev

P-
value

f2
Mean
Stdev

P-
value

f3
Mean
Stdev

P-
value

f4
Mean
Stdev

P-
value

GP 0.128
0.170

 0.262
0.241

 0.302
0.252

 0.397
0.355

0.01 0.135
0.205

0.647 0.230
0.214

0.351 0.274
0.215

0.405 0.335
0.271

0.165

0.02 0.133
0.209

0.687 0.236
0.218

0.462 0.275
0.216

0.412 0.329
0.275

0.129

0.04 0.125
0.182

0.932 0.231
0.214

0.367 0.268
0.212

0.304 0.328
0.278

0.128

0.05 0.126
0.185

0.894 0.224
0.206

0.282 0.266
0.213

0.274 0.330
0.277

0.137

0.06 0.121
0.181

0.982 0.227
0.207

0.225 0.265
0.215

0.264 0.319
0.270

0.080

0.08 0.137
0.215

0.604 0.223
0.205

0.255 0.279
0.218

0.495 0.333
0.281

0.157

0.1 0.133
0.185

0.678 0.225
0.208

0.161 0.274
0.215

0.395 0.334
0.268

0.162

0.5 0.120
0.157

0.928 0.217
0.203

0.131 0.276
0.213

0.414 0.336
0.266

0.171

Scenario 1

1 0.123
0.174

0.986 0.214
0.149

0.090 0.287
0.215

0.543 0.397
0.292

0.997

 Semantic Aware Crossover for Genetic Programming 301

6 Conclusions and Future Work

The effect of semantics with crossover in Genetic Programming is investigated in this
paper. In this study we focus on the family of real-valued problem domains in form
of polynomials (symbolic regression). The investigation is performed on four scenar-
ios. The experimental results show that semantic aware crossover as adopted in Sce-
nario 1, where the semantics of subtrees to be exchanged are analysed, can improve
performance of Genetic Programming in both number of successful runs and the
mean best fitness on the problems examined. In the alternative Scenario 3, where the
semantics of the children resulting from crossover are compared to their parents per-
formance gains can be observed in some cases. Comparing subtree semantic aware
crossover to the individual-based form, there is an advantage for the subtree approach
on the four symbolic regression instances examined. The two control scenarios (2 and
4) where the logic of the semantic equivalence tests are reversed show no improve-
ment over standard subtree crossover.

There are some interesting areas for future investigation. In contrast to the ap-
proach adopted in an earlier study on Boolean problems [2] the semantic aware cross-
over operators adopted here can be applied to both Boolean and real-valued domains.
We also wish to examine the utility of these semantic aware operators to more diffi-
cult symbolic regression problems, and more classic benchmark problems from the
literature to determine more clearly the generality of these findings.

Acknowledgements

This research was funded under a Government of Ireland Postgraduate Scholarship
from the Irish Research Council for Science, Engineering and Technology (IRCSET).

References

1. Banzhaf, W., Nordin, P., Francone, F.D., Keller, R.E.: Genetic Programming: An Introduc-
tion - On the Automatic Evolution of Computer Programs and Its Applications. Morgan
Kaufmann Publishers, San Francisco (1998)

2. Beadle, L., Johnson, C.G.: Semantically Driven Crossover in Genetic Programming. In:
Proceedings of the IEEE World Congress on Computational Intelligence, pp. 111–116.
IEEE Press, Los Alamitos (2008)

3. Johnson, C.G.: Deriving Genetic Programming Fitness Properties by Static Analysis. In:
Foster, J.A., Lutton, E., Miller, J., Ryan, C., Tettamanzi, A.G.B. (eds.) EuroGP 2002.
LNCS, vol. 2278, pp. 299–308. Springer, Heidelberg (2002)

4. Johnson, C.G.: Genetic Programming with Guaranteed Constraints. In: Lofti, A., John, B.,
Garibaldi, J. (eds.) Recent Advances in Soft Computing. Physica/Springer-Verlag, Heidel-
berg (2002)

5. Johnson, C.G.: Genetic Programming with Fitness based on Model Checking. In: Ebner,
M., O’Neill, M., Ekárt, A., Vanneschi, L., Esparcia-Alcázar, A.I. (eds.) EuroGP 2007.
LNCS, vol. 4445, pp. 114–124. Springer, Heidelberg (2007)

302 Q.U. Nguyen, X.H. Nguyen, and M. O’Neill

6. Johnson, C.G.: What Can Automatic Programming Learn from Theoretical Computer Sci-
ence? In: Yao, X. (ed.) Proceedings of the UK Workshop on Computational Intelligence,
University of Birmingham (2002)

7. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natu-
ral Selection. MIT Press, Cambridge (1992)

8. Mahfoud, S.W.: Crowding Preselection Revisited. In: Manner, R., Manderick, B. (eds.)
Parallel Problem Solving from Nature, vol. 2, pp. 27–36. Elsevier, Amsterdam (1992)

9. Mahfoud, S.W.: Niching Methods for Genetic Algorithms. Doctoral Dissertation at Uni-
versity of Illinois at Urbana-Champaign (1995)

10. McPhee, N.F., Ohs, B., Hutchison, T.: Semantic Building Blocks in Genetic Programming.
In: O’Neill, M., Vanneschi, L., Gustafson, S., Esparcia Alcázar, A.I., De Falco, I., Della
Cioppa, A., Tarantino, E. (eds.) EuroGP 2008. LNCS, vol. 4971, pp. 134–145. Springer,
Heidelberg (2008)

11. Mori, N., McKay, R.I., Nguyen, X.H., Essam, D.: Equivalent Decision Simplification: A
New Method for Simplifying Algebraic Expressions in Genetic Programming. In: Proceed-
ings of 11th Asia-Pacific Workshop on Intelligent and Evolutionary Systems (2007)

12. Poli, R., Langdon, W.B., McPhee, N.F.: A Field Guide to Genetic Programming (2008),
http://lulu.com http://www.gp-field-guide.org.uk

13. Nguyen, X.H., McKay, R.I., Essam, D.: Solving the Symbolic Regression Problem with
Tree-Adjunct Grammar Guided Genetic Programming: The Comparative Results. In: Pro-
ceedings of the 2002 Congress on Evolutionary Computation (CEC 2002), pp. 1326–1331.
IEEE Press, Los Alamitos (2002)

14. Krysztof, K., PremysBaw, P.: Potential Fitness for Genetic Programming. In: Proceedings
of Genetic and Evolutionary Computation Conference (GECCO 2008), Late-Breaking Pa-
pers, pp. 2175–2180. ACM, New York (2008)

15. Langdon, W.B., Poli, R.: Fitness causes bloat: Mutation. In: Koza, J. (ed.) Late Breaking
Papers at the GP 1997 Conference, Stanford, CA, USA, July 13-16, pp. 132–140. Stanford
Bookstore (1997)

16. Langdon, W.B., Soule, T., Poli, R., Foster, J.A.: The evolution of size and shape. In: Spec-
tor, L., Langdon, W.B., O’Reilly, U.-M., Angeline, P.J. (eds.) Advances in Genetic Pro-
gramming 3, ch. 8, pp. 163–190. MIT Press, Cambridge (1999)

17. Dignum, S., Poli, R.: Crossover, Sampling, Bloat and the Harmful Effects of Size Limits.
In: O’Neill, M., Vanneschi, L., Gustafson, S., Esparcia Alcázar, A.I., De Falco, I., Della
Cioppa, A., Tarantino, E. (eds.) EuroGP 2008. LNCS, vol. 4971, pp. 158–169. Springer,
Heidelberg (2008)

18. Dignum, S., Poli, R.: Operator Equalisation and Bloat Free GP. In: O’Neill, M., Vanne-
schi, L., Gustafson, S., Esparcia Alcázar, A.I., De Falco, I., Della Cioppa, A., Tarantino, E.
(eds.) EuroGP 2008. LNCS, vol. 4971, pp. 110–121. Springer, Heidelberg (2008)

19. Banzhaf, W., Langdon, W.B.: Some considerations on the reason for bloat. In: Genetic
Programming and Evolvable Machines, vol. 3, pp. 81–91. Springer, Netherlands (2002)

20. Ghodrat, M.A., Givargis, T., Nicolau, A.: Equivalence Checking of Arithmetic Expres-
sions. In: CASES 2005, San Francisco, California. ACM, New York (2005)

	Semantic Aware Crossover for Genetic Programming: The Case for Real-Valued Function Regression
	Introduction
	Related Work
	Methodologies
	Experiments
	Results and Discussion
	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

