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Abstract. In this paper, we apply the ideas from [2] to investigate the effect of 
some semantic based guidance to the crossover operator of GP.  We conduct a 
series of experiments on a family of real-valued symbolic regression problems, 
examining four different semantic aware crossover operators.  One operator 
considers the semantics of the exchanged subtrees, while the other compares the 
semantics of the child trees to their parents.  Two control operators are adopted 
which reverse the logic of the semantic equivalence test. The results show that 
on the family of test problems examined, the (approximate) semantic aware 
crossover operators can provide performance advantages over the standard sub-
tree crossover adopted in Genetic Programming. 
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1   Introduction 

Since genetic programming was born, it has been seen by some researchers in and out 
of the field that GP is a potentially powerful method for automated synthesis of  
computer programs by evolutionary means. The ‘program’ is usually presented in a 
language of syntactic formalism such as s-expression trees [7], a linear sequence of 
instructions, grammars, or graphs [1, 12]. The genetic operators in such GP systems 
are usually designed to ensure the syntactic closure property, i.e. to produce syntacti-
cally valid children from any syntactically valid parent(s). Using such purely syntacti-
cal genetic operators, GP evolutionary search is conducted on the syntactical space of 
programs with the only semantic guidance from the fitness of program measured by 
the difference of behavior of evolving programs and the target programs (usually on a 
finite input-output set called fitness cases).  Although GP has been shown to be  
effective in evolving programs for solving different problems using such (finite) be-
havior-based semantic guidance and pure syntactical genetic operator, this practice is  
somewhat unusual from real programmers’ perspective. Computer programs are not 
just constrained by syntax but also by semantics.  As a normal practice, any change to 
a program should pay heavy attention to the change in semantics of the program and 
not just those changes that guarantee to maintain the program syntactical validity. To 
amend this deficiency in GP resulting from the lack of semantic guidance on genetic 
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operators, recently, Beadle and Johnson have proposed a semantic-based crossover 
operator for genetic programming [2]. They showed that their semantically driven 
crossover operator could help GP in achieving better results and less code bloat on 
some standard Boolean test problems. 

In this paper, we extend the ideas from [2] to investigate the effect of some seman-
tic based guidance on the crossover operator in GP on a family of real-valued sym-
bolic regression problems.  We also propose a new form of semantic-aware crossover 
for Genetic Programming, which considers approximations of the semantics of the 
exchanged subtrees. In contrast to the approach of Beadle and Johnson [2], the new 
semantic-aware crossover can be applied to both Boolean and continuous problem 
domains.   

The paper is organized as follows. In the next section, we give a review of related 
work on crossover operators and semantic based operations in GP. Section 3 contains 
the descriptions of some possible methods for using semantic information to guide the 
crossover operator in GP. These methods are used in experiments described in section 
4 of the paper.  The results of the experiments are then given and discussed in section 
5. Section 6 concludes the paper and highlights some potential future extension of  
this work. 

2   Related Work 

In a series of work, Johnson has advocated for the use of semantic information in the 
evolutionary process of GP [3, 4, 5, 6]. He proposed a number of possible ways for 
incorporating program semantics extracted by static analysis techniques into the 
fitness function of GP. In [2], the authors elaborated on their suggestions by investi-
gating the effect of using semantic information to guide the crossover operation in 
GP for Boolean domains, the resultant operator is called semantically driven cross-
over (SDC). Their main idea is to check the semantic equivalence between newly 
born children as the results of the crossover operator with their parents. The semantic 
equivalence checking of two Boolean expression trees is done by transforming the 
trees to reduced ordered binary decision diagrams (ROBDDs). They have the same 
semantic if and only if they are reduced to the same ROBDD. The semantic equiva-
lence checking is then used to determine which of the individual participating in 
crossover operation will be copied to the next generation. If the children born as the 
result of crossover are semantically equivalent with their parents, they are not copied 
to the next generation, instead their parents are copied. By doing this, the author 
argued that it helps to increase the semantic diversity of evolving population of pro-
grams. Indeed the idea is rather similar to deterministic fitness crowding, one of the 
common mechanisms for promoting diversity in evolutionary algorithms [8, 9]. In 
the deterministic fitness crowding method, the children must compete directly with 
the parents to be copied to the next generation and they are copied only if they  
are different enough (usually measured by a distance function) from their parents. 
The important difference between work in [2] and deterministic fitness crowding is 
the use of semantic information (which seems to be attributed to GP only). Semantic 
driven crossover was reported useful in [2] in both increasing GP performance but 
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also reducing code bloat on some standard Boolean test problems (even though it 
seems that reducing bloat was not intentionally the motivation for the introduction of 
semantic driven crossover). 

Prior to Beadle and Johnson [2], there were a number of works on analyzing the ef-
fect of crossover and attempts to improve them.  However, the main focus of this 
work has been on code bloat, fitness-destructive effect of crossover [15, 16, 19] and 
length distributions, and how to improve it in this respect [17, 18].   

The work on semantic driven crossover operators in this paper is different from [2] 
in two ways. Firstly, the domain for testing semantically driven crossovers is real-
valued rather than Boolean.  For real-valued domains, the idea of checking semantic 
equivalence by reducing to common ROBDDs is no longer possible.  Secondly, the 
semantic guidance of the crossover operator is not just derived from the whole pro-
gram tree behavior but also from subtrees. This is inspired by recent work in [10] for 
calculating subtree semantics.  This method is used in [14] as a way for measuring the 
fitness in GP.  However, the subtree semantic calculated in this paper is for real-
valued domains but not Boolean domains as in [2, 10].          

3   Methodologies 

The aim of this study is to extend earlier work [2, 10] to real-valued domains. For 
such problems it is not easy to compute the semantics or semantic equivalence of two 
expression trees by reducing them to a common structure as for Boolean domain as in 
[2]. In fact, the problem of determining semantic equivalence between two real-
valued expressions is known to be NP-hard [20]. Similarly, the problem of completely 
enumerating and comparing fitness of subtree expressions as in [10] is also impossi-
ble on real domains. We have to calculate the approximate semantics. In this paper, a 
simple method for measuring and comparing the semantics of two expressions is used 
both for individual trees and subtrees and the two methods are compared experimen-
tally. To determine the semantic equivalence of two expressions, we measure them 
against a random set of points sampled from the domain. If the output of the two trees 
on the random sample set are close enough (subject to a parameter called semantic 
sensitivity) then they are designated as semantically equivalent.  It can be written in 
pseudo-code as follows: 

If Abs(Value_On_Random_Set(P1)- 
   Value_On_Random_Set(P2))<∑ then 
     Return P1 is semantically equivalent to P2. 

Where Abs is the absolute function and ∑ is a predefined constant called the semantic 
sensitivity. This method is inspired by the simple technique for simplifying  
s-expression program trees proposed in [11] called equivalence decision simplifica-
tion (EDS), where complicated subtrees could be replaced by much simpler and tem-
plate subtrees if they are semantically equivalent. The method of checking semantic 
equivalence of EDS is similar to the method used here and EDS has shown to be an 
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efficient tool for removing redundant codes for tree-based genetic programming1 [11]. 
To test the effect of using semantic information to guide the subtree crossover in 
genetic programming, we propose 4 possible scenarios based on [2, 10]. 

In scenario 1, we constrain the crossover in such a way that if two crossover points 
are chosen the two subtrees under the crossover points are checked for semantic 
equivalence.  If they have equivalent semantics, the operator is forced to be executed 
on two new crossover points. The pseudo-code for this scenario can be summarized as 
follows: 

 
1.1.Select two parents: P1, P2 

1.2.Choose at random crossover points at Subtree1 in P1 

    Choose at random crossover points at Subtree2 in P2 

   if(Subtree1 is not equivalent with Subtree2{  

              Execute crossover  

              Add the children to the new population 

              Return TRUE 

      } 

 else{ 

              Add P1 and P2 to new population 

              Return TRUE 

      } 

The motivation for scenario 1 is to encourage GP individual trees to exchange sub-
trees that have different semantics, which is expected to encourage the change in 
semantics of the whole trees after each crossover.   

In the second scenario, we reverse the semantic bias in the crossover operator 
compared to the first scenario in that the two subtrees are selected for crossover if and 
only if they are semantically equivalent.  The only change in code is the condition of 
if statement in 1.2 as follows: 

      if (Subtree1 is equivalent with Subtree2) 

The third scenario is similar to the method used in [2].  Here the semantics of newly 
created children are checked against the semantics of their parents.  If their semantics 
are found to be equivalent with their parents then they are discarded and the parents 
would be passed to the new generation instead.  The objective of such an implementa-
tion of crossover, as stated in [2], is to enforce the semantic diversity (i.e., keep  
generating new individual programs with new behavior).  The pseudo-code for this 
scenario is as follows: 

                                                           
1 The JAVA code of EDS could be freely downloaded from: sc.snu.ac.kr 
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2.1. Select two parents: P1, P2 

2.2. If (condition to make crossover is satisfied)  

     { 

    Make Crossover to have Children C1 and C2 

    if (C1 is equivalent with P1 Or P2) 

        Add P1 to the new population 

    else 

        Add C1 to the new population 

    if (C2 is equivalent with P1 Or P2) 

        Add P2 to the new population 

    else 

        Add C2 to the new population 

    } 

      else 

        Add P1 and P2 to new population 

The last and fourth scenario tested in this paper is the reverse of the third, where the 
children are accepted to go in to the new population if and only if they are semanti-
cally equivalent with their parent(s). 

4   Experiments 

To investigate the possible effects of semantic aware crossovers given in the previous 
section, they are tested on the symbolic regression problems with target functions in a 
family of polynomials of increasing degree given in [13] and they are: 

F1= X3+X2+X. 
F2= X4+X3+X2+X. 
F3= X5+X4+X3+X2+X 
F4=X6+ X5+X4+X3+X2+X  

The parameters setting for GP in the experiment is as follows: 

- Population size: 500. 

- Number of generation: 50 

- Tournament selection size: 3 

- Crossover probability: 0.9 

- Mutation probability: 0.1 
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- Max depth of program tree at the initial generation: 6 

- Max depth of program tree at all time: 15 

- Non-terminals: +, -, *, / (protected version), sin, cos, exp, log (protected) 

- Terminals: X, 1  

- Number of sample: 20 random points from [-1…1]. 

- Hit: when an individual has an absolute error < 0.01 on a fitness case.  

- Termination: when a program score 20 hits or running out of generations. 

The semantic sensitivities (∑) used in the experiments are: 0.01, 0.02, 0.04, 0.05, 
0.06, 0.08, 0.1, 0.5, and 1. For each crossover scenario, each target problem, and 
semantic sensitivity, 100 runs are performed, which makes the total number of runs 
14800. 

5   Results and Discussion 

The number of successful runs (out of 100 runs) is given in Table 1. It can be seen 
that the effect of using semantic aware crossover depends on the manner in which it is 
applied. When semantics is calculated on subtrees (Scenario 1), it can improve the 
performance of GP in terms of the number of successful runs (e.g., 71 versus 62 on 
F1, and 36 versus 28 on F2). While semantics as used in a similar way to [2] by com-
paring the resulting children to their parents only give slight improvements in some 
cases (Scenario 3). When we reverse the logic of the semantic equivalence test in the 
Control Scenarios 2 and 4 no improvement in the number of successful runs is 
achieved when compared with standard GP. 

However, the improvement in Scenario 1 also depends on the value of semantic 
sensitivity (∑).The results suggest that the value of sensitivities from 0.01 to 0.1 are 
suitable for all four test functions, and the greater sensitivities seem to confer less 
improvement. 

In Table 2 we show mean and standard deviation of best fitness for the 50th  
generation of each run. The results shown in this table is consistent with the results 
in Table 1. The semantic aware crossover as used in scenario 1 where the semantics 
of subtrees to be exchanged are compared, can slightly improve the performance of 
GP in terms of the mean and standard deviation of best fitness. Whereas in Scenario 
3, where the semantics of children are compared to their parents only results in an 
improvement in some settings of semantic sensitivity. Again, no improvements are 
observed for the control scenarios 2 and 4 where the logic of the equivalence test is 
reversed. From these results it would appear that the more difficult problems benefit 
more in terms of the mean and standard deviation of the best fitness when semantic 
aware crossover is adopted. This claim can be confirmed when we consider the 
result of performing t-tests of the results in Scenario 1. These results are shown in 
Table 3. 
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Table 1. The number of successful runs over 100 runs 

Scenario Sensitivity F1 F2 F3 F4 
GP  62 28 15 10 

0.01 68 33 22 10 

0.02 70 33 22 14 

0.04 70 34 20 19 

0.05 71 33 19 14 

0.06 71 32 20 17 

0.08 70 35 20 17 

0.1 66 36 17 14 

0.5 62 33 17 12 

Scenario 1 

1 65 27 12 8 
0.01 41 31 13 7 

0.02 40 18 13 10 

0.04 40 15 14 8 

0.05 44 26 12 7 

0.06 41 17 13 7 

0.08 41 19 15 7 

0.1 42 24 12 10 

0.5 45 18 10 10 

Scenario 2 
 

1 55 25 18 5 

0.01 52 24 18 12 

0.02 57 32 16 12 

0.04 52 32 23 8 

0.05 54 33 15 7 

0.06 52 29 16 10 

0.08 50 26 13 11 

0.1 44 26 13 8 

0.5 38 15 15 5 

Scenario 3 

1 39 17 14 3 

0.01 2 0 0 0 

0.02 3 0 0 0 

0.04 3 0 0 0 

0.05 2 0 0 0 

0.06 2 0 1 0 

0.08 3 1 0 0 

0.1 3 1 1 0 

0.5 7 0 0 1 

Scenario 4 

1 12 1 0 1 
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Table 2. Mean and standard deviation of the best fitness at 50 generations 

 Sensitivity F1 
Mean 

(Stdev) 

F2 
Mean 

(Stdev) 

F3 
Mean 

(Stdev) 

F4 
Mean 

(Stdev) 
GP  0.128 

(0.170) 
0.262 

(0.241) 
0.302 

(0.252) 
0.397 

(0.355) 
0.01 0.135 

(0.205) 
0.230 

(0.214) 
0.274 

(0.215) 
0.335 

(0.271) 
0.02 0.133 

(0.209) 
0.236 

(0.218) 
0.275 

(0.216) 
0.329 

(0.275) 
0.04 0.125 

(0.182) 
0.231 

(0.214) 
0.268 

(0.212) 
0.328 

(0.278) 
0.05 0.126 

(0.185) 
0.224 

(0.206) 
0.266 

(0.213) 
0.330 

(0.277) 
0.06 0.121 

(0.181) 
0.227 

(0.207) 
0.265 

(0.215) 
0.319 

(0.270) 
0.08 0.137 

(0.215) 
0.223 

(0.205) 
0.279 

(0.218) 
0.333 

(0.281) 
0.1 0.133 

(0.185) 
0.225 

(0.208) 
0.274 

(0.215) 
0.334 

(0.268) 
0.5 0.120 

(0.157) 
0.217 

(0.203) 
0.276 

(0.213) 
0.336 

(0.266) 

Scenario 1 

1 0.123 
(0.174) 

0.214 
(0.149) 

0.287 
(0.215) 

0.397 
(0.292) 

0.01 0.258 
(0.357) 

0.275 
(0.222) 

0.325 
(0.235) 

0.459 
(0.421) 

0.02 0.221 
(0.318) 

0.307 
(0.234) 

0.330 
(0.237) 

0.458 
(0.348) 

0.04 0.229 
(0.321 

0.310 
(0.238) 

0.332 
(0.244) 

0.435 
(0.314) 

0.05 0.253 
(0.356) 

0.289 
(0.216) 

0.336 
(0.256) 

0.439 
(0.395) 

0.06 0.241 
(0.333) 

0.302 
(0.237) 

0.327 
(0.238) 

0.443 
(0.314) 

0.08 0.239 
(0.325) 

0.315 
(0.256) 

0.334 
(0.245) 

0.434 
(0.305) 

0.1 0.250 
(0.355) 

0.279 
(0.197) 

0.337 
(0.260) 

0.436 
(0.396) 

0.5 0.236 
(0.395) 

0.280 
(0.237) 

0.314 
(0.195) 

0.377 
(0.293) 

Scenario 2 

1 0.168 
(0.205) 

0.328 
(0.300) 

0.294 
(0.237) 

0.398 
(0.262) 

0.01 0.229 
(0.373) 

0.239 
(0.215) 

0.321 
(0.321) 

0.362 
(0.305) 

0.02 0.208 
(0.326) 

0.218 
(0.184) 

0.229 
(0.286) 

0.348 
(0.292) 

0.04 0.224 
(0.334) 

0.229 
(0.211) 

0.306 
(0.311) 

0.353 
(0.241) 

0.05 0.212 
(0.312) 

0.216 
(0.197) 

0.303 
(0.232) 

0.364 
(0.307) 

Scenario 3 

0.06 0.204 
(0.333) 

0.229 
(0.230) 

0.280 
(0.241) 

0.315 
(0.218) 
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Table 2. (Continued) 

0.08 0.234 
(0.350) 

0.248 
(0.225) 

0.335 
(0.302) 

0.347 
(0.251) 

0.1 0.224 
(0.329) 

0.252 
(0.214) 

0.359 
(0.302) 

0.418 
(0.305) 

0.5 0.225 
(0.332) 

0.297 
(0.211) 

0.344 
(0.310) 

0.406 
(0.275) 

 

1 0.216 
(0.224) 

0.343 
(0.247) 

0.378 
(0.266) 

0.460 
(0.247) 

0.01 1.144 
(0.911) 

1.287 
(0.959) 

1.590 
(1.219) 

1.641 
(1.215) 

0.02 1.153 
(0.908) 

1.304 
(0.964) 

1.569 
(1.251) 

1.662 
(1.228) 

0.04 1.122 
(0.911) 

1.280 
(1.002) 

1.561 
(1.247) 

1.650 
(1.214) 

0.05 1.204 
(0.946) 

1.259 
(0.967) 

1.513 
(1.203) 

1.658 
(1.236) 

0.06 1.127 
(0.914) 

1.281 
(0.997) 

1.473 
(1.236) 

1.640 
(1.223) 

0.08 1.121 
(0.910) 

1.205 
(0.999) 

1.495 
(1.999) 

1.604 
(1.225) 

0.1 1.144 
(0.938) 

1.180 
(0.980) 

1.519 
(1.191) 

1.650 
(1.216) 

0.5 0.994 
(0.895) 

1.038 
(0.834) 

1.249 
(1.015) 

1.575 
(1.233) 

Scenario 4 

1 0.752 
(0.787) 

0.870 
(0.645) 

1.177 
(1.107) 

1.350 
(1.277) 

Table 3. Mean and standard deviation of best fitness and p-value of t-test 

Scenario Sensi-
tivity 

f1 
Mean 
Stdev 

P-
value 

f2 
Mean 
Stdev 

P-
value 

f3 
Mean 
Stdev 

P-
value 

f4 
Mean 
Stdev 

P-
value 

GP  0.128 
0.170 

 0.262 
0.241 

 0.302 
0.252 

 0.397 
0.355 

 

0.01 0.135 
0.205 

0.647 0.230 
0.214 

0.351 0.274 
0.215 

0.405 0.335 
0.271 

0.165 

0.02 0.133 
0.209 

0.687 0.236 
0.218 

0.462 0.275 
0.216 

0.412 0.329 
0.275 

0.129 

0.04 0.125 
0.182 

0.932 0.231 
0.214 

0.367 0.268 
0.212 

0.304 0.328 
0.278 

0.128 

0.05 0.126 
0.185 

0.894 0.224 
0.206 

0.282 0.266 
0.213 

0.274 0.330 
0.277 

0.137 

0.06 0.121 
0.181 

0.982 0.227 
0.207 

0.225 0.265 
0.215 

0.264 0.319 
0.270 

0.080 

0.08 0.137 
0.215 

0.604 0.223 
0.205 

0.255 0.279 
0.218 

0.495 0.333 
0.281 

0.157 

0.1 0.133 
0.185 

0.678 0.225 
0.208 

0.161 0.274 
0.215 

0.395 0.334 
0.268 

0.162 

0.5 0.120 
0.157 

0.928 0.217 
0.203 

0.131 0.276 
0.213 

0.414 0.336 
0.266 

0.171 

Scenario 1 

1 0.123 
0.174 

0.986 0.214 
0.149 

0.090 0.287 
0.215 

0.543 0.397 
0.292 

0.997 
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6   Conclusions and Future Work 

The effect of semantics with crossover in Genetic Programming is investigated in this 
paper.  In this study we focus on the family of real-valued problem domains in form 
of polynomials (symbolic regression).  The investigation is performed on four scenar-
ios.  The experimental results show that semantic aware crossover as adopted in Sce-
nario 1, where the semantics of subtrees to be exchanged are analysed, can improve 
performance of Genetic Programming in both number of successful runs and the 
mean best fitness on the problems examined. In the alternative Scenario 3, where the 
semantics of the children resulting from crossover are compared to their parents per-
formance gains can be observed in some cases.  Comparing subtree semantic aware 
crossover to the individual-based form, there is an advantage for the subtree approach 
on the four symbolic regression instances examined. The two control scenarios (2 and 
4) where the logic of the semantic equivalence tests are reversed show no improve-
ment over standard subtree crossover.  

There are some interesting areas for future investigation. In contrast to the ap-
proach adopted in an earlier study on Boolean problems [2] the semantic aware cross-
over operators adopted here can be applied to both Boolean and real-valued domains.  
We also wish to examine the utility of these semantic aware operators to more diffi-
cult symbolic regression problems, and more classic benchmark problems from the 
literature to determine more clearly the generality of these findings.  
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