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Abstract. Physics-based animal animations require data for realistic
motion. This data is expensive to acquire through motion capture and in-
accurate when estimated by an artist. Grammatical Evolution (GE) can
be used to optimise pre-existing motion data or generate novel motions.
Optimised motion data produces sustained locomotion in a physics-based
model. To explore the use of GE for gait optimisation, the motion data of
a walking horse, from a veterinary publication, is optimised for a physics-
based horse model. The results of several grammars are presented and
discussed. GE was found to be successful for optimising motion data us-
ing a grammar based on the concatenation of sinusoidal functions.

Keywords: Grammatical Evolution, physics-based animation, gait op-
timisation, quadrupedal locomotion, Fourier analysis.

1 Introduction

A well-constructed physics-based animal model can produce physically realistic
animations given good quality motion data. This data can be expensive to mea-
sure and unreliable to estimate. We propose to take some potentially inaccurate
motion data and optimise it using an evolutionary algorithm approach.

Animal motion data is sometimes published in biomechanical and veterinary
literature. Data can also be gleaned from sequential high-speed photographs of
an animal in motion [1]. Although this data can be extracted and formatted
for use with a physics-based model, it will not automatically produce stable
locomotion. The data must be optimised for use with a specific model.

In this paper we present an approach to gait optimisation which utilises the
Grammatical Evolution (GE) evolutionary computation technique. Rather than
simply performing a parameterised optimisation on the data, which is known
to work well, we propose a Fourier analysis based approach. By representing
an animal’s gait as a summation of sinusoidal functions, we optimise a more
minimal set of parameters, as we successively concatenate sinusoidal functions
of differing amplitude, phase and frequency. This representation is compact and
mimics the sinusoidal nature of muscle movement. It also gives the evolutionary
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process more freedom to evolve than a parameterised optimisation, including the
potential to retarget gait cycles from one animal to another.

We discuss how GE is used to optimise a walk gait for a physics-based horse
model. Using a horse simulation application as the fitness function, gait cycles are
generated and assessed. The gait cycle representation and the manner in which
the simulation application acts as fitness function is described in Section 3. We
compare the results of a variety of grammar types and speed-up strategies in
Section 4. Section 5 concludes the paper with a brief discussion of the presented
results. First of all, we present a brief overview of some related work.

2 Related Work

A gait is a pattern in which an animal moves using its limbs. The four main
natural gaits of a horse are the walk, trot, canter and gallop. During locomotion,
a sequence of muscles, determined by the current gait pattern, are contracted
periodically to produce movement in the bones. The rotating bones cause the
hoof to push off the ground surface, thrusting the animal forwards. The cyclical
nature of a gait allows it to be quantified and described in terms of gait cycles.

A gait cycle begins when a foot contacts the ground and ends when that same
foot contacts the ground again. The fraction of the cycle in which the foot is
in contact with the ground is called the duty factor. The most distinguishing
feature of a gait cycle is its footfall sequence, as the order in which an animal’s
feet impact the ground differs between gaits. Gaits are also described in terms
of stride length and stride frequency [2].

The gait an animal will utilise, when travelling at a particular velocity, can be
predicted based on the dynamic similarity principles [3]. This theory is based on
the dimensionless Froude number, which is a function of the animal’s velocity,
height of hip from the ground and acceleration due to gravity. The dynamic
similarity hypothesis states that when different mammals are travelling at equal
Froude numbers, their gait patterns will be dynamically similar. This is exploited
in our fitness function as will be described in Section 3.2.

Reproducing animal locomotion through animation is a well-studied topic in
computer graphics and other disciplines such as robotics. Physics-based ani-
mal models can realistically reproduce animal motion given a well-constructed
model and motion controller. An animal model is constructed as a series of in-
terconnected rigid bodies. The rigid bodies represent the animal’s bones and the
connections between these bones are the joints. A physics engine ensures that
the bones react in a physically realistic manner to gravity, friction, collisions,
applied forces and torques [4]. Forces and torques applied to the bones produce
linear and angular accelerations. As the bones are connected together by joints,
forces applied to a single rigid body may propagate throughout the rigid body
system. To produce motion in the model, a motion controller applies torques of
specific magnitude about each of the joints in a limb, with precise timing, to
produce a desired bone rotation. The development of animal models and motion
controllers has been studied in the computer animation field for many years.
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Genetic Algorithms are used to generate quadruped robot gaits in [5,6,7].
The fitness function in [5] is of interest as it is concerned with finding a gait that
uses minimal energy, while covering a required distance at a specified speed.
This can be applied to gait generation for quadruped animations as they state
that the optimal gaits produced for the robots are comparable to those ex-
pected of a real-life animal travelling at the same Froude number. Each flavour
of evolutionary algorithm will vary in performance depending on the problem
domain. We apply a relatively new type of evolutionary algorithm called Gram-
matical Evolution (GE) to gait optimisation. GE is one of the most popular
forms of grammar-based Genetic Programming (GP) due to the convenience by
which a user can specify and modify the grammar, whilst ignoring the task of
designing specific genetic search operators. It has been successfully employed
to financial prediction [9], but has never been applied to gait generation and
optimisation.

The GE search adapts principles from molecular biology. GE is distinct from
other evolutionary algorithms as it uses a variable length binary or integer string
to derive solutions from a Backus Naur Form grammar. In GE, the evolutionary
algorithm’s genetic operators are applied to the strings (genotypes) rather than
problem domain solutions (phenotypes). Potential complexities of the phenotype
are inconsequential. This makes GE a good choice for gait optimisation because
the horse gait problem domain is large and complex, as will be discussed in the
following section. For further information on GE please refer to [10].

3 GE for Gait Optimisation

Our goal is to optimise gait data and explore how motion variations in a joint
affect an animal’s gait. GP allows us to explore these motion variations as a gait
is optimised. The advantage of GP over other model/structure learning methods,
such as Neural Networks, is that output structures are generally in a human-
understandable format. We can examine motions and identify patterns which
may allow us to generate motion for morphologies for which we have no data.

Measured data, and experience of manually tuning motion data for anima-
tion purposes, provide a general template of how each joint should move for
realistic motion of the model. Information on an animal’s musculature and joint
limits can be implicitly included through constraints imposed on the evolving
structures. We wish to compare results of multiple optimisations utilising differ-
ing styles and levels of constraint on evolutionary freedom. Grammar-based GP,
specifically GE, is ideal for this purpose as various constraint methods can be
easily incorporated into a grammar and rapidly performance tested.

During the GE process, each phenotype produced from a grammar is passed
to a simulation application as motion data. This application, acting as fitness
function, assesses each phenotype for a few gait cycles. The GE process pro-
ceeds until an optimal solution is found. Technical details of the GE set-up are
beyond the scope of this paper however, the GE parameters used for each run
are presented in Table 1. All results in Section 4 are generated using GEVA [11].
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Table 1. GE parameters used for every run

Parameter Value

Generations 50

Population 75

Max. wrapping 3

Replacement generational

Elite size 7

Selection Tournament (3)

Initialisation RampedFullGrow

Max. depth 10

Grow prob. 0.5

Crossover prob. 0.9

Crossover point fixed

Mutation prob. 0.02

Fig. 1. Sequential screen-shots of the physics-based horse model walking

Sequential screen-shots of the simulation application, implemented using Open
Dynamics Engine [8], are shown in Figure 1. Simulation application details are be-
yond the scope of this paper however, the most important aspect of the simulation
application is the gait cycle representation. It is based on the observation that, as
muscles tend to relax and contract in a sinusoidal manner, real-life joint-angle data
can be decomposed into a sum of sinusoidal functions through Fourier analysis.
Motion data for each joint is therefore represented as a sum of these sinusoids,
referred to as the sum-of-sines representation. It is a compact and elegant way of
representing cyclical data such as a single cycle of a gait, which is used repeatedly
to produce sustained locomotion. Details of our grammars and fitness function
follow in Section 3.1 and Section 3.2 respectively.

3.1 Gait Optimisation Grammar

The grammars must allow for construction of syntactically correct motion data
in the sum-of-sines format. If the goal is to optimise real-life animal gait data,
that data must be incorporated into the grammar. The greatest consideration in
the grammar construction is the degree to which phenotypes are allowed differ
from the seed data. The grammar should produce motion data for each joint in
the model, represented as a summation of sinusoidal functions, in the form:

〈amp〉 ∗ sin(〈freq〉 ∗ 2 ∗ PI ∗ time + 〈phase〉) (1)
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Motion data, extracted from plots in [2], is decomposed into its component
sinusoidal functions through Fourier analysis. Fourier terms whose amplitude
is below some arbitrarily chosen threshold value are discarded, leaving a more
compact summation of sinusoidal functions approximating the motion data.

This representation could be simply optimised by manipulating the variable
values of its constituent sinusoidal functions. The values of the amp and phase
parameters in each function can be optimised within some defined range. As
the extracted motion, or seed, data dictates the frequencies of the functions we
can optimise, the range of potential solutions is constrained. To provide greater
flexibility, our GE grammars produce phenotypes by concatenating sinusoidal
functions to the seed data from a fuller range of frequencies, not just those
dictated by the minimal form of the Fourier analysis. Depending on the gram-
mar, phenotypes can be constrained to remain close to the seed data or allowed
to deviate. Each of the generated phenotypes must be assessed in the animal
simulation application by means of a fitness function.

3.2 Gait Optimisation Fitness Function

Our fitness function is based on energy efficiency and gait predictions based on
the dimensionless Froude number, which is calculated as follows:

Fr = v/
√

g ∗ h (2)

Where Fr is the Froude number, v is velocity, g is gravity and h is height of the
animal’s hip from the ground. Dynamic similarity theory states that an animal
travelling at a particular Froude number will share gait characteristics with other
animals travelling at the same Froude number. This implies that if we have gait
information for a single animal moving at a range of Froude numbers, we can
predict the gaits of other animals. Such data is published in [3].

A gait is optimised to move the model at a particular Froude number. From
that Froude value we calculate velocity and predict the phase difference between
limbs, stride frequency, stride length and duty factors.

These predictions are used in the fitness function to score the phenotypes.
The phase difference and stride frequency are set in the application based on the
Froude number argument. Only the joint-angle motion data is generated. An
optimal generated gait moves the model with the velocity, duty factor and stride
length values predicted by the dynamic similarity theory. Energy efficiency of
a gait is also a factor in the fitness score. In nature, animal morphology and
joint-angle motion has generally evolved to use the minimum energy to travel
a desired distance at a desired velocity. The fitness function therefore rewards
those phenotypes that use minimal energy.

Each of the fitness components has an associated weight. Each component’s
contribution to the fitness score is a function of its weight and a measure of the
error from its predicted value. The better the gait, the lower the score. Using
this technique, a perfect score of 0 should never occur. The energy component
is a weighted sum of the model’s total energy use, averaged per cycle. As the
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model must expend energy to move, even the most optimal gaits will have a
positive fitness value, as will be seen in the following section.

4 Experiments and Results

To explore the use of GE for gait optimisation, grammars which utilise seed data
are investigated as well as free-style grammars which do not. In the case of these
unconstrained, free-style grammars, the goal is not to produce aesthetically re-
alistic gaits, but rather create novel movement and test the capabilities of our
multivariable fitness function. It is apparent from experimentation, that gram-
mars providing parameterised optimisation of seed data perform well. A future
goal of our research is to retarget optimal gait data from one animal to another
as outlined in [12]. Our experiments have shown that a simple parameterised
optimisation of the seed data does not have the scope to alter motion data sig-
nificantly enough to allow retargeting to animals with different morphology to
that of the source. This motivates our exploration of grammars which provide
the flexibility to evolve gaits from one animal to another.

The results presented in this paper are divided into three categories. In Sec-
tion 4.1, we describe a grammar which optimises data by concatenating sinu-
soidal functions to the seed data. This grammar is compared with parameterised
optimisation approaches. In Section 4.2, the investigation of the concatenating
functions grammar continues with two attempts to speed-up the evolutionary
process through generational manipulation of the grammar and fitness function.
Finally, in Section 4.3, grammars that do not use seed data are presented.

4.1 Parameterised Optimisation Comparison

For our parameterised optimisation, each term in the compact summation of
sinusoidal functions data approximation is represented as a triple (amplitude,
frequency and phase). Each of these values is optimised within a range of 25% of
itself. While this approach performs well on data which has been measured from
an animal with the same morphology as our model, as in the presented case, it
is constrained to produce a limited set of motion, unsuitable for interspecies gait
retargeting. We aim to develop a grammar which can at least match and hope-
fully surpass the parameterised approach, while having the scope to completely
diverge from the seed data during our retargeting experiments.

The grammar presented in Figure 2 optimises the seed data by adding (or
subtracting) sine and cosine functions of differing amplitude and frequency to
the seed data, which is itself in the sum-of-sines form. Generated motion may
deviate from the seed data through addition of functions of differing frequency.

The frequencies of the appendable sinusoidal functions and the seed data
summations have a range of 1 to 8Hz. Fourier analyis of the seed data shows
that higher frequency functions have amplitudes less than our arbitrarily chosen
threshold value of 1. These functions are considered less influential to the over-
all movement and are discarded for compactness. The grammar also constrains
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<prog> ::= <fcurve0> <newline> <fcurve1> <newline> ... <fcurve11>

<fcurve0> ::= <curve0> | <curve0> + <funcs>
...
<fcurve11> ::= <curve11> | <curve11> + <funcs>

<funcs> ::= <funcs> <op> <funcs>
| <function>
| <med_amp_var>

<op> ::= + | -

<function> ::= <low_amp_var> * sin( <low_freq_var> * 2 * PI * t )
| <low_amp_var> * cos( <low_freq_var> * 2 * PI * t )
| <med_amp_var> * sin( <med_freq_var> * 2 * PI * t )
| <med_amp_var> * cos( <med_freq_var> * 2 * PI * t )
| <hi_amp_var> * sin( <hi_freq_var> * 2 * PI * t )
| <hi_amp_var> * cos( <hi_freq_var> * 2 * PI * t )

<low_freq_var> ::= 1 | 2
<med_freq_var> ::= 3 | 4
<hi_freq_var> ::= 5 | 6 | 7 | 8

<low_amp_var> ::= 0 | 0.25 | 0.5 | ... | 20
<med_amp_var> ::= 0 | 0.1 | 0.2 | ... | 4
<hi_amp_var> ::= 0 | 0.05 | 0.1 | ... | 1

<curve0> ::= 6.97+7.7*sin(1*2*PI*t+-1.07)+2.56*sin(2*2*PI*t+2.97) ...
...
<curve11> ::= ...

Fig. 2. An illustrative example of a grammar based on the concatenation of sinusoidal
functions to the seed data. Note the seed data at the bottom of the grammar. (Omitted
terms represented by ‘...’.).

appended functions of a particular frequency to have an amplitude of a specific
range. This range is based on observations from the Fourier analysis.

The best fitness plot in Figure 3, shows the numerical (parameterised) optimi-
sation starting off worst. Gradually it improves and achieves a similar optimal
solution score to the concatenating functions grammar. The overall winner in
terms of best fitness is a grammar which uses a combination of parameterised
optimisation and concatenating functions. The sinusoidal functions are added to
the seed data, whose parameters are optimised in parallel.

4.2 Concatenating Functions Speed-Up Attempts

To improve the performance of the concatenating functions grammar, two tests
are presented in which the fitness function and grammar dynamically changes.
For the varying fitness function test, the fitness weights are changed from gener-
ation to generation, as shown in Table 2. It was hoped that this would speed up
the evolutionary process, prevent the process from becoming stuck at local min-
ima and produce a more well rounded solution, i.e. one which optimises aspects
of velocity, duty factor and stride length equally.
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Fig. 3. A numerical optimisation approach is contrasted with the concatenating func-
tions grammar and a hybrid of the two approaches. Best and average fitness (averaged,
30 runs) are presented on the left and right respectively. (Note difference in scale.).

Table 2. Fitness function weights during the fitness function variation run

Fitness measure Gen. 0-10 Gen. 11-20 Gen. 21-30 Gen. 31-40 Gen.41-50

Distance 1 2 1 1 1

Duty factor 1 1 2 1 1

Stride length 1 1 1 2 1

Energy 1 1 1 1 1

The results presented in Figure 4 do not show any speed-up. The change
in fitness function does seem to drive the evolution forward in some situations
however, in this instance, the change in fitness function causes a plateau in the
best fitness score from generation 10-20. The large spike in the corresponding
average fitness plot indicates that the model has a high distance error value
at generation 10. The increase in the distance-scalar’s weight causes temporary
chaos. The process recovers and quickly proceeds to an optimal solution.

The second test involves restricting joint motion on a generational basis. The
sequence in which joints are given freedom is presented in Table 3. While again
this approach does not speed up the evolutionary process, it is clear from the
average fitness plots in Figure 4 that the varying joint freedom grammar produces
very stable gaits from the earliest generations. The large starting values apparent
in most of the average fitness plots are the result of the unviable phenotypes
passed to the simulation application, usually at the start of the evolutionary
process. The motion data can cause the model to wildly gyrate its limbs or
provide such a boisterous gait that the model flips over. These bad phenotypes
are awarded a very high score (corresponding to the worst fitness possible).
By initially restricting the model’s degrees of freedom, production of the bad
phenotypes appears minimised. The results are summarised in Table 4.
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Fig. 4. The concatenating functions grammar with alternating fitness and grammar
strategies. Best and average fitness (averaged, 30 runs) are presented on the left and
right respectively. (Note difference in scale).

Table 3. Generational joint freedom. Only joints with a �are free to move and evolve
motion data for each generation range. All other joints remain static.

Joint Gen. 0-10 Gen. 11-20 Gen. 21-30 Gen. 31-50

Scapula (fore) � � � �
Shoulder (fore) � � � �
Elbow (fore) - � � �
Carpal (fore) - - � �
Fetlock (fore) - - - �
Hip (hind) � � � �
Stifle (hind) - � � �
Tarsal (hind) - - � �
Fetlock (hind) - - - �

Proximal (neck) - � � �
Mid (neck) - - � �

Atlas (head/neck) - - - �

Table 4. Best and average fitness with standard deviations (averaged, 30 runs), of the
concatenating functions grammar with the fitness function and grammar variations

Strategy Avg. Best Std. Dev. Avg. Avg. Std. Dev.

None 100.333 8.5231 140.9203 43.1542

Varying fitness weights 102.7 5.3572 154.5484 50.3666

Varying joint freedom 104.0333 7.8892 112.2726 8.4968
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4.3 Free-Style Grammars

In contrast to previous grammars which contain seed data, the use of free-style
grammars is also investigated. As the grammar, shown in Figure 5, does not
contain constraints based on the animal’s joint limits and muscle distribution,
the motions resulting from this free grammar vary greatly across the 30 runs
completed. In some instances, the model moves utilising only its front or hind
limbs. Other runs exhibit a sequence of sudden hops to move the model. On a few
occasions, motion is produced by placing the limbs squarely under the animal’s
body and using a high-frequency, small amplitude, back and forth motion to
“vibrate” the animal along the surface. The fact that these very different gait
cycles achieve similar fitness scores demonstrates a flaw in the multivariable
fitness function. It appears that improvements in one aspect of the fitness score
can overshadow other components, which suggests a more sophisticated fitness
function is required. Currently, the ultimate shape of a solution using a free-
style grammar may be randomly determined early in the evolutionary process.
An interactive evolutionary computation technique could be employed in the
early generations to guide the process towards a realistic motion.

<prog> ::= <fcurve> <newline> ... <fcurve>

<fcurve> ::= <expr>

<expr> ::= <expr> <op> <expr>
| (<expr> <op> <expr>)
| <pre-op> (<expr> * t)
| <var>

<op> ::= + | - | / | *
<pre-op> ::= sin | cos

Fig. 5. An illustrative example of a free grammar. The t variable is required by our
simulation application so that generated motion data may be a function of time. The
fcurve terms, for each joint presented in Table 3, are omitted and represented by ‘...’.

A free-style sum of sinusoidal functions technique is also tested. The grammar
is similar to the concatenating functions grammar in Figure 2, except that the
functions are not concatenated to any seed data. Our knowledge that animal gait
data can be decomposed into a summation of sinusoidal functions, each having
parameters which fall within particular frequency, amplitude and phase values,
is incorporated into the grammar. In contrast to the free grammar in Figure 5,
information about the animal’s musculature is implicitly included through the
specific frequency and amplitude ranges of the sinusoids. While a small number
of generated gaits are visually unrealistic, the majority are comparable to the
real-life motion of a horse. While not as good as those grammars which include
seed data, there is potential for improvement given a more sophisticated fitness
function and increased population and generation values.

Figure 6 shows the free and sinusoidal grammar scoring comparably to the
concatenating functions grammar in terms of fitness. This illustrates the pitfalls
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Fig. 6. Free and free-style sinusoidal grammars compared with the concatenating func-
tions grammar. Best and average fitness (averaged, 30 runs) are presented on the left
and right respectively. (Note difference in scale.)

of using a multivariable fitness function and few motion constraints. Out of the
free grammar’s 30 runs, very different “optimal” solutions score similarly. It
demonstrates that if realism is the goal, seed data, or constraints built into the
grammar based on observations of animal motion, are required.

5 Discussion and Conclusions

GE allows us to rapidly explore different approaches to gait generation. Pheno-
types are produced in a human-readable format which assists understanding of
gait motion. Grammars also allow us to construct gait representations other than
the presented sum-of-sines, necessary for non-cyclical gait transition motions.

Table 5 shows that the concatenating functions grammar improves upon the
parameterised approach in terms of fitness score, albeit by a small margin. The
overall winner is a combination of the two. The concatenating sinusoidal func-
tions approach is found to be a compact method of representing and optimising

Table 5. Overall best and average fitness scores (averaged, 30 runs) achieved by each
grammar alongside their respective standard deviations

Grammar Avg. Best Std. Dev. Avg. Avg. Std. Dev.

Numerical & concatenating functions 95.3 5.2729 138.8273 57.2904

Concatenating functions 100.333 8.5231 140.9203 43.1542

Sinusoidal grammar 100.4333 6.0039 150.2595 44.2394

Numerical only 101.3333 8.5715 132.6506 37.6833

Free 106.3 19.05 279.1248 81.3519
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gait data. By optimising seed data whilst appending new sinusoidal functions, we
have the flexibility to retarget to other morphologies whilst maintaining realism.

The multivariable nature of our fitness function allows for significant motion
variance between similarily scoring phenotypes. It may be benificial to use a
multi-objective optimisation approach in future. With further refinement of the
grammars and fitness function, this GE method of gait optimisation can be
utilised in our gait retargeting solution. In future we also hope to use a grammar-
based approach to produce sophisticated balance and directional systems.

Acknowledgments. Thanks to IRCSET and IBM.
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