Higher Order Functions for Kernel Regression

Alexandros Agapitos', James McDermott?, Michael O’Neill',
Ahmed Kattan®, and Anthony Brabazon?

1 School of Computer Science and Informatics, University College Dublin, Ireland
{alexandros.agapitos,m.oneill,anthony.brabazon}Qucd.ie
2 School of Business, University College Dublin, Ireland
jmmcd@jmmcd.net
3 Um Al Qura University, Dept. of Computer Science, Kingdom of Saudi Arabia
ajkattan@uqu.edu.sa

Abstract. Kernel regression is a well-established nonparametric
method, in which the target value of a query point is estimated using a
weighted average of the surrounding training examples. The weights are
typically obtained by applying a distance-based kernel function, which
presupposes the existence of a distance measure.This paper investigates
the use of Genetic Programming for the evolution of task-specific dis-
tance measures as an alternative to Euclidean distance. Results on seven
real-world datasets show that the generalisation performance of the pro-
posed system is superior to that of Euclidean-based kernel regression and
standard GP.

1 Introduction

One of the oldest and most commonly used nonparametric methods for function
estimation is kernel regression [12]. It achieves flexibility in estimating a regres-
sion function F(x) over the domain R? by fitting a different, local model at each
query point zy. This is achieved by using only those observations close to xg
in such a way that the resulting estimated function F(x) is smooth in R%. The
value of F(x) is then computed as a weighted average of the function values
observed at training inputs.

We note three substantial drawbacks of standard methods for kernel regres-
sion. First, they require an a priori well-defined distance metric on the input
space, which may preclude their usage in datasets where such metrics are not
meaningful. For example, the well-known Boston housing dataset [5] contains
13 input features representing completely disparate quantities such as popula-
tion levels, crime rates, pupil-teacher ratios, etc. Similar difficulties can arise in
cases of a mixture of qualitative, ordinal and numerical features. Secondly, a
pre-defined distance metric may not be particularly relevant to the regression
task at hand. The typical Euclidean distance is calculated on all features defin-
ing a point in R?. In a high-dimensional input space, the distance metric may
become dominated by a large number of irrelevant features, as it ascribes to
them identical weight to that of the most significant ones. The irrelevant fea-
tures ideally should not contribute at all to the distance calculation. Thirdly, in

M. Nicolau et al. (Eds.): EuroGP 2014, LNCS 8599, pp. 1-12, 2014.
(© Springer-Verlag Berlin Heidelberg 2014

2 A. Agapitos et al.

cases of input spaces of high-dimensionality, most neighbours of a point can be
very far away, causing bias and degrading the performance of the kernel func-
tion. As a simple example [4] (Figure 1.22, page 36), consider a sphere of radius
r = 1 in a space of D dimensions, and ask what is the fraction of a volume of
the sphere that lies between radius » = 1 — € and r = 1. It is shown that as D
grows (i.e. D > 20), most of the volume of the sphere is concentrated in a thin
shell near the surface. This causes most of the points in the feature space to be
neighbours, and renders the determination of the kernel width problematic. An
additional manifestation of the curse of the dimensionality for kernel regression
is that it is impossible to maintain localness (low bias) and a sizeable sample in
the neighbourhood (low variance) as D increases, without the training sample
size increasing exponentially in D [12].

We propose a novel method to learn a problem-specific distance measure over
an input space in which small distances between two vectors imply similar target
values, and so we can exploit local interpolation-like techniques to allow us to
make predictions of the target variables for new values of the input variables.
We employ Genetic Programming (GP) [10] to learn such distance measures
by searching the space of programs composed of general-purpose higher-order
functions, which allow for implicit iteration over lists of feature values. Typical
distance functions, such as Euclidean and other [, distances, involve iteration
over the multiple dimensions of the pair of input points. This feature is likely to
be useful in new evolved distances also. Including the ability to iterate in our GP
language makes it far more general than the constant-time numerical language
typical of GP symbolic regression. Success or failure in our work therefore has
implications for the broader project of evolutionary synthesis of general computer
programs. It also raises the issue of halting, to be addressed by our choice of
language.

The reader’s guide to the rest of the paper is as follows. Section 2 formalises
the method of kernel regression. Section 3 introduces the higher-order functions
that will be used in the experiments. Section 4 presents the proposed method
and details the experiment design. Section 5 analyses the empirical results, and
finally Section 6 wraps up and sketches future research directions.

2 Kernel Regression

In the general function estimation problem, one is given a set of training examples
{zi,yi}, i ={1,..., N}, where y is the response variable and x € R? is a vector
of explanatory variables. The goal is to find a function F*(x) that maps x to y,
such that over the joint distribution P(x,y) the expected value of some specified
loss function L(y, F(x)) is minimised:

Fi(x) = arg(lj(l)inEz,y[L(y, F(x))] (1

Higher Order Functions for Kernel Regression 3

Kernel regression or kernel smoothing [12] (page 192) uses the so called Nadaraya-
Watson kernel-weighted average to fit a constant locally as follows:

N K (wo, i)y

F* Xo) = N
() Zi:lKA(IO»W)

(2)

with a kernel K, which is typically a probability density function, defined as:

K)\(a:o,a:):D(Hx ;xo”) (3)

where || - || is the Euclidean norm, and A is the smoothing parameter called
the kernel width. The smoothing parameter \ determines the width of the local
neighbourhood and is usually set by means of cross-validation. Large A implies
lower variance (averages over more observations) but higher bias. Constant val-
ues for A tend to keep the bias of the estimate constant, while the variance is
inversely proportionate to the local density.

The function D(-) is typically a positive real-valued function, which decays
with increasing distance between zg and x. The optimal rate of decay depends
on the noisiness and smoothness of the target function, the density of training
examples, and the scale of the input features. A wide variety of kernel functions
can be found in statistics, see [1].

The application of kernel regression to model a noisy sinusoidal function (green
curve) is illustrated in Figure 1. The example uses the Epanechnikov kernel with
A set to 0.2. The fitted function (red curve) is continuous and quite smooth.
As we move the target from left to right, points enter in the neighbourhood
initially with weight zero, and then their contribution to the weighted average
of Equation 2 slowly increases.

A general approach for constructing a task-specific distance metric in order
to overcome some of the difficulties outlined in the introductory section is to use
a Mahalanobis metric instead of the Euclidean norm in Equation 5, in which the
distance between vectors z and zg is defined as:

d(xo,x) = \/(x — x0)T Az — o) (4)

where A can be any symmetric positive semi-definite matrix (setting A to iden-
tity results in the standard Euclidean distance). A is then used to weight differ-
ent features [12]. Entire coordinates can be downgraded or omitted by impos-
ing appropriate restrictions on A. For example, if A is diagonal, then we can
increase or decrease the influence of individual features z; by increasing or de-
creasing A ;. Various methods for adapting A in the Mahalanobis distance are
presented in the studies of [6,7,8,11,13]. An additional method for adapting the
feature weights in the calculation of Euclidean distance was originally developed
for nearest-neighbour classification [3], and can be directly applied to kernel
regression.

4 A. Agapitos et al.

Fig. 1. Example of kernel smoothing. Y (xo) is the fitted constant (calculated us-
ing Equation 2), and the red circles indicate those observations contributing to
the fit at zo. The solid yellow region indicates the weights assigned to observa-
tions. The green curve is the resulting kernel-weighted average using an Epanech-
nikov kernel with A = 0.2. The figure is adapted from the one found in http :
//en.wikipedia.org/wiki/Kernel smoother.

3 Higher Order Functions

This paper adopts a different approach to the work cited in the previous sec-
tion for adapting the metric used in the kernel function. There, the underly-
ing structure of the metric remains fixed. That is, the overall distance between
two multi-dimensional input vectors is based on the sum of weighted squared
pair-wise distances for each dimension, with the adaptation concerning only the
weights. Herein, our aim is to simultaneously learn the underlying computation
of similarity as well as the weighting of different features for a particular prob-
lem. He have hypothesised that the ability to iterate over the multiple dimensions
of an input vector is essential to the evolution of similarity measures, thus we
will allow GP to search the space of programs populated by high-level iteration
constructs, named higher-order functions.

Higher-order functions are functions that take other functions as arguments or
produce other functions as results. They are a powerful method of abstraction
and re-use, and have been the subject of research in GP for evolving even-n-
parity programs [14], music and architectural designs [9], and recursive sorting
algorithms [2]. Higher-order functions can be used as general iteration schemata
that are bound to a finite-sized list of elements. The iterative behaviour is encap-
sulated within the body of the function, bypassing the problem of non-halting
programs that arises when GP operates on a search space of programs with
unbounded iteration/recursion capabilities. Bellow we present the higher-order
functions Reduce, Mapcar, and Filter.

Reduce(list, body). It is a function that uses a combining operation to re-
cursively process the constituent elements of an argument list, building up

Higher Order Functions for Kernel Regression 5

a return value. It requires two expression-trees as arguments; the first being
of type list, whereas the second being of type double. It returns a scalar
value of type double. The body argument is repeatedly evaluated, once per
element of the list argument. The result returned after each evaluation of the
body is stored as the value of a local variable, and when the list is exhausted,
the value of this local variable is returned as the value of Reduce.

Bellow is an example of a function that computes the sum of double elements
of listA. res_var_listX is the result local variable that is returned once
the argument list is exhausted. elt_var_listX is a local variable that is
bound to the current element of the argument list throughout iteration.

(Reduce (listA)
(+ res_var_listA elt_var_listA))

Mapcar(list, body). It is a higher-order function that applies a given opera-
tion to each element of the argument list, returning a list of results. It accepts
two arguments, the first being of type 1list, and the second being of type
double. It returns a list of elements of the same size as the argument list.
As an example:

(Mapcar (listA)
(* elt_var_listA elt_var_listA))

returns a list of elements, where each element is the respective element of
listA raised to the power of two.

Filter(list, body). This higher-order function applies the body expression-
tree, which is a predicate expression (i.e. returns a boolean value) to each
element of the list argument to return a list containing items that satisfy
the predicate expression. The size of the returned list is less than or equal
to the size of the argument list. For example:

(Filter (listA)
(> elt_var_listA 0))

returns a list containing only the positive elements of 1istA.

4 Method

4.1 Wrapper Approach to the Evolution of Distance Measures

The proposed method for evolving a task-specific distance measure is based on
a wrapper approach, in which kernel regression is wrapped around an evolved
distance measure, with the mean squared error (MSE) that accrues from the
regression serving as the fitness of the distance measure.

While kernel regression can be performed with many types of kernel functions,
we hereafter focus our research on a particular instance of a logistic kernel that
takes the following form:

K (zo,z) = D (evo(zo, x)) (5)

6 A. Agapitos et al.

where width A is absorbed in the evolved distance measure evo(xg, x), with

1

D)= i g4 et (6)
We decided on the use of the logistic kernel after some initial runs with a range
a different kernel functions. Table 1 presents the strongly-typed representation
language that was designed for the experiments. The signature of an evolved
program is double measure(list x, list x0). The function zip is a standard
Lisp function that takes two lists and creates a list of pairs, i.e. zip({1, 2, 3},
{4, 5, 6}) returns {{1, 4}, {2, 5}, {3, 6}}. In our version, zip is defined to return

its first argument if not both of its arguments are lists of double elements.

Table 1. Representation Language

Function set

Function Argument(s) type Return type

Reduce list, double double

Mapcar list, double list

Filter list, boolean list

zip list, list list

add, sub, mul double, double double

exp, log, sqrt, sin double double

la —b|, (a —b)? double, double double

>, < double, double boolean
Terminal set

Terminal Type

To, T list

local vars (used in higher-order funcs) double

random constants € [0.0, 1.0] double

input features (in case of standard GP) double

4.2 Experiment Design

In this study we use seven real-world datasets obtained from the UCI Machine
Learning repository [5], and the Dow Chemical dataset which was the subject
of the Symbolic Regression EvoCompetitions event of the 2010 EvoStar confer-
ence !. Table 3 presents the details of the benchmarks. In all datasets, feature
values were standardised to have zero mean and unit variance. Each dataset
was randomly split into training and test sets with proportions of 70%-30%.
Currently, no validation set is used to select the best-of-run individual.

We perform a comparison between standard Euclidean-based kernel regres-
sion using different kernels found in [1], the method of evolutionary-distance-
based kernel regression (KernelGP) presented in Section 4.1, and standard GP
(StdGP) that evolves a multi-variate model to predict a response variable. In
the case of Euclidean-based kernel regression, width A is set via 10-fold cross-
validation performed on the training set. We cross-validated 2,000 values for A
in the range of {0.01,...,20.0} with a step-size of 0.01. Tables 2 and 4 show
the setup of the evolutionary systems. Previous research has shown generalisa-
tion improvements accruing from the use of small, dynamically-sampled sets of

! http://casnew.iti.upv.es/index.php/evocompetitions/105-symregcompetition

http://casnew.iti.upv.es/index.php/evocompetitions/105-symregcompetition

Higher Order Functions for Kernel Regression 7

training examples, thus for Kernel GP training is based on 20 cases drawn at
random from the complete training set in each generation. For StdGP we tried
two different variations; StdG P y—20) trains using 20 random cases dynamically
drawn in every generation similarly to KernelGP, whereas StdGPn—qu uses
the complete training set.

Table 2. GP systems under comparison

Name Primitives Constraints Max. Fitness
depth function
KernelGP; Reduce, zip, add, sub, mul, exp, 1) Reduce at the root 6 MSE of
log, sqrt, sin, |a — b|, (a — b)?, 2) No nesting of Reduce kernel regression
zo, x, local vars, constants
KernelGP> Reduce, Mapcar, Filter, zip, add, n/a 6 MSE of
sub, mul, exp, log, sqrt, sin, |a — b|, kernel regression
(a — b)?2, zo, , local vars, constants
StdG P add, sub, mul, exp, n/a 10 MSE of
log, sqrt, sin, evolved program

features, constants

Since the iterations performed implicitly in the higher-order functions are
bounded by the size of the argument lists, we do not have to worry about non-
halting programs, however it is reasonable to anticipate programs with deep
nesting of higher-order functions. Preliminary runs devoted to configure the pa-
rameters of the evolutionary systems suggested that in the case of KernelGP;
configuration, a constraint on the depth of the expression-tree was not enough
to keep the run-time within a reasonable frame. We thus decided to impose an
iteration-monitor for fitness evaluation. This is simply a counter on the num-
ber of times a higher-order function is called within an expression-tree. When
the limit of this monitor is exceeded, an individual is assigned a high error and
its evaluation is abandoned. In these experiments we used the limit of 10,000
higher-order function calls. To put this number into context, two nested Reduce
functions would result in 3,249 Reduce function calls in the case of the Dow
Chemical dataset of dimensionality 57.

Table 3. Datasets

Dataset Training set size Test set size Dimensionality
Dow Chemical 747 319 57

Concrete compressive strength 721 309 8

Energy efficiency (heating load) 538 230 8

Parkinsons (motor UPDRS) 4,113 1,762 16

Wine quality (red) 1,120 479 11

Yacht hydrodynamics 216 92 6

Boston housing (price) 355 151 13

In addition to performing regression, we analyse the fitness landscape. To
this end, we perform a perturbation analysis, in which random walks (using

8 A. Agapitos et al.

subtree mutation) are taken from a fit individual, plotting the average Canberra
distance (between targets and predictions) of consecutive neighbours versus the
number of mutations. Given a model F' and a training example {x;,y;}, the
Canberra distance (CD) between prediction F(z;) and target y; is given by
|F(x;) — il /(| F(x:)| + |yi]), which is implicitly normalised within the [0.0, 1.0]
interval. Its average is simply calculated on N examples in the respective training
dataset. For this type of analysis, CD was preferred over MSE because it is
bounded (a very bad individual can be clearly indicated), and it makes the
results of different random walks and different datasets directly comparable.

Table 4. Setup shared by all GP systems

Evolutionary algorithm elitist (k=1), generational, expression-tree representation

No. of generations 51

Population size 1,000

Tournament size 4

Tree creation ramped half-and-half (depths of 2 to 4)

Subtree crossover 20% (90% inner-nodes, 10% leaf-nodes)

Subtree mutation 50% (max. depth of subtree: uniform randomly in [1, 4])

Point mutation 30% (probability of a node to be mutated: 10% or 30% or 40%)

5 Results Analysis

We performed 50 independent runs for each evolutionary system. Table 6 com-
pares the test-set MSE. Each best-of-50-runs individual is determined as the one
out of 50 final-generation elitists having the lowest training MSE, then its test-set
MSE is shown in Table 6. Mean MSE is similarly calculated on 50 final-generation
elitists. In every dataset, we used the best-of-50-runs individuals in order to com-
pare the evolutionary methods against the deterministic, Euclidean-based kernel
regression. Results suggest that the evolutionary-distance based kernel regres-
sion is outperforming the euclidean-based one in all datasets. We also note that
the exponential kernels (Gaussian, Logistic) based on the Euclidean distance
consistently performed the best.

Comparing Euclidean-based kernel regression against standard GP, we ob-
serve that StdG P n—29) outperforms the former in 1 out of 7 datasets, with
the opposite being the case in 4 datasets. On the other hand, StdGPn—au)
outperforms standard kernel regression in 4 out of 7 datasets. Interestingly, a
comparison between the two different StdGP setups suggests that the complex
evolved models trained on all available data consistently generalised better than
those trained on random data samples, a result that is inline with theoretical
results in the ML field about matching the model complexity with the amount of
training resources available. We identified pathologies (MSE > 1,000 and MSE
= 00) in final-generation individuals, and calculated the percentage of these in-
dividuals in 50 runs. We observe that the MSE loss function can lead to severe
pathologies partly indicative of overfitting in case where complex models are
trained on small-sized, even dynamically samples, sets of examples. In the case
of StgG P(n—auy no pathologies were observed.

Higher Order Functions for Kernel Regression 9

Table 5. Best-of-50-runs simplified distance measures using KernelGP, configuration

Boston housing Parkinsons Concrete
(Reduce
(Redl(l:j (Reduce (ZIEO
p (zip
x0 X
x x0)
x
)) (+
(+ _ (sqrdiff
(sin (-
(sqrt (+ -0.962
(exp (log (absdiff
elt_var_x0 res. var elt_var_x
)) - elt_var_x0
)) res_var))
(+) (exp
(+ (absdiff (absdiff
elt_var_x0
0.577 elt_var x elt_var_x0
res_var) elt_var_x
))
.)
(abZizf‘f’ar . (absdiff ,)
elt_var_xO elt_var_x0 (*
- - elt_var_x
)) res_var
) 0.524

)

))

))

It is interesting to note that despite the fact that KernelGP uses the same
training examples sampling configuration as StdG Py —20), there were no patholo-
gies in the final-generation models. The synergy between the evolved-distance-
based kernel and the kernel-weighted average seems to have created a fitness
landscape, where search was able to locate models with relatively smooth re-
sponse surfaces — even in the case where search was guided by a kernel regression
MSE estimate based on a limited-sized set of examples. There is a clear superior-
ity in the out-of-sample performance of KernelGP as opposed to StdG P(n—20)-
Compared against StdGPn—qu), KernelGP generalises better, and in most
problems the differences in out-of-sample performance are statistically signifi-
cant.

Figure 5 presents the simplified best-of-50-runs evolved distances for the
Boston, Parkinsons and Concrete datasets, using the KernelGP; configuration.
The evolved solutions are quite neat and comprehensible. All of them are using
the |a—b| primitive (shown as absdiff in Table 5) operating on the returned list
of pairs from the zip function. Also, they all rely on some kind of transformation
of the result_var or element_var that is linearly combined with the output of
|a — b| to update the result_var is each iteration of Reduce.

Finally, Figure 2 presents the results of the perturbation analysis for two of
the problems. The graphs for the rest of the problems are omitted, but exhibit
the same trend. It is evident that higher-order functions craft a neighbourhood
in which very bad individuals (avg. CD of approx. 1.0) can be reached using a
single mutation step. This is the case in all problems, and it becomes particularly

10 A. Agapitos et al.

pronounced in the Energy dataset (Figures 2(c), 2(d)), where the performance
of a fit individual can be severely degraded during the first step of the random
walk. This indicates that while higher-order functions are a powerful addition
to the GP paradigm, they can result in very difficult to search program spaces,
where gradient quickly diminishes and gradient-based methods are left hopeless.
We suspect that it was the implicit parallelism of the evolutionary algorithm
that enabled search to counteract this issue to some degree, and allowed for the
induction of good-performing individuals. Also, an observation that is consistent
across all problems is that on average there is more gradient in the space of
programs that is based on all three higher order functions, than there is in the
space of programs composed of a single Reduce function serving as the root-node
of an expression-tree. This can be seen by comparing Figure 2(a) (using Reduce
at the root) and Figure 2(b) (using all three higher-order functions).

Table 6. Test-set MSE of different regression methods. A values in parentheses for stan-
dard Euclidean-based kernel regression. Statistics for the evolutionary methods were
calculated on 50 runs. Std. deviation in parentheses for mean. An asterisk * indicates
that the difference in mean values between KernelGP and StdG Pn=q1 are statistically
significant at the 5% level (two-tailed Student’s t-test, 98 degrees of freedom).

Boston Concrete Dow Parkinsons Wine Yacht

Euclidean-based kernel regression

Energy

Biweight 0.39 (2.82) 0.36 (2.13) 0.38 (5.61) 0.05 (1.46) 0.98 (0.23) 0.68 (3.10) 0.43 (2.07)
Cosine 0.34 (2.61) 0.38 (2.13) 0.40 (5.61) 0.05 (1.34) 0.98 (0.23) 0.69 (3.09) 0.44 (1.81)
Epanechnikov 0.35 (2.61) 0.39 (2.13) 0.40 (5.61) 0.05 (1.34) 0.98 (0.23) 0.69 (3.08) 0.44 (1.81)
Gaussian 0.27 (0.63) 0.33 (0.58) 0.26 (1.47) 0.05 (0.40) 0.97 (3.75) 0.66 (0.95) 0.22 (0.28)
Logistic 0.27 (0.19) 0.32 (0.17) 0.24 (0.30) 0.05 (0.13) 0.97 (2.08) 0.61 (0.37) 0.19 (0.05)
Triangular 0.41 (2.76) 0.37 (2.13) 0.39 (5.61) 0.05 (1.34) 0.98 (0.23) 0.68 (3.10) 0.41 (1.81)
Tricube 0.39 (2.82) 0.37 (2.30) 0.38 (5.61) 0.05 (1.49) 0.98 (0.23) 0.69 (3.10) 0.44 (2.07)
Triweight 0.38 (3.93) 0.38 (2.76) 0.36 (5.61) 0.05 (1.49) 0.98 (0.23) 0.67 (3.10) 0.40 (2.07)
Evolutionary-distance-based kernel regression
KernelGPy
best-of-50 0.24 0.18 0.22 0.002 0.68 0.55 0.007
mean 0.37 *0.24 *0.31 *0.009 *0.89 *0.62 *0.01
(0.14) (0.04) (0.08) (0.007) (0.25) (0.07) (0.007)
KernelGPs
best-of-50 0.26 0.19 0.22 0.003 0.90 0.61 0.007
mean 0.30 (0.06) 0.38 (0.14) 0.44 (0.20) 0.04 (0.07) 0.94 (0.05) 0.79 (0.22) 0.02 (0.04)
Standard GP
StdG P(n=20)
best-of-50 0.31 0.36 0.60 0.05 0.97 0.72 0.12
mean 0.58 (0.51) 0.77 (1.11) 0.84 (0.18) 0.13 (0.04) 97.25 (577.4) 1.09 (0.47) 0.07 (0.09)
Pathologies:
MSE > 1,000 0% 0% 0% 0% 4% 0% 0%
MSE = oo 0% 0% 2% 0% 6% 2% 0%
StdGP(N=al1)
best-of-50 0.25 0.28 0.35 0.05 0.88 0.67 0.009

mean

0.45 (0.74) 0.38 (0.04) 0.54 (0.09) 0.08 (0.02) 0.95 (0.01)

0.72 (0.02) 0.06 (0.01)

Higher Order Functions for Kernel Regression 11

2
e
3

o
o
@

=
o
by

w

average canberra distance

o o o o o
&

°

by

average canberra distance
5
o

o
NS
o
o

°
o <

1 2 3 4 5

S

6 7 8 9 10 11 12 13 14 15
no. of mutations

(a) (b)

6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5
no. of mutations

2
e

o
o

=
o

average canberra distance
o o o o o
o
average canberra distance
)

o ¢
o w
o

o

6 7 8 9 10 11 12 13 14 15
no. of mutations

() (d)

0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5
no. of mutations

Fig. 2. Random walks. We start from a best-of-50-runs individual and perform 50
different random walks of length 15 — average shown in bold. (a) DowChem KernelGP:;
(b) DowChem KernelGPs; (c) Energy KernelGPi; (d) Energy KernelGPs.

6 Conclusion and Future Work

The generalisation performance of interpolation-like function estimation meth-
ods can be significantly improved when the distance measure utilised in the
kernel function is adapted to the data. We presented a successful, hybrid ML
technique that combines kernel regression with the evolutionary learning of the
distance measure used in the kernel function. As an additional advantage, the
width of the kernel is absorbed in the evolved distance, thus there is no need to
set this parameter via cross-validation.

There are a number of avenues for extending this research. First, the use
of a validation set to designate a best-of-run individual is believed to further
boost the out-of-sample performance of the system. In addition, we plan to
perform experiments using the complete set of training examples. Secondly, we
note that the configuration of KernelG P, is of greater generality that the one of
KernelGP;. However the performance of the former was somewhat dissatisfying
in the sense that it did not outperform the latter. We suspect that this is due
to an insufficient search effort devoted in KernelGPs, and expect that a new
experiment based on a more extended search will reveal the true potential of
spaces populated by programs composed of these high-level iteration constructs.

12

A. Agapitos et al.

The evolution of general computer programs that maintain state and utilise

iteration/recursion is still an under-explored area in GP. We wish to stimulate
interest in this exciting niche of research.

Acknowledgments. This publication has emanated from research conducted
with the financial support of Science Foundation Ireland under Grant Number
08/SRC/FM1389.

References

10.

11.

12.

13.

14.

http://en.wikipedia.org/wiki/Kernelstatistics

. Agapitos, A., Lucas, S.M.: Evolving efficient recursive sorting algorithms. In: Pro-

ceedings of the 2006 IEEE Congress on Evolutionary Computation, July 6-21, pp.
9227-9234. IEEE Press, Vancouver (2006)

Agapitos, A., O’Neill, M., Brabazon, A.: Adaptive distance metrics for nearest
neighbour classification based on genetic programming. In: Krawiec, K., Moraglio,
A., Hu, T., Etaner-Uyar, A.S., Hu, B. (eds.) EuroGP 2013. LNCS, vol. 7831, pp.
1-12. Springer, Heidelberg (2013)

Bishop, C.M.: Pattern Recognition and Machine Learning. Springer (2006)
Frank, A., Asuncion, A.: UCI machine learning repository (2010),
http://archive.ics.uci.edu/ml

Goldberger, J., Roweis, S., Hinton, G., Salakhutdinov, R.: Neighbourhood com-
ponents analysis. In: Advances in Neural Information Processing Systems 17, pp.
513-520. MIT Press (2004)

Goutte, C., Larsen, J.: Adaptive metric kernel regression. Journal of VLSI Signal
Processing (26), 155-167 (2000)

Huang, R., Sun, S.: Kernel regression with sparse metric learning. Journal of In-
telligent and Fuzzy Systems 24(4), 775-787 (2013)

McDermott, J., Byrne, J., Swafford, J.M., O’Neill, M., Brabazon, A.: Higher-order
functions in aesthetic EC encodings. In: 2010 IEEE World Congress on Compu-
tational Intelligence, July 18-23, pp. 2816-2823. IEEE Computation Intelligence
Society, IEEE Press, Barcelona, Spain (2010)

Poli, R., Langdon, W.B., McPhee, N.F.: A Field Guide to Genetic Programming.
Lulu Enterprises, UK Ltd. (2008)

Takeda, H., Farsiu, S., Milanfar, P.: Robust kernel regression for restoration and re-
construction of images from sparse, noisy data. In: Proceeding of the International
Conference on Image Processing (ICIP), pp. 12571260 (2006)

Trevor, H., Robert, T., Jerome, F.: The Elements of Statistical Learning, 2nd edn.
Springer (2009)

Weinberger, K.Q., Tesauro, G.: Metric learning for kernel regression. In: Eleventh
International Conference on Artificial Intelligence and Statistics, pp. 608-615
(2007)

Yu, T.: Hierachical processing for evolving recursive and modular programs us-
ing higher order functions and lambda abstractions. Genetic Programming and
Evolvable Machines 2(4), 345-380 (2001)

http://en.wikipedia.org/wiki/Kernelstatistics
http://archive.ics.uci.edu/ml

	Higher Order Functions for Kernel Regression
	1 Introduction
	2 Kernel Regression
	3 Higher Order Functions
	4 Method
	4.1 Wrapper Approach to the Evolution of Distance Measures
	4.2 Experiment Design

	5 Results Analysis
	6 Conclusion and Future Work
	References

