
Adaptive Distance Metrics

for Nearest Neighbour Classification
Based on Genetic Programming

Alexandros Agapitos, Michael O’Neill, and Anthony Brabazon

Financial Mathematics and Computation Research Cluster
Complex and Adaptive Systems Laboratory

University College Dublin, Ireland
{alexandros.agapitos,m.oneill,anthony.brabazon}@ucd.ie

Abstract. Nearest Neighbour (NN) classification is a widely-used, ef-
fective method for both binary and multi-class problems. It relies on
the assumption that class conditional probabilities are locally constant.
However, this assumption becomes invalid in high dimensions, and se-
vere bias can be introduced, which degrades the performance of the
method. The employment of a locally adaptive distance metric becomes
crucial in order to keep class conditional probabilities approximately uni-
form, whereby better classification performance can be attained. This
paper presents a locally adaptive distance metric for NN classification
based on a supervised learning algorithm (Genetic Programming) that
learns a vector of feature weights for the features composing an instance
query. Using a weighted Euclidean distance metric, this has the effect of
adaptive neighbourhood shapes to query locations, stretching the neigh-
bourhood along the directions for which the class conditional probabil-
ities don’t change much. Initial empirical results on a set of real-world
classification datasets showed that the proposed method enhances the
generalisation performance of standard NN algorithm, and that it is a
competent method for pattern classification as compared to other learn-
ing algorithms.

1 Introduction

In a classification problem, we are given C classes and N training observations.
Each training observation x is usually a vector of d features x = (x1, . . . , xd) ∈ Rd

along with the known class labels y ∈ {1, 2, . . . , C}. The task is to predict the
class label of a given query instance. The k Nearest Neighbour (kNN) classifi-
cation technique, a popular instance-based learning method [14], was originally
proposed by Fix and Hodges in 1951 [6]. It determines the k nearest neighbours
(“closeness” is usually defined in terms of a distance metric on the Euclidean
space) of instance query q, and then predicts the class label of q as the most
frequent one occurring among the k neighbours. In contrast to learning meth-
ods that induce a function approximation designed to perform well in the entire

K. Krawiec et al. (Eds.): EuroGP 2013, LNCS 7831, pp. 1–12, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

2 A. Agapitos, M. O’Neill, and A. Brabazon

instance space, the kNN method simply stores the training examples (memory-
based classification); generalisation beyond these examples is postponed until a
new instance must be classified.

An important issue that hinders the application of kNN to high-dimensional
datasets is the learning algorithm’s inductive bias – the set of assumptions that
a learner uses to predict outputs given inputs that it has not encountered [14]
– which assumes that the class conditional probabilities are roughly locally con-
stant, that is, the classification of an instance query q will be most similar to the
classification of other instances that are nearby in Euclidean space. This assump-
tion becomes false in high-dimensional spaces, where the nearest neighbours of
a point can be very far away, introducing severe bias in the estimates [18].

The method we are developing in this paper deals with the problem of kNN’s
inductive bias, and falls into the family of methods that employ locally adaptive
metrics in order to maintain the class conditional probabilities approximately
uniform in the neighbourhood of an instance query. Genetic programming (GP)
is employed to learn a model that outputs a real-valued vector, whose com-
ponents represent individual feature relevances for single features composing a
query pattern. This vector is then transformed into a vector of feature weights
allowing for a weighted Euclidean distance metric computation, thus enabling a
kNN neighbourhood to adapt its shape in different parts of the feature space.
This results in enhanced classification performance. We would like to point out
that while there exists a plethora of methods for dealing with the generalisation
of models induced by GP alone (some studies are found in [1–3, 13, 17, 19, 20],
this work focusses on hybridising GP and kNN in an attempt to learn even
better-generalising models that exploit the power of both learning algorithms.

The rest of the paper is organised as follows. Section 2 formalises the inef-
ficiency that can arise from kNN’s inductive bias, and motivates the need to
introduce adaptive distance metrics when forming neighbourhoods. Hence, it
outlines previous research efforts towards that goal. Section 3 presents the pro-
posed method for dealing with the problem of locally adaptive distance metrics,
outlines the experiment setup, the real-world application datasets, and the learn-
ing algorithms used to compare against the proposed method. Section 4 analyses
the experimental results, and finally Section 5 draws our conclusions and sketches
future work.

2 The Need for Distance Metric Adaptation

Formally, in a kNN classification problem, the learner is presented with N train-
ing examples x ∈ Rd, each mapped to a corresponding class label y, y ∈
{1, 2, . . . , C}. It is assumed that there exists an unknown probability distri-
bution P (x, y) that generated the training data. In order to predict the class
label of an instance query q, we need to estimate the class posterior probabil-
ities {P (c|q)}Cc=1. kNN methods are based on the assumption that the target
function is smooth, meaning that the class posterior probabilities P (c|q) are lo-
cally constant [4]. That is: P (c|q + δq) � P (c|q), for ‖δq‖ small enough. Then,

Adaptive Distance Metrics for Nearest Neighbour Classification 3

P (c|q) � ((
∑

x∈N(q) P (c|x)/|N(q)|)), where N(q) is a neighbourhood of q that

contains points x that are “close” to q, and |N(q)| denotes the number of points
in N(q). This motivates the estimate:

P̂ (c|q) =
∑N

i=1 1(xi ∈ N(q))1(yi = c)
∑N

i=1 1(xi ∈ N(q))
(1)

where 1(·) in an indicator function that returns 1 if its argument is true, and 0
otherwise.

The assumption of locally uniform class conditional probabilities becomes
false when the instance query approaches the class boundaries. We present an
example that explains how the choice of a distance measure becomes crucial
in determining the outcome of kNN classification. Consider the binary, linearly
separable dataset in Figure 1(a), where patterns from each class are represented
by the green and yellow circles respectively. Each input pattern resides in a
2-dimensional feature space formed by the horizontal and vertical axes X and
Y . The class boundary is represented by the black vertical line and is parallel
to the Y axis. The new query to be classified using a 5-NN classifier is shown
with the black solid dot. The commonly used Euclidean distance metric assigns
equal weight to individual pair-wise feature squared differences, implying that
the input space is isotropic or homogenous [14]. This distance metric results in
hyper-spherical neighbourhoods – in our 2-dimensional feature space is denoted
by the circular strip. We note that the 5-NN neighbourhood has extended into
the red-class region, and is dominated by points of the wrong class (3 from the
red class and 2 from the green class), thereby causing a misclassification.

If we carefully inspect the dataset in Figure 1(a), we will observe that the class
conditional probabilities vary only in the horizontal direction (i.e. a slight move
along the horizontal axis may change the class label). In lieu of this knowledge,
we should constrict the neighbourhood in the horizontal direction, and elongate
it along the vertical direction (direction where the class conditional probabilities
do not change), as shown by the vertical strip in the example. This will reduce
the bias of the estimate, and leave the variance the same (the neighbourhood is
still based on the same number of 5 points). As a result, we observe that the
distance metric should not assign equal weights or the same proportions in all
directions of the feature space; the weights/proportions during distance compu-
tation are query-specific. Capturing such information is of great importance to
kNN classification in high-dimensional feature spaces. Figure 1(b) shows exam-
ples of different neighbourhood shapes required in different parts of the input
space, ranging from circular neighbourhoods, to elliptical ones, and contrasts
them against kNN neighbourhoods formed using a standard, unweighted, Eu-
clidean distance metric. Note that the amount of elongation/restriction decays
as the instance query moves further away from areas where a decision bound-
ary would lie. The above examples call for locally adapting the distance metric
so that the resulting neighbourhood is elongated along the axis direction that
provides less class-discrimination information, and is constricted in the opposite
case.

4 A. Agapitos, M. O’Neill, and A. Brabazon

(a) (b)

Fig. 1. (a) The vertical line represents the class boundaries between classes red and
green. The vertical strip denotes the 5-NN region of a neighbourhood for the query in-
stance (solid black dot), which is constricted along the horizontal axis of the feature
space. Figure(a) is adapted from the figure found in page 476 in [18]. (b) Different neigh-
bourhood shapes required to minimise the bias of estimates. The little triangles are the
instance query points to be classified. The navy-blue ellipses represent the adaptive 6-NN
neighbourhoods, while the orange circles are the standard 6-NN neighbourhoods. Note
how the shape varies with instance query locations in the 2-dimensional feature space.

2.1 Previous Work

There has been a variety of studies aiming at locally adapting the distance met-
ric so that a neighbourhood of approximately constant a posteriori probability
can be produced. The techniques proposed in [5, 8, 10, 12, 15, 23] are based
on estimating feature relevance locally at each instance query. The locally esti-
mated feature relevance leads to a weighted metric for computing the distance
between the instance query and the training data. As a result, neighbourhoods
get constricted along most relevant dimensions, and elongated along less impor-
tant ones. Although these methods improve upon the original kNN algorithm,
the time-complexity cost of such improvement is high due to the local feature
relevance being estimated on the fly with costly procedures whenever a new
query is to be classified. This makes it difficult to scale up in large datasets.

An improvement to this time inefficiency is presented in the work of [4] that
utilises support vector machines (SVMs) to estimate local feature weighting. The
global decision boundary is determined offline, leaving only local refinements to
be performed online. The proposed technique offers accuracy improvements over
the SVMs alone. Additional work [21] attempted to address the time inefficiency
issue in online local feature relevance estimation by introducing a very simple
locally adaptive distance metric that normalises the ordinary Euclidean or Man-
hattan distance from an instance query to each training example by the closest
distance between the corresponding training example to training examples of a
different class. Results showed comparable performance to SVMs.

Adaptive Distance Metrics for Nearest Neighbour Classification 5

In addition to the works for determining local distance metrics, there has been
considerable research interest in directly learning distance metrics from training
examples. The work of [9] proposed a method for learning a Mahalanobis dis-
tance measure by directly maximising a stochastic variant of the leave-one-out
kNN classification performance on the training data. In [22] the authors devel-
oped a method for inducing a Mahalanobis distance metric using semidefinite
programming. Both of these methods induce a global distance metric that is
employed in every kNN application irrespective of the location of the instance
query.

3 Methods

3.1 Supervised Learning of Local Feature Weights

The method we are proposing revolves around the general notion of adapting
the shape of the neighbourhood via the computation of a weighted Euclidean
distance metric. As discussed in Section 2, a “closeness” criterion that is based
on a weighted Euclidean distance metric computation has the effect of stretch-
ing/elongating the axis of the feature space. The proposed technique has the
potential of scaling up to large datasets, by learning offline a model that outputs
a real-valued vector, whose components represent individual feature relevances
for every feature describing a query pattern. These relevance values can then be
transformed to weights associated with each pair-wise squared feature-value dif-
ference in a weighted Euclidean distance computation. Note that the technique
is query-based because the learned model outputs a vector of feature relevances
for a particular instance query.

Formally, assume that we want to classify patterns defined in a d-dimensional
feature space. Each pattern x is a d-dimensional vector of real-valued features,
that is, x = (x1, . . . , xd). For every pattern there is an associated class label y,
y ∈ {1, 2, . . . , C}. The learning task is to approximate a function h(x) that maps
an input vector representing a pattern into an output vector of feature relevances
denoted as x′ = (x′

1, . . . , x
′
d) driven by an error measure that concerns the classi-

fication accuracy as described below. Using the output vector (x′
1, . . . , x

′
d) from

h(x), a measure of relative relevance can be given using the following exponential
weighting scheme:

wi(x) =
exp(x′

i)
∑d

i=1 exp(x
′
i)

(2)

We follow [4] and adopt the exponential weighting scheme as it has been shown
to be more sensitive in local feature relevance, and in general results in better
performance improvement. The weights from Equation 2 can then be associated
with features in a weighted Euclidean distance computation:

D(x, y) =

√
√
√
√

d∑

i=1

wi(xi − yi)2 (3)

6 A. Agapitos, M. O’Neill, and A. Brabazon

This adaptive distance metric can then be used in the kNN algorithm to form
a neighbourhood around query pattern x, and classify it accordingly. The learn-
ing algorithm needs to induce a model that uncovers the relationship between
an output vector of feature relevances x′ = (x′

1, . . . , x
′
d) and the classification

accuracy (defined as the number of correct classifications divided by the number
of examples in a learning set) of the kNN algorithm that employs the adaptive
distance metric accruing from the use of x′ = (x′

1, . . . , x
′
d). The goal is to learn to

output feature relevance vectors x′ that result in high classification accuracy. In
summary, once a model for assigning feature weights has been learned, the pro-
posed system is a two-layer classifier: given input x, in the first layer we use the
learned model to induce feature weights for x, and in the second layer we invoke
the standard kNN classifier that employs the weighted Euclidean distance.

3.2 Multiple-Output Program Representation for GP

We used a supervised learning algorithm, Genetic Programming (GP) [16], to
learn such a model. The model needs to output a vector of feature relevances,
and for that we used a program representation that was introduced in [24] by
the name of a modi expression-tree. A modi program representation can simu-
late the effect of a directed acyclic graph, and consists of two main parts: (a) an
expression-tree, and (b) an associated vector for holding outputs, as shown in
Figure 2. Similar to standard GP, a modi tree has function nodes representing
operations (i.e. arithmetic, conditionals, trigonometry), and terminal nodes rep-
resenting variables and constants. However, unlike the standard expression-tree
structure, which outputs a single value through the root, a modi program utilises
its output vector, hence producing multiple values, each of which corresponds
to a single feature relevance in our case. The two parts of a modi program are
connected through some special function nodes, called modi nodes (grey nodes
in Figure 2). A modi node has two roles: (1) it updates an element in the output
vector that the node is pre-associated with, by adding its node value to the value
of the vector element; (2) it passes the value of its right child node to its parent
node, so the expression-tree structure can be preserved.

The output vector is in effect an array of memory locations where modi nodes
are allowed to write into. Figure 2 shows what happens when an example modi
program is evaluated. Before the evaluation starts, the output vector’s elements
are all initialised with ones. During the evaluation, each non-modi node passes
its value to its parent, exactly the same way as in standard GP. On the other
hand, each modi node firstly uses its node value to update the output vector
(shown as curved solid arrows), and then passes on the value of its right child to
its parent node (shown as dashed arrows). The side-effect of program evaluation
is the update of the output vector – we are not concerned with the value returned
at the root of the tree. The value of each output vector’s element corresponds
to a pattern feature’s relevance, so starting from the value of one, the higher a
value at the end of the program evaluation procedure, the higher the feature’s

Adaptive Distance Metrics for Nearest Neighbour Classification 7

relevance for a particular input pattern. Once the values of the output vector
are set, the exponential weighting scheme of Equation 2 is used to transform
each vector element into a weight that will be subsequently used in a weighted
Euclidean distance.

Fig. 2. Example illustration of the way the output vector, representing feature rele-
vances, is updated through the evaluation of a modi program, and how this is trans-
formed into a set of feature weights w that will be used in the weighted Euclidean
distance computation (Equation 3) for determining the neighbourhood during kNN
classification. Here we are considering a pattern with four features [X,Y, Z,W] =
[−1.0, 2.0, 1.6,−2.0]. The output vector allocates a cell index for each of the four
features; these are indices 0, 1, 2, 3 for features X, Y , Z, W respectively. Prior to
program evaluation, all vector elements are initialised to 1.0. Feeding the input vector
[−1.0, 2.0, 1.6,−2.0] into the modi program produces the output vector [10.7, 3.9, 1.0,
7.7]. Note that the value of the third vector element resulted in a negative number
(-1.0 shown in red font), and has been set back to the lower bound of 1.0. Invoking
Equation 2 using the output vector we get a vector of weights w=[0.951, 0.001, 5.8E-5,
0.047] for features X,Y, Z,W respectively. (The figure is adapted from the figure found
in page 4 of [24]).

The detailed method for initialising modi trees can be found in [24]. It is
worth noting that for the case of intermediate nodes, the probability of a node
being set to a modi node is governed by a parameter μ ∈ [0, 1], the modi rate.
In addition, we are constraining the values that can be held by vector elements
within the range of [1.0, 100.0]. During program execution, vector values are
incremented by the value returned from a modi node, and this can result in
certain vector cell indices being assigned very large values – a situation that can
degrade the performance of the exponential weighting scheme by zeroing certain
feature weights. A very simple check is employed that sets the value of a vector
cell back to the lower bound of 1.0 if the last update resulted in a value that
was less than the lower bound, and sets the value to the upper bound of 100.0
if the last update resulted in a value that was bigger than the upper bound.

8 A. Agapitos, M. O’Neill, and A. Brabazon

3.3 Experiment Design

In the experiments we used eight real-world datasets (Table 2) obtained from
the UCI Machine Learning repository [7]. These were carefully picked to test
our method in problems with high-dimensional input spaces. In all datasets,
input values were standardised to have zero mean and unit variance. For each
dataset we compared the performance of our system AdaptiveKNN against the
performance of other learning algorithms via stratified 10-fold or 5-fold cross
validation (in case data were limited for a particular dataset – see Table 2).

Table 1. GP system setup

EA used in GP system elitist, generational, modi expression-tree representation
modi rate 0.4
Function set +, −, ∗, % (protected), sin, cos, ex, log, sqrt
Terminal set feature values, 10 random constants in [0.0, 1.0]
No. of generations 51
Population size 100
Tournament size 2
Tree creation ramped half-and-half (depths of 2 to 6)
Max. tree depth 20
Subtree crossover 30% (90% inner nodes, 10% leaf-nodes)
Subtree mutation 40%
Point mutation 30%
Fitness function classification accuracy

Table 2. UCI Machine Learning Datasets

Dataset Size Classes Input dimensionality Cross-validation folds
Australian credit appr. (Statlog) 690 2 14 10

Sonar (Mines vs. Rocks) 208 2 60 10
Ionosphere 351 2 33 10

Vehicle Silhouettes (Statlog) 946 4 18 10
Heart (Stallog) 270 2 13 10

Hepatitis 155 2 19 5
Vote 435 2 16 10
Glass 214 7 9 5

The first stage of applying AdaptiveKNN to classification consists of learning
a model of feature weights using GP. For each test fold we treat the remaining
folds as our learning set. This learning set is further divided into two disjoint sets
of training and validation with proportions of 80% and 20% respectively. The
training set is used to fit the model, while the validation set is used for model
selection at the end of an evolutionary run. In the second stage, after learning
the model, we can assess the generalisation error using the instance queries of
the test fold, and using the data in the remaining folds as a memory in the
standard kNN methodology. Table 1 summarises the setup of the GP system.

We contrasted the performance of AdaptiveKNN against several classification
algorithms implemented in the WEKA software [11]:

1. kNN (StdKNN) using the standard Euclidean distance metric. Value of pa-
rameter k for number of neighbours was determined via cross validation.

Adaptive Distance Metrics for Nearest Neighbour Classification 9

2. SVM with Radial Basis Function kernel (SVM-RBF) trained with sequential

minimal optimisation. Values of parameters γ in K(x, c) = e−γ‖x−c‖2

, and c
for soft-margin were determined via cross validation.

3. SVM with Polynomial kernel (SVM-POLY) trained with sequential minimal
optimisation. Values of parameters c for soft-margin, and n for polynomial
order were determined via cross validation.

4. Naive Bayesian classifier (NaiveBayes).
5. Gaussian Radial Basis Function Network (RBFN). Values of parameters σ2

in the Gaussian kernel, and k in k-means clustering were determined via
cross validation.

6. Feed forward multilayer perceptron (MLP) trained with back-propagation.
Network structure determined via cross validation.

7. C4.5 decision tree method (with post-pruning).
8. Classification and Regression Tree (CART) method (with post-pruning).

4 Results

For training the AdaptiveKNN, we performed 30 independent cross-validated
runs with each dataset in order to account for the stochastic nature of the GP
learning algorithm. The same number of runs were performed for MLP (after
parameter tuning) that also exhibits a stochastic element. Thus, is order to cal-
culate cross-validated performance in Table 3, we used the best models out of 30
models learned for each fold, and then average their test-fold performances. For
the remaining of the learning algorithms, we first performed parameter tuning
and then reported their cross-validated accuracies. Table 3 shows that Adap-
tiveKNN achieves the best performance in five out of eight datasets. In two
cases (Ionosphere and Sonar datasets) it obtained the second best performance
following the SVM-RBF. However, in the case of Vehicles dataset, AdaptiveKNN
achieved the lowest performance as compared to SVMs and MLP, and it was only
comparable with the tree-based methods C4.5 and CART. Looking at the gen-
eralisation performance enhancement that AdaptiveKNN offers over StdKNN,
we found that this reaches the level of 13.6% (averaged among datasets), with
the lowest percentage increases of 3% and 1% obtained for Australian credit and
Vehicles datasets respectively. Finally, Figure 3 contrasts the cross-validated

Table 3. Cross-validated Classification Accuracies

Australian credit Sonar Ionosphere Vehicles Heart Hepatitis Vote Glass
AdaptiveKNN 89.1 88.6 94.5 73.4 88.5 97.8 99.2 78.3

StdKNN 86.5 63.6 84.0 72.3 84.4 84.4 92.9 61.7
NaiveBayes 77.1 67.8 82.6 44.7 83.3 87.5 92.7 49.5

RBFN 85.8 87.5 93.7 71.5 84.1 92.5 97.0 70.1
MLP 84.9 82.2 91.4 82.5 78.1 81.2 94.7 67.3

SVM-POLY 86.4 84.6 91.7 84.5 84.8 86.2 97.0 71.5
SVM-RBF 85.5 89.4 94.8 84.9 83.7 86.2 97.0 70.1

C4.5 85.4 71.1 91.4 72.6 76.7 86.2 96.5 67.3
CART 85.6 71.1 89.7 69.4 78.5 82.5 97.0 70.6

10 A. Agapitos, M. O’Neill, and A. Brabazon

5 10 15 20 25 50
0.8

0.85

0.9

K neighbours

C
ro

ss
−

va
lid

at
ed

 c
la

ss
ifi

ca
tio

n
ac

c.

Adaptive kNN
Standard kNN

(a)

5 10 15 20 25 50
0.6

0.65

0.7

0.75

0.8

0.85

0.9

K neighbours

C
ro

ss
−

va
lid

at
ed

 c
la

ss
ifi

ca
tio

n
ac

c.

Adaptive kNN
Standard kNN

(b)

5 10 15 20 25 50
0.7

0.75

0.8

0.85

0.9

0.95

1

K neighbours

C
ro

ss
−

va
lid

at
ed

 c
la

ss
ifi

ca
tio

n
ac

c.

Adaptive kNN
Standard kNN

(c)

5 10 15 20 25 50

0.65

0.7

0.75

K neighbours

C
ro

ss
−

va
lid

at
ed

 c
la

ss
ifi

ca
tio

n
ac

c.

Adaptive kNN
Standard kNN

(d)

5 10 15 20 25 50
0.8

0.82

0.84

0.86

0.88

0.9

K neighbours

C
ro

ss
−

va
lid

at
ed

 c
la

ss
ifi

ca
tio

n
ac

c.

Adaptive kNN
Standard kNN

(e)

5 10 15 20 25 50
0.4

0.5

0.6

0.7

0.8

K neighbours

C
ro

ss
−

va
lid

at
ed

 c
la

ss
ifi

ca
tio

n
ac

c.

Adaptive kNN
Standard kNN

(f)

Fig. 3. Cross-validated classification accuracies at different values of k neighbours. (a)
Australian credit; (b) Sonar; (c) Ionosphere; (d) Vehicles; (e) Heart; (f) Glass.

classification accuracies at different values of k neighbours for AdaptiveKNN
and StdKNN in a sample of datasets. We observe that AdaptiveKNN performs
better that StdKNN for all values of k considered.

5 Conclusion

In this work we combined (a) kNN, an instance-based learning algorithm that
constructs a local approximation to the target function which then applies to the
neighbourhood of each individual query instance, with (b) GP, a very powerful
global (i.e. fits a model to the entire instance space) function approximator that
is able to learn local relative feature relevances from examples. Transforming
these into adaptive distance metrics for use with kNN allows a complex target
function to be described as a collection of less complex approximations that are
locally tuned to achieve better classification performance.

While there is a cost associated with effective training of GP models (i.e.
evolutionary algorithm’s parameter tuning through cross-validation, actual cost
of performing a significant amount of runs to account for GP’s stochastic na-
ture), this process is performed offline once (in contrast to other locally adaptive
algorithms that require a considerable amount of online computation), and sub-
sequently allows for a time-efficient computation of local weights. This enhances
scalability to large datasets.

Initial empirical results on a collection of real-world datasets showed that (a)
the gain in performance over the simple kNN method outweighs this extra cost
of offline model learning, and that (b) the proposed method is competent in
pattern classification as opposed to other learning algorithms.

Adaptive Distance Metrics for Nearest Neighbour Classification 11

There are several avenues for further development of AdaptiveKNN. First, we
are planing to compare it against other locally adaptive kNN methods found in
literature. Our GP system uses a program representation that hasn’t received
much attention from the GP community – it falls under the general category of
programs with side-effects. We are currently working on optimising two crucial
aspects of the system (i.e. modi rate, variation operators tailored to this program
presentation).

On a more general note, the local feature relevances implicitly touched on the
issue of feature selection, which can be essentially performed by zeroing certain
feature weighs. Adaptive distance metrics for kNN classifiers consist an approach
to ameliorate the problem arising from the curse of dimensionality by performing
local dimensionality reduction. We plan to investigate this in our future research.

Acknowledgement. This publication has emanated from research conducted
with the financial support of Science Foundation Ireland under Grant Number
08/SRC/FM1389.

References

1. Agapitos, A., Brabazon, A., O’Neill, M.: Controlling Overfitting in Symbolic Re-
gression Based on a Bias/Variance Error Decomposition. In: Coello Coello, C.A.,
Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012, Part
I. LNCS, vol. 7491, pp. 438–447. Springer, Heidelberg (2012)

2. Agapitos, A., O’Neill, M., Brabazon, A.: Evolutionary Learning of Technical Trad-
ing Rules without Data-Mining Bias. In: Schaefer, R., Cotta, C., Ko�lodziej, J.,
Rudolph, G. (eds.) PPSN XI, Part I. LNCS, vol. 6238, pp. 294–303. Springer,
Heidelberg (2010)

3. Agapitos, A., O’Neill, M., Brabazon, A., Theodoridis, T.: Maximum Margin Deci-
sion Surfaces for Increased Generalisation in Evolutionary Decision Tree Learning.
In: Silva, S., Foster, J.A., Nicolau, M., Machado, P., Giacobini, M. (eds.) EuroGP
2011. LNCS, vol. 6621, pp. 61–72. Springer, Heidelberg (2011)

4. Domeniconi, C., Gunopulos, D., Peng, J.: Large margin nearest neighbor classifiers.
IEEE Transactions on Neural Networks 16(4), 899–909 (2005)

5. Domeniconi, C., Peng, J., Gunopulos, D.: Locally adaptive metric nearest-
neighbor classification. IEEE Transactions on Pattern Analysis and Machine In-
telligence 24(9), 1281–1285 (2002)

6. Fix, E., Hodges Jr., J.L.: Discriminatory analysis. nonparametric discrimination:
Consistency properties. International Statistical Review 57(3), 238–247 (1989)

7. Frank, A., Asuncion, A.: UCI machine learning repository (2010),
http://archive.ics.uci.edu/ml

8. Friedman, J.H.: Flexible metric nearest neighbour classification. Tech. rep., De-
partment of Statistics. Stanford University (1994)

9. Goldberger, J., Roweis, S., Hinton, G., Salakhutdinov, R.: Neighbourhood com-
ponents analysis. In: Advances in Neural Information Processing Systems 17, pp.
513–520. MIT Press (2004)

10. Guo, R., Chakraborty, S.: Bayesian adaptive nearest neighbor. Stat. Anal. Data
Min. 3(2), 92–105 (2010)

http://archive.ics.uci.edu/ml

12 A. Agapitos, M. O’Neill, and A. Brabazon

11. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.: The
weka data mining software: An update. SIGKDD Explorations 11(1) (2009)

12. Hastie, T., Tibshirani, R.: Discriminant adaptive nearest neighbor classification.
IEEE Trans. Pattern Anal. Mach. Intell. 18(6), 607–616 (1996)

13. Kattan, A., Agapitos, A., Poli, R.: Unsupervised Problem Decomposition Using
Genetic Programming. In: Esparcia-Alcázar, A.I., Ekárt, A., Silva, S., Dignum, S.,
Uyar, A.Ş. (eds.) EuroGP 2010. LNCS, vol. 6021, pp. 122–133. Springer, Heidelberg
(2010)

14. Mitchell, T.: Machine Learning. McGraw-Hill (1997)
15. Peng, J., Heisterkamp, D.R., Dai, H.K.: Lda/svm driven nearest neighbor classifi-

cation. IEEE Transactions on Neural Networks 14(4), 940–942 (2003)
16. Poli, R., Langdon, W.B., McPhee, N.F.: A Field Guide to Genetic Programming.

Lulu Enterprises, UK Ltd (2008)
17. Theodoridis, T., Agapitos, A., Hu, H.: A gaussian groundplan projection area

model for evolving probabilistic classifiers. In: Genetic and Evolutionary Compu-
tation Conference, GECCO 2011, Dublin, July 12-16. ACM (2011)

18. Trevor, H., Robert, T., Jerome, F.: The Elements of Statistical Learning, 2nd edn.
Springer (2009)

19. Tuite, C., Agapitos, A., O’Neill, M., Brabazon, A.: A Preliminary Investigation
of Overfitting in Evolutionary Driven Model Induction: Implications for Financial
Modelling. In: Di Chio, C., Brabazon, A., Di Caro, G.A., Drechsler, R., Farooq,
M., Grahl, J., Greenfield, G., Prins, C., Romero, J., Squillero, G., Tarantino, E.,
Tettamanzi, A.G.B., Urquhart, N., Uyar, A.Ş. (eds.) EvoApplications 2011, Part
II. LNCS, vol. 6625, pp. 120–130. Springer, Heidelberg (2011)

20. Tuite, C., Agapitos, A., O’Neill, M., Brabazon, A.: Early stopping criteria to coun-
teract overfitting in genetic programming. In: Genetic and Evolutionary Compu-
tation Conference, GECCO 2011, Dublin, July 12-16. ACM (2011)

21. Wang, J., Neskovic, P., Cooper, L.N.: Improving nearest neighbor rule with a simple
adaptive distance measure. Pattern Recogn. Lett. 28(2), 207–213 (2007)

22. Weinberger, K.Q., Saul, L.K.: Distance metric learning for large margin nearest
neighbor classification. J. Mach. Learn. Res. 10, 207–244 (2009)

23. Zhang, G.-J., Du, J.-X., Huang, D.-S., Lok, T.-M., Lyu, M.R.: Adaptive Nearest
Neighbor Classifier Based on Supervised Ellipsoid Clustering. In: Wang, L., Jiao,
L., Shi, G., Li, X., Liu, J. (eds.) FSKD 2006. LNCS (LNAI), vol. 4223, pp. 582–585.
Springer, Heidelberg (2006)

24. Zhang, Y., Zhang, M.: A multiple-output program tree structure in genetic pro-
gramming. In: Mckay, R.I., Cho, S.B. (eds.) Proceedings of the Second Asian-
Pacific Workshop on Genetic Programming, Cairns, Australia, p. 12

	Adaptive Distance Metricsfor Nearest Neighbour Classification Based on Genetic Programming
	Introduction
	The Need for Distance Metric Adaptation
	Previous Work

	Methods
	Supervised Learning of Local Feature Weights
	Multiple-Output Program Representation for GP
	Experiment Design

	Results
	Conclusion
	References

