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Abstract. We present an analysis of the genotype-phenotype map in
Grammatical Evolution (GE). The standard map adopted in GE is a
depth-first expansion of the non-terminal symbols during the derivation
sequence. Earlier studies have indicated that allowing the path of the
expansion to be under the guidance of evolution as opposed to a de-
terministic process produced significant performance gains on all of the
benchmark problems analysed. In this study we extend this analysis to in-
clude a breadth-first and random map, investigate additional benchmark
problems, and take into consideration the implications of recent results
on alternative grammar representations with this new evidence. We con-
clude that it is possible to improve the performance of grammar-based
Genetic Programming by the manner in which a genotype-phenotype
map is performed.

1 Introduction

Within the field of Genetic Programming (GP) [11, 19] the use of a genotype-
phenotype map is not new [9, 1, 10, 20, 13, 5, 4, 8] and a number of variants to the
standard tree-based form of GP exist, amongst which some of the most popular
are Linear GP [2], Cartesian GP [14] and Grammatical Evolution (GE) [3, 18].
GE is a grammar-based form of GP which adopts a mapping from a linear
genotype to phenotypic GP trees. O’Neill [15] presented a series of arguments for
the adoption of a genotype-phenotype map for GP as it can provide a number of
advantages. These include a generalised encoding that can represent a variety of
structures allowing GP to generate structures in an arbitrary language, efficiency
gains for evolutionary search (e.g. through neutral evolution), maintenance of
genetic diversity through many-to-one maps, preservation of functionality while
allowing continuation of search at a genotypic level, reuse of genetic material
potentially allowing information compression, and positional independence of
gene functionality.

For the first time this study presents an examination of the genotype-phenotype
map of GE. A number of alternative mappers are proposed and performance is
compared against the standard genotype-phenotype map. The remainder of the



paper is structured as follows. A brief overview of the essentials of GE are pro-
vided in Section 2 before an example of the standard genotype-phenotype map
of GE in Section 3. The next part of the paper describes the experimental setup
(Section 4), the results found (Section 5) and a discussion (Section 6) before
drawing conclusions and pointing to future work.

2 Grammatical Evolution Essentials

GE marries principles from molecular biology to the representational power of
formal grammars. GE’s rich modularity gives a unique flexibility, making it pos-
sible to use alternative search strategies, whether evolutionary, or some other
heuristic (be it stochastic or deterministic) and to radically change its behaviour
by merely changing the grammar supplied. As a grammar is used to describe
the structures that are generated by GE, it is trivial to modify the output struc-
tures by simply editing the plain text grammar. The explicit grammar allows GE
to easily generate solutions in any language (or a useful subset of a language).
For example, GE has been used to generate solutions in multiple languages in-
cluding Lisp, Scheme, C/C++, Java, Prolog, Postscript, and English. The ease
with which a user can manipulate the output structures by simply writing or
modifying a grammar in a text file provides an attractive flexibility and ease
of application not as readily enjoyed with the standard approach to GP. The
grammar also implicitly provides a mechanism by which type information can
be encoded thus overcoming the property of closure, which limits the traditional
representation adopted by GP to a single type. The genotype-phenotype map-
ping also means that instead of operating exclusively on solution trees, as in
standard GP, GE allows search operators to be performed on the genotype (e.g.,
integer or binary chromosomes), in addition to partially derived phenotypes,
and the fully formed phenotypic derivation trees themselves. As such, standard
GP tree-based operators of subtree-crossover and subtree-mutation can be eas-
ily adopted with GE. By adopting the GE approach one can therefore have the
expressive power and convenience of grammars, while operating search in a stan-
dard GP or Strongly-Typed GP manner. For the latest description of GE please
refer to Dempsey et al. [3].

3 GE’s Genotype-Phenotype Map

The genotype-phenotype map of GE operates as follows. The process begins
from the embryonic start symbol of the grammar. Taking the simple gram-
mar adopted for the Max problem provided in Fig. 6 this is <prog>, which
by default is transformed into the non-terminal <expr>. There are two possi-
ble transformations which can be applied to <expr>. Either it will be replaced
with <op><expr><expr> or with <var>. To decide what happens the next un-
used codon (an integer in this study) is read from the genome and we mod it’s
value by the number of choices available (i.e., choice = integer % 2). Lets
assume <expr> is transformed into <op><expr><expr>. In this situation there



is more than one non-terminal symbol in the current structure which needs to
be transformed. The standard mapper in GE always selects the left-most non-
terminal, which means in this case <op>. In the Max grammar <op> can be
transformed into one of + or *, again by reading the next codon value and ap-
plying the mapping function with modulus 2. Assuming * is selected we end up
with the structure *<expr><expr>. The mapping continues by taking the left-
most non-terminal until we end up with a structure that is comprised exclusively
of terminal symbols (i.e., in the case of the Max grammar these are +, *, and
0.5).

A sample grammar is outlined below including an example chromosome.
Fig. 1 outlines the depth-first order of expansion of the non-terminal symbols
of the standard mapping process in GE. Potentially this introduces a structure
bias to the search process as the focus of search is directed towards the left-hand
branches and sub-trees of an individual structure. Alternatively if a breadth-
first expansion was adopted, Fig. 2 illustrates how the order changes and thus
the focus of evolutionary search takes a different direction towards broader tree
structures. With the πGE approach [16] the order of expansion is itself evolvable
with the genome being consulted as to which non-terminal to expand at each
point of the derivation sequence.
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Fig. 1. An illustration of the order of
a depth first expansion of the non-
terminals in a derivation tree, leading
to a solution of Y+X+X+X.
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Fig. 2. An illustration of the order of
a breadth first expansion of the non-
terminals in a derivation tree, leading
to a solution of X+Y+X.



4 Experimental Setup

We wish to test the null hypothesis that there is no difference in performance
when alternative mapping strategies are adopted with GE. We will measure
performance both in terms of the number of successful solutions found to each
problem instance, and by examining the average best fitness.

We adopted GEVA v1.1 [17] for the experiments conducted in this study. The
evolutionary parameters adopted on all problems are presented in Table 1. Note
that we deliberately use a relatively small population size of 100 compared to
the standard 500 that would typically be adopted for these problem instances.
This was to make it harder for the mappers to find a perfect solution, and
therefore allow us to discriminate more clearly performance differences on these
toy benchmark problems.

Table 1. Parameter settings adopted on all problems examined.

Parameter Value

generations 100
population size 100
replacement strategy generational with elitism (10%)
selection tournament (tsize=3)
mutation probability 0.01 (integer mutation)
crossover probability 0.9 (ripple)
initial chromosome length 200 codons (random init)
max wrap events 3

4.1 Benchmark Problems

Four standard GP benchmark problems were examined, and 50 independent runs
performed for each setup on each problem. The grammar adopted in each case
appear in Figs. 3, 4, 5, and 6.

Even-5-parity This is the classic benchmark problem in which evolution at-
tempts to find the five input even-parity boolean function. The optimal fitness
is obtained when the correct output is generated for each of the 32 test cases.

Symbolic Regression The classic quartic function is used here x + x2 + x3 + x4

with 20 input-output test cases drawn from the range -1 to 1. Fitness is simply
the sum of the errors. We measure success on this problem using the notion of
hits, where a hit is achieved when the error is less than 0.01.

Santa Fe ant trail The objective is to evolve a program to control the movement
of an artificial ant on a toroidal grid of size 32 by 32 units. 89 pieces of food
are located along a broken trail, and the ant has 600 units of energy to find all



<prog> ::= <expr>

<expr> ::= <expr> <op> <expr>
| ( <expr> <op> <expr> )

| <var>
| <pre-op> ( <var> )

<pre-op> ::= not

<op> ::= "|"
| &

| ^

<var> ::= d0 | d1 | d2 | d3 | d4

Fig. 3. The grammar adopted for the
Even-5-parity problem.

<prog> ::= <expr>

<expr> ::= <expr> <op> <expr>
| ( <expr> <op> <expr> )
| <pre-op> ( <expr> )

| <protected-op>
| <var>

<op> ::= + | * | -

<protected-op> ::= div( <expr>, <expr>)

<pre-op> ::= sin | cos | exp | inv | log

<var> ::= X | 1.0

Fig. 4. The grammar adopted for the
Symbolic Regression problem instance.

<prog> ::= <code>

<code> ::= <line> | <code> <line>

<line> ::= <condition>\n
| <op>\n

<condition> ::= if(food_ahead()==1){

<opcode>
}

else { <opcode> }

<op> ::= left(); | right(); | move();

<opcode> ::= <op> | <opcode> <op>

Fig. 5. The grammar adopted for the
Santa Fe ant trail problem.

<prog> ::= <expr>

<expr> ::= <op> <expr> <expr>
| <var>

<op> ::= +
| *

<var> ::= 0.5

Fig. 6. The grammar adopted for the
Max problem instance.

the food. A unit of energy is consumed when the ant uses one of the following
operations: move(), right() or left(). The ant also has the capability to look
ahead into the square directly facing it to determine if there is food present.

Max The aim of the problem is to evolve a tree that returns the largest value
within a set depth limit (8 in this study). A minimal function set of addition
and multiplication is provided alongside a single constant (0.5). The optimal
solution to this problem will have addition operators towards the leaves of the
tree to create as large a variable as possible greater than 1.0 in order to exploit
multiplication operators towards the root of the tree. This problem is considered
difficult for GP as solutions tend to converge on suboptimal solutions which can
be difficult to escape from as is shown by Langdon et al [12].

4.2 Mappers

Four alternative mapping strategies are examined in this study. The standard
mapper adopted in GE we refer to as Depth-first. The name reflects the path



this mapper takes through the non-terminal symbols in the derivation tree. The
opposite Breadth-first strategy was implemented, which maps all of the non-
terminal symbols at each successive level of the derivation tree before moving
on to the next deepest level. The πGE mapper as first described by O’Neill
et al. [16] is the third mapper analysed. πGE lets the evolving genome decide
which non-terminal to expand at each step in the derivation sequence. Finally
we adopt a Random control strategy, which randomly selects a non-terminal
to expand amongst all of the non-terminals that currently exist in an expanding
derivation sequences. This is equivalent to a randomised πGE approach where
the order of expansion is not evolved, rather it is chosen at random each time it
is performed.

5 Results

The number of runs (out of 50) that successfully found a perfect solution to each
problem is presented in Table 2. On three out of the four problems the πGE
mapper is the most successful. None of the mappers found a perfect solution to
the Max problem with the parameter settings adopted.

Average best fitness plots (over 50 runs) for each problem can be seen in
Figs. 7, 8, 9 and 10. Table 3 records the average best fitness and standard
deviation at the final generation. The results presented in these figures and
table support the success rate data, with the πGE mapper variant outperforming
the alternatives on Even-5-Parity, Symbolic Regression and the Santa Fe Ant.
However, on the Max problem instance the standard depth-first mapper has a
performance edge.

It is worth noting that the random ”control” mapper performs the worst on
all of the problems examined in terms of success rates and in terms of the average
best fitness attained. A slight exception is on the Santa Fe ant trail where the
random mappers performs as well as both depth and breadth-first alternatives,
in terms of the average best fitness at the final generation.

Table 2. Instances of Successful Solution Found over 50 runs.

Mapper Even 5 Santa Fe Sym Reg Max

BF 29 1 9 0
DF 31 2 9 0

Rand 13 0 0 0
πGE 38 4 17 0

We also recorded the size of evolving genomes (Figs. 11, 12, 13 and 14) and
derivation trees. Derivation tree size was measured both in terms of the number
of nodes in a tree (Figs. 15, 16, 17 and 18) and the depth of a tree (Figs. 19, 20,
21 and 22).
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Fig. 7. Average Best Fitness on the
Symbolic Regression problem instance.
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Fig. 8. Average Best Fitness on the
Santa Fe ant problem.

0 20 40 60 80 100

2
4

6
8

10
12

14

Even 5 − Avg Best Fitness

Generations

F
itn

es
s

BF
DF
piGE
Rand

Fig. 9. Average Best Fitness on the
Even-5-parity problem.
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Fig. 10. Average Best Fitness on the
Max problem instance.

6 Discussion

While the results show that πGE did not perform as well on the Max problem,
relative to the other problems, it is worth noting that solving the Max problem is
more about refining the content of the tree not the structure [7]. The Depth-first
map appears to be able to generate larger tree structures more rapidly (both in
terms of number of nodes and tree depth, see Figs. 18 and 22) when compared to
the alternative mapping strategies. This allows search additional time to focus



Table 3. Average Best Fitness Values after 100 generations over 50 independent runs.

Mapper Even 5 Santa Fe Sym Reg Max
Avg.Best(std) Avg.Best(std) Avg.Best(std) Avg.Best(std)

BF 2.68(3.41) 30.4(13.92) 0.56(0.65) 16.44(14.66)
DF 2.32(3.26) 30.34(14.39) 0.52(0.89) 7.23(10.14)

Rand 4.82(3.29) 29.26(12.07) 0.89(0.76) 121.89(27.45)
πGE 1.52(2.92) 25.64(14.52) 0.33(0.56) 39.31(24.97)
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Fig. 11. Average size of individual on
the Symbolic Regression problem in-
stance.
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Fig. 12. Average size of individual on
the Santa Fe ant problem.
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Fig. 13. Average size of individual on
the Even-5-Parity problem.
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Fig. 14. Average size of individual on
the Max problem instance.

on tree content towards the desired *’s towards the root and +’s towards the
function nodes near the leaves. The Max problem is more suited to a systematic
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Fig. 15. Average number of Derivation
Tree Nodes on the Symbolic Regression
problem instance.
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Tree Nodes on the Santa Fe ant prob-
lem.
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Fig. 17. Average number of Derivation
Tree Nodes on the Even-5-parity prob-
lem.
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Fig. 18. Average number of Derivation
Tree Nodes on the Max problem.

pre-order (Depth-first) or level-order (Breadth-first) traversal of the tree, leading
to better results faster than the πGE alternative. On all the other problems the
Breadth-first map produces larger tree structures both in terms of node count
and tree depth (Figs. 15-22).

With respect to the length of the integer genomes it is clear from Figs. 11-
14 that the control random mappers lack of order results in the overall lengths
of individuals remaining relatively constant over time. The opposite behaviour
is observed in the cases of Depth-first, Breadth-first and πGE with the usual
GP-bloat behaviour being observed.
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Fig. 19. Average Derivation Tree
Depth on the Symbolic Regression
problem.
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Fig. 20. Average Derivation Tree
Depth on the Santa Fe ant problem.
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Fig. 21. Average Derivation Tree
Depth on the Even-5-parity problem.
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Fig. 22. Average Derivation Tree
Depth on the Max problem instance.

In light of the comparison between a Depth-first and Breadth-first mapper
presented here, it is interesting to recall the observations made in a study by
Hemberg et al. [6]. In the earlier research three grammar variants were examined
in the context of Symbolic Regression. The language represented by each of the
grammars were all semantically equivalent in terms of the phenotypic behaviour
of the solutions that could be generated. The only difference was syntactical.
That is, postfix, prefix and infix notations were adopted for the same set of
terminal symbols of the language. Performance advantages were observed on
the problems examined for the postfix notation over both alternatives. If one
examines the behaviour of postfix notation it amounts to a postorder expansion



of the tree. In terms of a generative grammar this means that the contents of
subtrees are determined before the operator at the root of the subtree.

Effectively the order of the mapping sequence was modified in the Hemberg
et al. study to a Postorder mapper purely by modifying the syntax of the expres-
sions being evolved. Given that the Breadth-first map adopted in this study is
producing similar performance characteristics to the standard Depth-first map,
there must be some advantage in conducting the mapping sequence at least
partly Breadth-first, and partly in a Depth-first manner. Given the earlier find-
ings on the Postorder mapping, there may also be an advantage in reversing
the order of expansion between a pre-, post-order, and possibly in-order. It will
require further analysis to ascertain if a similar mixture of mapping order is
effectively being evolved with the πGE approach, which may go some way to
explain the relative advantage πGE has over the other mappers.

7 Conclusions & Future Work

We presented an analysis of the genotype-phenotype map in Grammatical Evolu-
tion by comparing performance of the standard depth-first approach to breadth-

first, πGE, and random variations. Across the benchmark problems analysed
we observe an advantage to the adoption of the more flexible πGE map, which
is under the control of evolution. Given the additional overhead that the πGE
map has, due to the extra degree of freedom which allowing the path of the
derivation sequence to be evolvable and the subsequent increase of the overall
search space size that this entails, the results are even more impressive. Further
research is required to establish Why the more evolvable approach is providing
a performance advantage, and this is the current focus of our efforts. With this
deeper understanding we can then potentially improve upon the πGE approach
and/or develop novel mappers with more evolvable characteristics. We are es-
pecially interested in how evolvable genotype-phenotype maps will perform in
dynamic environments, and this will form an integral part of the next phase of
this research.
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