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Abstract. The ability of Genetic Programming to scale to problems of
increasing difficulty operates on the premise that it is possible to cap-
ture regularities that exist in a problem environment by decomposition
of the problem into a hierarchy of modules. As computer scientists and
more generally as humans we tend to adopt a similar divide-and-conquer
strategy in our problem solving. In this paper we consider the adoption
of such a strategy for Genetic Algorithms. By adopting a modular rep-
resentation in a Genetic Algorithm we can make efficiency gains that
enable superior scaling characteristics to problems of increasing size. We
present a comparison of two modular Genetic Algorithms, one of which
is a Grammatical Genetic Programming algorithm, the meta-Grammar
Genetic Algorithm (mGGA), which generates binary string sentences in-
stead of traditional GP trees. A number of problems instances are tackled
which extend the Checkerboard problem by introducing different kinds
of regularity and noise. The results demonstrate some limitations of the
modular GA (MGA) representation and how the mGGA can overcome
these. The mGGA shows improved scaling when compared the MGA.

1 Introduction

In the natural world examples of modularity and hierarchies abound, ranging the
biological evolution of cells to form tissues and organs to the physical structure
of matter from the sub-atomic level up. In most examples of problem solving by
humans, regularities in the problem environment are exploited in a divide-and-
conquer approach through the construction of sub-solutions, which may then be
reused and combined in a hierarchical fashion to solve the problem as a whole.
Similarly Genetic Programming provides as components of its problem solving
toolkit the ability to automatically create, modify and delete modules, which can
be used in a hierarchical fashion. The objectives of this study are to investigate
the adoption of principles from Genetic Programming [1] such as modularity
and reuse (see Chapter 16 in [2]) for application to Genetic Algorithms, and to



couple these to an adaptive representation that allows the type and usage of
these principles to be evolved through the use of evolvable grammars. The goal
being the development of an evolutionary algorithm with good scaling char-
acteristics, and an adaptable representation that will facilitate its application
to noisy, dynamic, problem environments. To this end a grammar-based Ge-
netic Programming approach is adopted, in which the grammars represent the
construction of syntactically correct genotypes of the Genetic Algorithm. In par-
ticular, we compare the representations and performance of the meta-Grammar
Genetic Algorithm (mGGA) [3] to the Modular Genetic Algorithm (MGA) [4],
highlighting some of the MGA’s representational limitations, and demonstrate
the potential of a more expressive representation in the form of the mGGA to
scale to problems of increasing size and difficulty. Additionally, we consider the
introduction of noise into the Checkerboard problem, in order to assess how the
representations might generalise into noisy, real-world problem domains. The
remainder of the paper is structured as follows. Section 2 provides background
on earlier work in modular GAs and describes the meta-Grammar Genetic Al-
gorithm. Section 3 details the experimental approach adopted and results, and
finally section 4 details conclusions and future work.

2 Background

There has been a large body of research on modularity in Genetic Programming
and effects on its scalability, however the same cannot be stated for the Ge-
netic Algorithm (GA). In this section we present two modular representations
as implemented in the Modular GA [4] and the meta-Grammar GA [3].

2.1 Modular Genetic Algorithm

Garibay et al. introduced the Modular Genetic Algorithm, which was shown
to signficantly outperform a standard Genetic Algorithm on a scalable problem
with regularities [4]. The genome of an MGA individual is a vector of genes,
where each gene is comprised of two components, the number-of-repetitions

and some function which is repeated according to the value of the repetitions
field. For example, if we had a function (one()) that always returned the value 1
when called and another (zero()) that returned the value 0 we have a represen-
tation that can generate binary strings. A sample individual comprised of three
genes might look like: {2, zero()}, {4, one()}, {2, zero()}, which would
produce the binary string 00111100. The MGA was shown to have superior
ability to scale to problems of increasing complexity than a standard GA.

2.2 Grammatical Evolution by Grammatical Evolution

The grammar-based Genetic Programming approach upon which this study is
based is the Grammatical Evolution by Grammatical Evolution algorithm [5],
which is in turn based on the Grammatical Evolution algorithm [6–9]. This is



a meta-Grammar Evolutionary Algorithm in which the input grammar is used
to specify the construction of another syntactically correct grammar. The gen-
erated grammar is then used in a mapping process to construct a solution. In
order to allow evolution of a grammar (Grammatical Evolution by Grammatical
Evolution (GE)2), we must provide a grammar to specify the form a grammar
can take. This is an example of the richness of the expressiveness of grammars
that makes the GE approach so powerful. See [6, 10, 11] for further examples of
what can be represented with grammars and [12] for an alternative approach to
grammar evolution. By allowing an Evolutionary Algorithm to adapt its repre-
sentation (in this case through the evolution of the grammar) it provides the
population with enhanced robustness in the face of a dynamic environment, in
particular, and also to automatically incorporate biases into the search process.
In this case we can allow the meta-Grammar Genetic Algorithm to evolve biases
towards different building blocks of varying sizes. In this approach we therefore
have two distinct grammars, the universal grammar (or grammars’ grammar)
and the solution grammar. The notion of a universal grammar is adopted from
linguistics and refers to a universal set of syntactic rules that hold for spoken lan-
guages [13]. It has been proposed that during a child’s development the universal
grammar undergoes modifications through learning that allows the development
of communication in their parents native language(s) [14]. In (GE)2 the univer-
sal grammar dictates the construction of the solution grammar. In this study
two separate, variable-length, genotypic binary chromosomes were used, the first
chromosome to generate the solution grammar from the universal grammar and
the second chromosome generates the solution itself. Crossover operates between
homologous chromosomes, that is, the solution grammar chromosome from the
first parent recombines with the solution grammar chromosome from the sec-
ond parent, with the same occurring for the solution chromosomes. In order for
evolution to be successful it must co-evolve both the meta-Grammar and the
structure of solutions based on the evolved meta-Grammar, and as such the
search space is larger than in standard Grammatical Evolution.

2.3 meta-Grammars for Bitstrings

A simple grammar for a fixed-length (8 bits in the following example) binary
string individual of a Genetic Algorithm is provided below. In the generative
grammar each bit position (denoted as <bit>) can become either of the boolean
values. A standard variable-length Grammatical Evolution individual can then
be allowed to specify what each bit value will be by selecting the appropriate
<bit> production rule for each position in the <bitstring>.

<bitstring> ::= <bit><bit><bit><bit><bit><bit><bit><bit>
<bit> ::= 1 | 0

The above grammar can be extended to incorporate the reuse of groups of bits
(building blocks). In this example all building blocks that are mutliples of two
are provided, although it would be possible to create a grammar that adopted
more complex arrangements of building blocks.



<bitstring> ::= <bbk4><bbk4> | <bbk2><bbk2><bbk2><bbk2>

| <bbk1><bbk1><bbk1t><bbk1><bbk1><bbk1><bbk1><bbk1>
<bbk4> ::= <bit><bit><bit><bit>

<bbk2> ::= <bit><bit>
<bbk1> ::= <bit>
<bit> ::= 1 | 0

The above grammars are static, and as such can only allow one building block
of size four and of size two in the second example. It would be better to allow
our search algorithm the potential to uncover a number of building blocks of
any one size from which a Grammatical Evolution individual could choose from.
This would facilitate the application of such a Grammatical GA to:

– problems with more than one building block type for each building block
size,

– to search on one building block while maintaining a reasonable temporary
building block solution,

– and to be able to switch between building blocks in the case of dynamic
environments.

All of this can be achieved through the adoption of meta-Grammars as were
adopted earlier in [5]. An example of such a grammar for an 8-bit individual is
given below.

<g> ::= "<bitstring> ::=" <reps>
"<bbk4> ::=" <bbk4t>

"<bbk2> ::=" <bbk2t>
"<bbk1> ::=" <bbk1t>

"<bit> ::=" <val>

<bbk4t> ::= <bit><bit><bit><bit>

<bbk2t> ::= <bit><bit>
<bbk1t> ::= <bit>

<reps> ::= <rept> | <rept> "|" <reps>
<rept> ::= "<bbk4><bbk4>" | "<bbk2><bbk2><bbk2><bbk2>"

| "<bbk1><bbk1><bbk1><bbk1><bbk1><bbk1><bbk1><bbk1>"
<bit> ::= "<bit>" | 1 | 0
<val> ::= <valt> | <valt> "|" <val>

<valt> ::= 1 | 0

In this case the grammar specifies the construction of another generative bit-
string grammar. The subsequent bitstring grammar that can be produced from
the above meta-grammar is restricted such that it can contain building blocks of
size 8. Some of the bits of the building blocks can be fully specified as a boolean
value or may be left as unfilled for the second step in the mapping process. An
example bitstring grammar produced from the above meta-grammar could be:

<bitstring> ::= <bit>11<bit>00<bit><bit> | <bbk2><bbk2><bbk2><bbk2>
| 11011101 | <bbk4><bbk4> | <bbk4><bbk4>

<bbk4> ::= <bit>11<bit>
<bbk2> ::= 11
<bbk1> ::= 1

<bit> ::= 1 | 0 | 0 | 1

To allow the creation of multiple building blocks of different sizes the following
grammar could be adopted (again shown for 8-bit strings).



<g> ::= "<bitstring> ::=" <reps>

"<bbk4> ::=" <bbk4>
"<bbk2> ::=" <bbk2>

"<bbk1> ::=" <bbk1>
"<bit> ::=" <val>

<bbk4> ::= <bbk4t> | <bbk4t> "|" <bbk4>
<bbk2> ::= <bbk2t> | <bbk2t> "|" <bbk2>

<bbk1> ::= <bbk1t> | <bbk1t> "|" <bbk1>
<bbk4t> ::= <bit><bit><bit><bit>
<bbk2t> ::= <bit><bit>

<bbk1t> ::= <bit>
<reps> ::= <rept> | <rept> "|" <reps>

<rept> ::= "<bbk4><bbk4>" | "<bbk2><bbk2><bbk2><bbk2>"
| "<bbk1><bbk1><bbk1><bbk1><bbk1><bbk1><bbk1><bbk1>"

<bit> ::= "<bit>" | 1 | 0
<val> ::= <valt> | <valt> "|" <val>
<valt> ::= 1 | 0

An example bitstring grammar produced by the above meta-grammar is provided
below.

<bitstring> ::= <bit>11<bit>00<bit><bit> | <bbk2><bbk2><bbk2><bbk2>

| 11011101 | <bbk4><bbk4> | <bbk4><bbk4>
<bbk4> ::= <bit>11<bit> | 000<bit>

<bbk2> ::= 11 | 00 | <bit>1
<bbk1> ::= 0 | 0
<bit> ::= 1 | 0 | 0 | 1

Modularity exists above in the ability to specify the size and content (or partial
content) of a buiding block through its incorporation into the solution grammar.
This building block can then be repeatedly reused in the generation of the phe-
notype. An additional mechanism for reuse is through the Wrapping operator
of Grammatical Evolution. During the mapping process if we reach the end of
the genotype and still have outstanding decisions to make on the construction of
our phenotype we can invoke the wrapping operator to move our reading head
back to the first codon in the genome. This allows the reuse of rule choices if the
codons are used in the same context. Given that the lengths of binary strings
which may need to be represented can grow quite large it is possible to automate
the creation of meta-grammars by simply providing the length of the target so-
lution and creating all possible building block structures that can be used to
create a bitstring of the target length. In this study the target binary strings
are of lengths 60, 90, 120, 180, and 210. The building block sizes incorporated
in their corresponding grammars are therefore all integers that divide into the
target string lengths (i.e., for a target string of length 60 the building blocks
are of sizes 30, 20, 15, 12, 10, 6, 5, 4, 3, 2 and 1). Meta-grammars are of course
not limited to the specification of grammars for binary strings and can be easily
extended to the representation of real and integer strings as well as programs,
or any structure which can be represented in a grammatical form.

3 Experimental Setup and Results

Before detailing the experimental design and setup we first introduce the prob-
lems on which we will benchmark the two representations under investigation.



3.1 The Checkerboard-Pattern Discovery Problem

Given the lack of suitable benchmark problems in the Genetic Algorithm liter-
ature that consider modularity, Garibay et al., [4] proposed the Checkerboard-
Pattern discovery problem. In this problem a pattern of colours or states is
imposed upon a two dimensional grid called the Checkerboard. There are 2 pos-
sible states adopted for each square on the grid, i.e., black or white, which can
be represented as bit values 1 and 0 respectively. Each candidate solution tries
to recapture the pattern contained in the target Checkerboard. Fitness is simply
measured by summing the number of squares that contain the correct state. In
this study we then normalise fitness to the range 0.0 to 1.0, and standardise fit-
ness such that 0.0 is the best possible fitness where all of the candidate solution’s
squares exactly match the target checkerboard-pattern. It is easily possible to
scale the problem in terms of its complexity, modularity and regularity by in-
creasing the size of the checkerboard, the number of patterns, and changing the
number of components in each pattern, respectively. Example instances of this
problem which are adopted in this study and in [4] are presented in Fig.1, which
illustrates scaled-up versions of a 4X8 pattern to 8X16 and 16X32. Another
problem instance tackled in this study of a 8X16 checkerboard pattern is also
illustrated. A third set of problem instances are examined which add noise to the
state of each sqaure upon the evaluation of each individual. This is implemented
by randomly switching the state of a square with a predefined probability for the
patterns already presented in Fig.1. With the addition of noise to the regular
patterns this makes it more challenging to uncover the underlying patterns and
thus add an additional element of real-world interest to this benchmark problem.
The amount of noise can easily be tuned by altering the probability of error.

3.2 Comparing Performance of mGGA and MGA

Table 1. Performance changes for the mGGA on the standard non-noisy problem
instances. The average best fitness after 500 generations is 0.019792 for 24X8 and
after a 1000 generations 0.019531 for 28X16. The differnece in fitness between the two
generations is 0.000261. The average best fitness after 400 generations for 216X32 is
0.01875. Difference between 24X8 and 216X32 is 0.001042.

Performance drop (% of fitness decrease)

Complexity increase MGA mGGA

from 24X8 to 28X16 3.68% 0.02%
from 24X8 to 216X32 11.38% 0.1%

30 runs on each problem instance were performed with the mGGA using a pop-
ulation size of 1000, tournament selection (size 3), mutation probability of 0.001
per gene, and crossover probability of 0.7. The number of generations was se-
lected to reflect the values adopted in Garibay et al’s study [4], i.e. 500 for the



Fig. 1. The original checkerboard-pattern matching problem instances (from left 24X8,
28X16 and 216X32) as presented in [4]. On the far right is a new 28X16 checkerboard-
pattern matching problem checkerboard instance with finer-grained regularity.

Table 2. Performance values for the mGGA on the standard non-noisy problem in-
stances. Average values are for 30 runs. The value in parenthsis is random search for
1000000 tries.

Problem Best fitness Mean fitness Variance(best fit.) Successful Runs

24X8 0.0119 0.0168 0.0017 26/30
28X16 0.0211 (0.164) 0.0265 (0.25) 0.0030 25/30

216X32 0.0188 (0.416) 0.0034 (0.5) 0.0248 27/30

4X8, 1000 for the 8X16 and 2000 generations for the 16X32 problem instance.
Random initialisation was used, and the fitness values and their variance re-
ported in the initial population averaged over the 30 runs reflects this (see e.g.
Fig. 2). The results are reported in Fig 2, with the percentage gains in perfor-
mance and fitness statistics reported in Tables 1 and 2 respectively. It is clear that
as the problem instances increase in complexity there are economies of scale to
be achieved, with the relative performance of the mGGA improving significantly
with each jump in problem size. An additional problem instance as portrayed
in Fig.1(far right) was examined with the same parameters, with the results
presented in Fig.3. In this case the pattern is of size 1X1 and as such is much
finer grained than the patterns examined earlier. It is difficult for the MGA to
efficiently represent a solution to this problem instance due to the nature of the
pattern. Effectively each squares state must be specified individualy. However,
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Fig. 2. A graph for the mGGA on 24X8 (top left), 28X16 (top right), and 28X32 instances
(bottom).

this is not the case with the mGGA which can encode effectively parameterise
the evolved modules to specify multiple square states with different values.

3.3 mGGA Performance Under Noisy Conditions

In order to gain some preliminary insight into the performance of the mGGA
in a more realistic real-world setting it was decided to conduct experimental
runs incorporating noise into the target patterns. This was achieved by simply
flipping each bit in the target pattern with probability pn. Runs were conducted
using the same parameters as previously described for noise probabilities pn =
0.05, 0.075 on the 2128 sized problem. The results achieved here are presented
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Fig. 3. A graph for the mGGA on 28X16 checkerboard (1X1) (left) and, on the right
the standard 28X16 instance with 2.5% noise.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 50  100  150  200  250  300  350  400

F
it
n
e
s
s

Generations

Average best fitness, mean and variance for 128 bit checkerboard with 5% noise over 30 runs

Best fitness
Mean fitness

Population variance

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 50  100  150  200  250  300  350  400

F
it
n
e
s
s

Generations

Average best fitness, mean and variance for 128 bit checkerboard with 7.5% noise over 30 runs

Best fitness
Mean fitness

Population variance

Fig. 4. A graph for the mGGA on 28X16 with 5% noise (left) and the 28X16 with 7.5%
noise (right).

in Table 3 and Fig.4. As can be expected, the addition of noise reduced the
algorithm performance on average, however on inspection of individual runs it
was seen that this performance drop was manifest in an increased, but still
small, number of runs which failed to converge to an optimal solution; instead
converging prematurely on areas of very poor fitness. This indicates that the
population may be converging too quickly in the early stages of the algorithm,
loosing whatever diversity was present in the initial population. It is possible



Table 3. Statistics for performance of the mGGA on the Noisy Checkerboard-Pattern
Discovery instances.

Noise level Best fitness Mean fitness Variance(best fit.) Successful Runs

S(1x1) p = 0 0 0.0024 0 30/30
p = 0 0.0195 0.0253 0.0027 25/30
p = 0.025 0.0198 0.0468 0.002 24/30
p = 0.05 0.0664 0.0719 0.0123 22/30
p = 0.075 0.0841 0.0904 0.0098 13/30

that through adjusting parameters of the EA better results could be achieved.
It may also be wise to examine the initialization technique as it is possible that
the initial population lacks diversity. The increase in search space size with the
use of both meta-grammar and solution chromosomes may also be having an
impact on performance.

4 Conclusions & Future Work

We presented a comparison of the meta-Grammar GA (mGGA) to the Modular
GA (MGA), illustrating the application of evolvable grammars to implement
modularity in Genetic Algorithms. We also introduced a number of variations
to the benchmark Checkerboard-Pattern discovery problem including different
types of regularity and the introduction of noise to bring the benchmark closer
to real-world scenarios. On the problem instances examined there are clear per-
formance advantages for the mGGA when compared to the MGA. In addition to
the application to more benchmark problem instances in particular to those be-
longing to the dynamic class, future work will investigate the effects alternative
grammars and comparisons to other GAs from the literature including the com-
petent GAs. A number of avenues to facilitate the co-evolution of the grammar
and solution, such as different operator probabilities, will also be investigated.
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