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Abstract. A novel Grammatical Genetic Algorithm, the meta-Grammar
Genetic Algorithm (mGGA) is presented. The mGGA borrows a gram-
matical representation and the ideas of modularity and reuse from Ge-
netic Programming, and in particular an evolvable grammar representa-
tion from Grammatical Evolution by Grammatical Evolution. We demon-
strate its application to a number of benchmark problems where signifi-
cant performance gains are achieved when compared to static grammars.

1 Introduction

The objectives of this study are to investigate the adoption of principles from
Genetic Programming [1] such as modularity and reuse (see Chapter 16 in [2]) for
application to Genetic Algorithms, and to couple these to an adaptive represen-
tation that allows the type and usage of these principles to be evolved through
the use of evolvable grammars. The goal being the development of an evolution-
ary algorithm with good scaling characteristics, and an adaptable representation
that will facilitate it’s application to dynamic problem environments. To this
end a grammar-based Genetic Programming approach is adopted, in which the
grammars represent the construction of syntactically correct phenotypes of the
Evolutionary Algorithm.

The remainder of the paper is structured as follows. Section’s 2 and 3 de-
scribes the grammatical approach to Genetic Algorithms, section 4 details the
experimental approach adopted and results, and finally section 5 details conclu-
sions and future work.

2 Grammatical Evolution by Grammatical Evolution

The grammar-based Genetic Programming approach upon which this study
is based is the Grammatical Evolution by Grammatical Evolution algorithm [3],
which is in turn based on the Grammatical Evolution algorithm [4–7]. This is a
meta-Grammar Evolutionary Algorithm in which the input grammar is used to
specify the construction of another syntactically correct grammar. The generated
grammar is then used in a mapping process to construct a solution.



In order to allow evolution of a grammar, Grammatical Evolution by Gram-
matical Evolution (GE)2, we must provide a grammar to specify the form a
grammar can take. This is an example of the richness of the expressiveness
of grammars that makes the GE approach so powerful. See [4, 8, 9] for further
examples of what can be represented with grammars, and [10] for an alterna-
tive approach to grammar evolution. By allowing an Evolutionary Algorithm to
adapt its representation (in this case through the evolution of the grammar) it
provides the population with a mechanism to survive in dynamic environments,
in particular, and also to automatically incorporate biases into the search pro-
cess. In this case we can allow the meta-Grammar Genetic Algorithm to evolve
biases towards different building blocks of varying sizes.

In this approach we therefore have two distinct grammars, the universal

grammar (or grammars’ grammar) and the solution grammar. The notion of a
universal grammar is adopted from linguistics and refers to a universal set of
syntactic rules that hold for spoken languages [11]. It has been proposed that
during a child’s development the universal grammar undergoes modifications
through learning that allows the development of communication in their parents
native language(s) [12].

In (GE)2, the universal grammar dictates the construction of the solution
grammar. In this study two separate, variable-length, genotypic binary chromo-
somes were used, the first chromosome to generate the solution grammar from
the universal grammar and the second chromosome the solution itself. Crossover
operates between homologous chromosomes, that is, the solution grammar chro-
mosome from the first parent recombines with the solution grammar chromosome
from the second parent, with the same occurring for the solution chromosomes.
In order for evolution to be successful it must co-evolve both the meta-Grammar
and the structure of solutions based on the evolved meta-Grammar.

3 meta-Grammars for Bitstrings

A simple grammar (referred to as GE) for a fixed-length (example contains 8
bits) binary string individual of a Genetic Algorithm is provided below. In the
generative grammar each bit position (denoted as <bit>) can become either of
the boolean values. A standard variable-length Grammatical Evolution individ-
ual can then be allowed to specify what each bit value will be by selecting the
appropriate <bit> production rule for each position in the <bitstring>.

<bitstring> ::= <bit><bit><bit><bit><bit><bit><bit><bit>

<bit> ::= 1 | 0

The above grammar can be extended to incorporate the reuse of groups of bits
(building blocks). In this example all building blocks that are mutliples of two
are provided, although it would be possible to create a grammar that adopted
more complex arrangements of building blocks. We refer to this grammar as
GE+BB.



<bitstring> ::= <bbk4><bbk4>

| <bbk2><bbk2><bbk2><bbk2>
| <bbk1><bbk1><bbk1t><bbk1><bbk1><bbk1><bbk1><bbk1>

<bbk4> ::= <bit><bit><bit><bit>

<bbk2> ::= <bit><bit>

<bbk1> ::= <bit>

<bit> ::= 1 | 0

The above grammars are static, and as such can only allow one building block
of size four and of size two in the second example. It would be nice to allow
evolution to find a number of building blocks of any one size from which a
Grammatical Evolution individual could choose from. This would facilitate the
application of such a Grammatical GA to:

– problems with more than one building block type for each building block
size,

– to search on one building block while maintaining a reasonable temporary
building block solution,

– and to be able to switch between building blocks in the case of dynamic
environments.

All of this can be achieved through the adoption of meta-Grammars as were
adopted earlier in [3]. An example of such a grammar (referred to as GEGE+BB)
for an 8-bit individual is given below.

<g> ::=

"<bitstring> ::=" <reps>
"<bbk4> ::=" <bbk4t>

"<bbk2> ::=" <bbk2t>
"<bbk1> ::=" <bbk1t>
"<bit> ::=" <val>

<bbk4t> ::= <bit><bit><bit><bit>

<bbk2t> ::= <bit><bit>

<bbk1t> ::= <bit>

<reps> ::= <rept>
| <rept> "|" <reps>

<rept> ::= "<bbk4><bbk4>"
| "<bbk2><bbk2><bbk2><bbk2>"

| "<bbk1><bbk1><bbk1><bbk1><bbk1><bbk1><bbk1><bbk1>"

<bit> ::= "<bit>"
| 1

| 0

<val> ::= <valt>

| <valt> "|" <val>

<valt> ::= 1 | 0

In this case the grammar specifies the construction of another generative bit-
string grammar. The subsequent bitstring grammar that can be produced from



the above meta-grammar is restricted such that it can contain building blocks of
size 8. Some of the bits of the building blocks can be fully specified as a boolean
value or may be left as unfilled for the second step in the mapping process. An
example bitstring grammar produced from the above meta-grammar could be:

<bitstring> ::= <bit>11<bit>00<bit><bit>
| <bbk2><bbk2><bbk2><bbk2>

| 11011101
| <bbk4><bbk4>
| <bbk4><bbk4>

<bbk4> ::= <bit>11<bit>

<bbk2> ::= 11

<bbk1> ::= 1

<bit> ::= 1 | 0 | 0 | 1

To allow the creation of multiple building blocks of different sizes the following
grammar (referred to as GEGE+KBB) could be adopted (again shown for 8-bit
strings).

<g> ::=
"<bitstring> ::=" <reps>

"<bbk4> ::=" <bbk4>
"<bbk2> ::=" <bbk2>
"<bbk1> ::=" <bbk1>

"<bit> ::=" <val>

<bbk4> ::= <bbk4t>
| <bbk4t> "|" <bbk4>

<bbk2> ::= <bbk2t>
| <bbk2t> "|" <bbk2>

<bbk1> ::= <bbk1t>

| <bbk1t> "|" <bbk1>
<bbk4t> ::= <bit><bit><bit><bit>

<bbk2t> ::= <bit><bit>
<bbk1t> ::= <bit>
<reps> ::= <rept>

| <rept> "|" <reps>
<rept> ::= "<bbk4><bbk4>"

| "<bbk2><bbk2><bbk2><bbk2>"
| "<bbk1><bbk1><bbk1><bbk1><bbk1><bbk1><bbk1><bbk1>"

<bit> ::= "<bit>"
| 1
| 0

<val> ::= <valt>
| <valt> "|" <val>

<valt> ::= 1
| 0

An example bitstring grammar produced by the above meta-grammar is provided
below.

<bitstring> ::= <bit>11<bit>00<bit><bit>
| <bbk2><bbk2><bbk2><bbk2>

| 11011101
| <bbk4><bbk4>

| <bbk4><bbk4>

<bbk4> ::= <bit>11<bit>



| 000<bit>

<bbk2> ::= 11

| 00
| <bit>1

<bbk1> ::= 0
| 0

<bit> ::= 1 | 0 | 0 | 1

Modularity exists above in the ability to specify the size and content (or partial
content) of a buiding block through it’s incorporation into the solution grammar.
This building block can then be repeatedly reused in the generation of the phe-
notype. An additional mechanism for reuse is through the Wrapping operator
of Grammatical Evolution. During the mapping process if we reach the end of
the genotype and still have outstanding decisions to make on the construction of
our phenotype we can invoke the wrapping operator to move our reading head
back to the first codon in the genome. This allows the reuse of rule choices if the
codons are used in the same context.
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Fig. 1. Plot of the cumulative frequency of success for the OneMax 180 bit problem
(left) and the OneMax 210 bit problem (right).

Given that the lengths of binary strings which may need to be represented can
grow quite large it is possible to automate the creation of meta-grammars by



simply providing the length of the target solution and creating all possible build-
ing block structures that can be used to create a bitstring of the target length. In
this study the target binary strings are of lengths 60, 90, 120, 180, and 210. The
building block sizes incorporated in their corresponding grammars are therefore
all integers that divide into the target string lengths (i.e., for a target string of
length 60 the building blocks are of sizes 30, 20, 15, 12, 10, 6, 5, 4, 3, 2 and 1).
Meta-grammars are of course not limited to the specification of grammars for
binary strings and can be easily extended to the representation of real and integer
strings as well as programs, or any structure for which it is possible to represent
in a grammatical form.

4 Experimental Setup and Results

The mGGA was applied to three problem types, namely, instances of onemax,
instances of a deceptive trap problem, and a dynamic problem instance. Two
onemax instances were adopted with target string lengths of 180 and 210.
Similarly, two instances of a Trap5 problem were used having target string
lengths of 60 and 90, with these having 12 and 18 subfunctions respectively.
The dynamic problem instance has an alternating target every 20 generations
between a onemax and zeromax problem with a target string length of 120
bits investigated. In each case the same parameter settings were adopted. These
were, a population size of 100, tournament selection, generational replacement, a
crossover probability of 0.3 between homologous chromosomes, and a mutation
probability of 0.01. Initialisation of the population was performed randomly with
individuals having in the range of 1 to 20 codons.

The results for the onemax instances are presented in Fig. 1. It is clear on both
instances that the evolvable meta-Grammar’s (GEGE+BB and GEGE+KBB)
outperform the static grammars (GE and GE+BB) in terms of the speed at
which the target solution is reached, although all grammars are capable of finding
the perfect solution in every run beyond 50 generations. We would expect, and
it is observed, that the performance of the static grammars are close due to their
similarity.

Results for the Trap5 instances are presented in Fig. 2. In this case the
evolvable meta-Grammar’s outperform the static grammars both in terms of
their speed at obtaining perfect solutions and in terms of the number of successful
runs at the end of 100 generations. The static grammar runs having less than 50%
success rate on the 60 bit instance, and less than 33% on the 90 bit instance. This
is compared to a 100% success rate for both the GEGE+BB and GEGE+KBB
grammars.

The immeadiate success of the GEGE+BB and GEGE+KBB grammars on
these static problems can be attributed, in part at least, to the relatively small
number of choices that need to be made to generate a perfect solution when
compared to making a decision on all 60, 90, 180 or 210 bits individually. In effect
if the solution grammar is generated to specify that a solution is comprised of a
building block of size 1 bits, and that the building block takes on the value 0, only
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Fig. 2. Plot of the cumulative frequency of success for the 5Trap 60 bit problem (left)
and 5Trap 90 bit problem (right).

two codons are required to fully specify a correct solution to the Trap5 problem
instances. The evolvable representation adopted contains more redundancy of a
form that provides an increased number of avenues by which a perfect solution
can be reached relatively quickly within the initial generations, which goes some
way to explain the superior performance of the GEGE grammars [13].

Results for the dynamic instance are provided in Fig.’s 3 and 4. We can see
that the two static grammars (GE and GE+BB) and the GEGE+BB gram-
mar perform well during the first twenty generations with the majority of runs
finding a perfect solution during this time. However, from the first change in
target at generation 21 up until generation 40 the performance of the GE and
GE+BB grammars degrade significantly in contrast to the two evolvable gram-
mars (GEGE+BB and GEGE+KBB), which have success rates over 50% com-
pared to 0% for their static counterparts. On return to the original target be-
tween generations 41 to 60 the static grammars peak at generation 60 with just
over a 50% success rate. During this same period the GEGE+KBB grammars
success rate is improving steadily towards 66%, while the GEGE+BB grammars
performance remains constant just short of a 100% success rate. With the next
change in target at generation 61 performance of the static grammars falls off
towards a 0% success rate while both the GEGE+BB and GEGE+KBB per-
formance improves. The mean best fitness plot (Fig. 4) supports the trends we
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Fig. 3. Plot of the cumulative frequency of success for the Dynamic 120 bit problem.

observe in the success rate plots. Over the course of the run we see a steady
improvement in the mean best fitness for the GEGE+BB and GEGE+KBB
grammars, with the performance of the GE and GE+BB grammars fluctuating
more distinctly with each change in target solution. Performance for the GE
and GE+BB grammars always being better upon return to the original target
presented in the first twenty generations.

Two successful, abbreviated, sample solution grammars for the Dynamic 120
problem instance are given below for both of the GEGE+BB and GEGE+KBB
meta-grammars. In each solution the same grammar represents the two target
solutions that are required and can allow a switch between solutions by changing
a single choice made when mapping <bitstring>.

GEGE+KBB Abbreviated Sample Solution (Dynamic 120 Problem)

<bitstring> ::= <bbk1>..<bbk1>

| <bbk4>..<bbk4>

| <bbk1>..<bbk1>

<bbk4> ::= 00<bit><bit>

<bbk1> ::= 1

<bit> ::= 0

solution: 111111111111111111111111111111111111111111111111111111111111

111111111111111111111111111111111111111111111111111111111111
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Fig. 4. Plot of the the mean best fitness (left) and mean average fitness (right) for the
Dynamic 120 bit problem.

GEGE+BB Abbreviated Sample Solution (Dynamic 120 Problem)

<bitstring> ::= <bbk8>..<bbk8>

| <bbk24><bbk24><bbk24><bbk24><bbk24>

| <bbk5>..<bbk5>

| <bbk1>..<bbk1>

<bbk24> ::= <bit><bit>1110<bit>10110<bit>0010<bit>0<bit><bit>1<bit><bit>

<bbk8> ::= 0<bit>0<bit><bit>1<bit><bit>

<bbk5> ::= 0<bit>0<bit><bit>

<bbk1> ::= 1

<bit> ::= 0

solution: 000000000000000000000000000000000000000000000000000000000000

000000000000000000000000000000000000000000000000000000000000

5 Conclusions & Future Work

We presented the meta-Grammar Genetic Algorithm (mGGA), illustrating the
application of evolvable grammars to Genetic Algorithms. On the three prob-
lem domains examined there are clear performance advantages on both the two
static problems and the dynamic problem instance for the evolvable grammars
GEGE+BB and GEGE+KBB over their static counterparts GE and GE+BB.



In addition to the application to more benchmark problem instances in par-
ticular to those belonging to the dynamic class, future work will investigate the
effects of the wrapping operator, alternative grammars and comparisons to other
Genetic Algorithms from the literature. It would be particularly interesting to
analyse the scalability of these algorithms compared to the competent GA’s,
given that the use of wrapping coupled with the reuse of building blocks has
the potential to shorten the genotypes necessary to represent harder problem
instances. A number of avenues to facilitate the co-evolution of the grammar
and solution such as different operator probabilities will also be investigated.
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