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Abstract. This study examines the possibility of evolving the grammar
that Grammatical Evolution uses to specify the construction of a syntac-
tically correct solution. As the grammar dictates the space of symbols
that can be used in a solution, its evolution represents the evolution
of the genetic code itself. Results provide evidence to show that the co-
evolution of grammar and genetic code with a solution using grammatical
evolution is a viable approach.

1 Introduction

This paper details an investigation examining the possibility of evolving the
grammar that Grammatical Evolution (GE) [1–4] uses to specify the construc-
tion of a syntactically correct solution. By evolving the grammar that GE uses
to specify a solution, one can effectively permit the evolution of the genetic code.
The ability to evolve genetic code is important when one has little or no informa-
tion about the problem being solved, or the environment in which a population
exists is dynamic in nature and adaptiveness is essential for survival.

Evolutionary automatic programming methods have, to date, largely focused
on problem domains that are static in nature, and while this is perfectly adequate
for many, there are a significant number of real world problems that have a
dynamic component (e.g. scheduling, robot control, prediction, trading. etc.)
and require a more adaptive or open-ended representation that can facilitate
progression to different environments.

This paper is concerned with the co-evolution of the genetic code along with
the very individuals that use the code to guide their mapping. The genetic code
typically specifies the symbols that are available for incorporation into a solution
and can be used to dynamically incorporate bias towards important symbols at
different points in time, and this is the mechanism under investigation in this
study. In addition, when the genetic code is represented as a grammar, it can
also be used to determine how structures may be legally constructed, and any
modification of the code modifies the space in which a particular individual
searches. Thus, in theory, co-evolution of the grammar and genetic code could



be used to dynamically reduce the search space, or even bias individuals towards
different regions of the search space.

There have been two previous studies on the evolution of genetic code in the
genetic programming literature using the developmental GP representation [6, 7].
These studies provide strong evidence demonstrating the effective co-evolution
of genetic code and solution. The experiments reported here serve a similar ob-
jective, that is, to determine if co-evolution of genetic code (or grammar) and
solution is possible using grammatical evolution. The distinguishing feature of
this study is that the genetic code is represented by a grammar, and a mecha-
nism to evolve the grammar is presented. Discussions on genetic codes, genetic
code evolution and its implications are presented for biology [8–10] and for evo-
lutionary computation [11, 12].

The remainder of the paper is structured as follows. Section 2 describes the
grammatical approach to grammar evolution, section 3 details the experimental
approach adopted and results. Section 4 provides some discussion on the results
and comparisons to the evolution of genetic code with the developmental GP
approach, and finally section 5 details conclusions and examples of future work
that is now possible given the success of this study.

2 Grammatical Evolution by Grammatical Evolution

When we have a set of production rules for a non-terminal, such as, for
example, <op>::= + | -, a codon is used to select the rule to be applied in
the development of sentences in the language specified by the grammar. In a
similar manner to a biological genetic code, the productions above represent a
degenerate genetic code by which a codon is mapped to a symbol in the output
language [1].

In biology, a codon (on mRNA), which is comprised of a group of three
nucleotides from the set {A, U, G, C}, is mapped to an amino acid from the set
of 20 naturally occurring amino acids. In nature, the code is encoded in transfer
RNA (tRNA) molecules, which have a domino like structure, in that one end
matches (with a certain affinity dubbed the wobble hypothesis) to a codon, while
the amino acid corresponding to this codon is bound to the other end of the
tRNA molecule [8]. In this sense, the above productions are equivalent to two
such tRNA molecules, one matching a set of codons to + while the other matches
a different set of codons to −. By modifying the grammar, we are changing the
types of tRNA molecules in our system, or to it put another way, we are directly
modifying the genetic code by changing the mapping of codon values to different
rules (amino acids).

In order to allow evolution of a grammar, grammatical evolution by grammat-
ical evolution (GE)2, we must provide a grammar to specify the form a grammar
can take. This is an example of the richness of the expressiveness of grammars
that makes the GE approach so powerful. See [13, 1] for further examples of
what can be achieved with grammars. By allowing an evolutionary algorithm to
adapt its representation (in this case through the evolution of the genetic code



or grammar) it provides the population with a mechanism to survive in dynamic
environments, in particular, and also to automatically incorporate biases into
the search process.

In this approach we therefore have two distinct grammars, the universal

grammar (or grammars’ grammar) and the solution grammar. The notion of a
universal grammar is adopted from linguistics and refers to a universal set of
syntactic rules that hold for spoken languages [14]. It has been proposed that
during a child’s development the universal grammar undergoes modifications
through learning that allows the development of communication in their parents
native language(s) [15].

In (GE)2, the universal grammar dictates the construction of the solution
grammar. Given below are examples of these grammars for solutions that gen-
erate expressions, which could be used for symbolic regression type problems.

Universal Grammar

(Grammars’ Grammar)

<g> ::=
‘‘<expr> ::= <op> <expr> <expr> | <var>’’

‘‘<op> ::=’’ <ops>
‘‘<var> ::=’’ <vars>

<ops> ::= <opt> ‘‘|’’ <ops>
| <opt>

<opt> ::= + | - | * | /

<vars> ::= <vart> ‘‘|’’ <vars>
| <vart>

<vart> ::= m | v | q | a

Solution Grammar

<expr> ::= <op> <expr> <expr>
| <var>

<op> ::= ?

<var> ::= ?

In the example universal grammar, a grammar, <g>, is specified such that it
is possible for the non-terminals <var> and <op> to have one or more rules, with
the potential for rule duplication. These are the rules that will be made available
to an individual during mapping, and this effectively allows bias for symbols to
be subjected to the processes of evolution. The productions <vars> and <ops>

in the universal grammar are strictly non-terminals, and do not appear in the
solution grammar. Instead they are interim values used when producing the
solution grammar for an individual.

The hard-coded aspect of the solution grammar can be seen in the example
above with the rules for <op> and <var> as yet unspecified. In this case we have
restricted evolution to occur only on the number of productions for <var> and
<op>, although it would be possible to evolve the rules for <expr> and even
for the entire grammar itself. It is this ability that sets this form of genetic
code/grammar evolution apart from previous studies in genetic programming.
Notice that each individual has its own solution grammar.

In this study two separate, variable-length, genotypic binary chromosomes
were used, the first chromosome to generate the solution grammar from the
universal grammar and the second chromosome the solution itself. Crossover
operates between homologous chromosomes, that is, the solution grammar chro-
mosome from the first parent recombines with the solution grammar chromosome



from the second parent, with the same occurring for the solution chromosomes.
In order for evolution to be successful it must co-evolve both the genetic code
and the structure of solutions based on the evolved genetic code.

3 Experiments & Results

In this section a number of proof of concept problems are tackled to illustrate
the use of grammar and genetic code evolution in (GE)2. For the experiments
that follow 100 independent runs are conducted in each case.

The objective of this study is to determine if grammar and code evolution is
possible, rather than to test the efficacy of the approach as a method for sym-
bolic regression, so we have not performed comparisons with other approaches.
Moreover, the parameters have been chosen to deliberately slow down the evo-
lutionary process to facilitate the observation of the co-evolution of the gram-
mar/code and solution. The evolutionary parameters are as follows: pairwise
tournament selection, generational replacement, bit mutation probability 0.01,
one-point crossover probability 0.3, codon duplication probability 0.01. Wrap-
ping is turned off, and codon lengths are initialised in the range [1,10], with a
codon size of 8-bits. Fitness is minimisation of the sum of errors over the 100
test cases, and a protected division operator is adopted that returns one in the
event of a division by zero.

3.1 Quartic Symbolic Regression

An instance of a symbolic regression problem is tackled in order to verify
that it is possible for the co-evolution of a genetic code (or grammar) to occur
along with a solution. The target function is f(m, v, q, a) = a + a2 + a3 + a4

with the three input variables m,v, and q introducing an element of noise. 100
randomly generated input vectors are created for each call to the target function,
with values for each of the four input variables drawn from the range [0,1]. Runs
are conducted with a population size of 100, for 100 generations. The progress of
evolution toward the target solution can be seen in Fig. 1 with ever decreasing
error at successive generations.

Fig. 1 shows the increasing frequency of occurrence of the target solution
symbols a, + and ∗. Curiously, after 50 generations the frequency of ∗ is dra-
matically less than a and +, and even less than /, even though there are double
the number of multiplication symbols in the target solution as there are addition
operators. It is not until after this point that we begin to see an increase in the
frequency of ∗, which, although it finishes considerably lower than the other two
symbols, finishes higher than all others. This could have implications as to how
a solution to this problem is constructed, suggesting that firstly terms are added
together with the use of multiplication not occurring until much later, perhaps
replacing some of the addition operators, or through expansion of terms with
the multiplication of a by itself.
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Fig. 1. A plot of the mean best fitness (left) and mean symbol frequency (right) from
100 runs of the quartic symbolic regression problem.

3.2 Dynamic Symbolic Regression I

As indicated in the introduction, dynamic problems are another area in which
one could expect to derive some benefit from using evolvable grammars. In this
case, one could reasonably expect a system with an evolvable grammar to be
able to react more quickly to a change in the environment than a static one
could, as a single change in a grammar can reintroduce lost genetic material.

The target functions for the first instance are:

1. f(m, v, q, a) = a + a2 + a3 + a4

2. f(m, v, q, a) = m + m2 + m3 + m4

3. f(m, v, q, a) = v + v2 + v3 + v4

4. f(m, v, q, a) = q + q2 + q3 + q4

5. f(m, v, q, a) = a + a2 + a3 + a4

The target changes between the functions above every 20 generations. The
only difference between each successive function is the variable used. 100 ran-
domly generated input vectors are created for each call to the target function,



with values for each of the four input variables drawn from the range [0,1]. The
symbols −, and / are not used in any of the target expressions. Runs were
conducted with a population size of 500, for 100 generations, with all other
parameters as reported earlier. A plot of the average best fitness and average
symbol frequencies can be seen in Fig. 2. A sample of evolved grammars from
one of the runs is given below, where in each case the grammar selected is the
best solution from the generation just prior to a change in target.

Target 1

<op>::= +
<var>::= a
<expression>::= + a a

fitness: 34.6511

Target 2

<op>::= +
<var>::= m
<expression>::= + m m

fitness: 34.2854

Target 3

<op>::= + | -
<var>::= v

<expression>::= + v v
fitness: 36.6667

Target 4

<op>::= + | *
<var>::= q

<expression>::= + + q q * * q q * q q
fitness: 22.8506

Target 5

<op>::= + | *

<var>::= a
<expression>::= + * a + a a * a a

fitness: 7.85477

Table 1. Statistics for both the static and evolvable grammars on the first dynamic
problem instance. Lower scores indicate better performance.

Fitness mean median std. dev signif.
Case fixed(dynamic) fixed(dynamic) fixed(dynamic)

1 37.33 (40.55) 37.75 (38.22) 7.81 (10.082) Yes
2 35.48 (36.08) 37.1 (36.57) 6.35 (8.73) No
3 34.26 (31.53) 36.6 (36.48) 7.54 (10.79) Yes
4 35.39 (28.74) 37.2 (35.08) 7.96 (12.46) Yes
5 20.05 (15.1) 22.00 (20.54) 5.99 (10.17) Yes

The results presented suggest that, when using dynamic grammars, it is
possible to successfully preserve and improve solution structure, while still being
able to learn appropriate terminal values. This is reflected in the fitness plot
where, when the fitness function changes, in most cases there is a decrease in
solution fitness for a short period when solutions adjust to the new variable
adopted. Later on in the simulations we reach the point where the structure
becomes closer to the target and changes in variables alone no longer confer as
much damage to fitness, which is again illustrated in the fitness plot (Fig. 2).

A performance comparison of the dynamic and static equivalent of the gram-
mar (given below) for this problem is presented in Fig. 2 and corresponding
statistics can be found in Table 1.
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Fig. 2. Plot of the mean best fitness over 100 generations on the first dynamic symbolic
regression instance with both static and dynamic grammars (left). Symbol frequency
plot (right).

<expr> ::= <op> <expr> <expr> | <var>

<op> ::= + | - | * | /

<var> ::= m | v | q | a

3.3 Dynamic Symbolic Regression II

The target functions for the second dynamic symbolic regression problem
instance are:

1. f(m, v, q, a) = a + a2 + a3 + a4

2. f(m, v, q, a) = m + a2 + a3 + a4

3. f(m, v, q, a) = m + m2 + a3 + a4

4. f(m, v, q, a) = m + m2 + m3 + a4

5. f(m, v, q, a) = m + m2 + m3 + m4

The target changes between the functions above every 20 generations. The
transition used in this problem differs from the previous in that only one term



changes each time. However, the change is larger each time (because the power
that the new term is raised to increases). 100 randomly generated input vectors
are created for each call to the target function, with values for each of the four
input variables drawn from the range [0,1]. The symbols q, v, −, and / are
not used in any of the target expressions. As in the previous dynamic symbolic
regression problem instance runs are conducted with a population size of 500, for
100 generations, with all other parameters as per the standard values reported
earlier. A plot of the average best fitness and average symbol frequencies can be
seen in Fig. 3.
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Fig. 3. Plot of the mean best fitness over 100 generations on the second dynamic
symbolic regression instance with both dynamic and static grammars (left), and the
mean symbol frequency (right).

It is interesting to note that fitness keeps improving over time for the evolv-
able grammar, with an occasional deterioration corresponding with a change in
the fitness function. Notice how the disimprovement is more pronounced later
in the runs, particularly for the static grammar, which is due to higher pow-
ers being exchanged. These results suggest that the evolvable grammar is more



adaptable in scenarios with larger changes facilitating smoother transitions to
successive targets. Also evident from Fig. 3 is the manner in which the quantity
of a in the population decreases over time while that of m increases. The two
plots intersect at around generation 42, shortly after the target has changed to
f(m, v, q, a) = m + m2 + a3 + a4. However, the plots remain very close until
around generation 60, at which time m3 becomes part of the solution.

A sample of evolved grammars from one of the runs is given below, where
the grammars presented represent the best solution at the generation just prior
to each fitness change.

Target 1

<op>::= + | +

<var>::= a
<expression>::= (+ a a)

fitness: 37.4525

Target 2

<op>::= +

<var>::= m | a
<expression> = (+ a m)

fitness: 33.8423

Target 3

<op>::= + | *

<var>::= m | a
<expression> = (+ a (+ m (* a m)))

fitness: 22.9743

Target 4

<op>::= + | *

<var>::= m
<expression> = (+ m (* (+ (* m m) m ) m) )

fitness: 15.6311

Target 5

<op>::= + | *

<var>::= m
<expression>::= (+ (* (+ m (* m (+ m (* m m) m) m) ) ) )

fitness: 4.57967e-15

Table 2. Statistics for the second dynamic problem instance. Lower numbers indicate
a better fitness.

Fitness mean median std. dev signif.
Case fixed(dynamic) fixed(dynamic) fixed(dynamic)

1 39.27 (41.63) 37.98 (38.65) 9.18 (12.59) No
2 31.55 (36.06) 31.93 (36.60) 6.77 (3.84) Yes
3 27.62 (33.46) 25.82 (34.52) 6.3 (4.1) Yes
4 24.05 (29.2) 22.62 (32.17) 5.83 (6.39) Yes
5 21.34 (27.47) 18.74 (35.2) 11.42 (14.94) Yes

A performance comparison of the dynamic and static equivalent of the gram-
mar (static grammar as per earlier dynamic problem instance) for this problem
is presented in Fig. 3 and corresponding statistics can be found in Table 2. In
this case the static grammar outperforms the evolving grammar in terms of best
fitness values achieved for all targets but the first. With the evolving grammar
there is, as usual, a warm up period where a suitable grammar must be adopted
before good solutions can be found. When successive targets are very similar to
previous ones this almost negates the potential benefits that a more adaptive
representation can bring, as in the case of the evolvable grammars. Clearly, some



dynamic problems are more dynamic than others [16], especially in terms of the
degree of change. Previous work [17] on genetic algorithms applied to dynamic
problems has shown that, when the change is relatively small, a standard GA
with high mutation can handle those types of problems. We believe it is likely
to be the same for genetic programming.

These results would also lend support to the idea of introducing different op-
erator rates on the grammar chromosome to the solution chromosome, allowing
the population to converge towards a similar grammar, facilitating the explo-
ration of solutions based on a similar grammar. If these rates were adaptable,
then it may be possible to allow grammars to change more often if the target
changes are large, and vice versa.

4 Discussion

In addition to the problems reported in this paper, we tackled two symbolic
regression problems taken from the literature on genetic code evolution, where
one is a very simple function [6], and the other extremely difficult [7]. For space
reasons we have not reported the details of these experiments here, but the
results were positive, clearly demonstrating successful grammar/genetic code
and solution co-evolution, showing similar trends to those observed for the static
quartic symbolic regression instance.

There are a number of differences between this study on genetic code evolu-
tion to the Keller & Banzhaf studies [6, 7] that are largely representation depen-
dent. These include:

– Variable-length genotypes are adopted with GE as opposed to fixed length
in the earlier studies.

– Genetic codes are not seeded at the first generation to be equivalent as was
the case for developmental GP; an individuals’ binary string is initialised
randomly in this case, and thus the genetic code is randomly generated.
For developmental GP the code was set such that − was the only symbol
represented initially, and thus fitness of an individual was at the lowest
possible value.

– The same mutation rate is adopted for the genetic code as for the solutions,
whereas independent mutation rates were used in the previous studies. Sep-
arate rates of mutation were adopted previously as it was hypothesised that
in order for successful evolution to occur changes to the genetic code should
occur at a slower rate than a solution, with several different individuals hav-
ing the same or similar genetic codes at any one point in time. With the
current setup of two independent chromosomes it would be possible to im-
plement separate mutation rates for each chromosome, this being an avenue
for further investigation.

– Crossover is adopted in this study, which was not present previously.

Despite these differences, the results presented here support the findings of
the earlier studies, providing further evidence to support the claim that the
co-evolution of genetic code/grammar and solution is possible.



5 Conclusions & Future Work

This study demonstrates the feasibility of the evolution of grammatical evo-
lution’s grammar on a number of symbolic regression problem instances. In par-
ticular, the results demonstrate the ability of grammatical evolution to learn the
importance of the various terminal symbols, and thus the ability to dynamically
evolve bias toward individual symbols over the course of a run.

This study opens the door to a number of exciting areas of future investiga-
tion using (GE)2, and a sample of possible directions follows.

In this study we have focused on symbolic regression problems, and to test
generality beyond symbolic regression it is our intention to extend grammar
evolution to other problem domains.

Evolving the genetic code through grammar evolution brings the distinguish-
ing ability to evolve both symbol coding rules (e.g. <op> and <var> as used in
this study) and structural rules (e.g. <expr>). In this way it would also be pos-
sible to evolve biases towards specific structural configurations of the evolving
programs, and also to evolve the complete grammar including the number and
type of nonterminals.

The ability to evolve the grammar initially input to grammatical evolution
opens up the exploration of a more open-ended form of evolution. For example,
it is now possible to dynamically define parameterised functions incorporating
their specification into the grammar. A static approach to function definition
has been previously tackled [18], however, with the ability to evolve the number
of functions along with their respective parameters, outputs and data types, this
would represent a powerful extension to grammatical evolution, allowing the
dynamic modularisation of code and as a consequence improving its scalability.

In a similar manner to the use of dynamically defined functions using gram-
mar evolution, it would also be possible to extend our earlier investigations
on constant generation techniques [19] through the provision of various gram-
matically based constant generation strategies in the universal grammar. The
appropriate strategy could then be incorporated into the grammar and evolved.
Investigations are currently underway in each of these directions.
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