
Grammatical Evolution Rules: The Mod and the
Bucket Rule

Maarten Keijzer1, Michael O’Neill2, Conor Ryan3, and Mike Cattolico4

1 Free University, Amsterdam, mkeijzer@cs.vu.nl
2 University of Limerick, Michael.ONeill@ul.ie

3 University of Limerick, Conor.Ryan@ul.ie
4 Tiger Mountain Scientific Inc., mike@tigerscience.com

Abstract. We present an alternative mapping function called the
Bucket Rule, for Grammatical Evolution, that improves upon the stan-
dard modulo rule. Grammatical Evolution is applied to a set of standard
Genetic Algorithm problem domains using two alternative grammars.
Applying GE to GA problems allows us to focus on a simple grammar
whose effects are easily analysable. It will be shown that by using the
bucket rule a greater degree of grammar independence is achieved.

1 Introduction

Grammatical Evolution [9], [8], [10] is an evolutionary automatic programming
system [5],[6], [7], [1] that can generate programs in an arbitrary language. Gram-
matical Evolution adopts a genotype-phenotype mapping process, such that a
syntactically correct program is generated, according to the codons of the geno-
type selecting production rules from a BNF grammar, which describes the output
language. The production rules are selected by calling the mapping rule, which is
a simple modulo function in the current incarnation of Grammatical Evolution.

We present an alternative mapping function, called the Bucket Rule, for
Grammatical Evolution that improves upon the standard modulo rule.
Consider a simple context free grammar that can be used to generate variable
length bitstrings:

<bitstring> ::= <bit> | <bit> <bitstring>.

<bit> ::= 0 | 1.

This context free grammar has two non-terminal symbols, each of which have
two production rules. In the Grammatical Evolution system a string of so-called
codons are maintained, each consisting of 8 bits of information. The modulo
rule defines a degenerate mapping from those 8 bits of information to a choice
for a production rule in the following way. Given a set of n non-terminals with
a corresponding number of production rules [c1, . . . , cn] and given the current
symbol r, the mapping rule used is:

choice(r) = codon mod cr (1)

J.A. Foster et al. (Eds.): EuroGP 2002, LNCS 2278, pp. 123–130, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

124 M. Keijzer et al.

This modulo rule ensures that the codon value is mapped into the interval
[0, cr] and thus represents a valid choice for a production rule. As the codons
themselves are drawn from the interval [0, 255], the mapping rule is degenerate:
many codon values map to the same choice of rules. Unfortunately, in the case
of the context-free grammar given above, the modulo rule will map all even
codon values to the first rule and all odd values to the second rule, regardless
of the non-terminal symbol that is active. In effect, when using this context-free
grammar in combination with the modulo mapping rule, it is the least significant
bit in the codon value that fully determines the mapping: all other 7 bits are
redundant.

In the context of the untyped crossover and associated intrinsic polymor-
phism that is usually used in GE [4] — strings of codon values taken from
two independently drawn points from the genotypes can be swapped. Here it
is possible that a codon value that was used to encode for the <bitstring>
non-terminal can be used to encode a choice for the <bit> non-terminal, due to
intrinsic polymorphism, that is a codon can specify a rule for every non-terminal
in the grammar and therefore, has meaning in every context.

As the codon values only make a distinction between first and second choice
through their least significant bits, in the above bitstring grammar, a linkage
between production rules belonging to different non-terminals is introduced. In
the bitstring context-free grammar studied here, this linkage leads to

Codon Value non-terminal Symbol
<bit> <bitstring>

0 0 <bit>
1 1 <bit> <bitstring>

A codon value of 0, for example, always selects the first production rule
for every non-terminal (i.e. in above, <bit> would become 0, and <bitstring>
would become <bit>). Thus regardless of the context (the non-terminal) in
which the codon is used, it will have a fixed choice of production rules. It would
be better for GE’s intrinsic polymorphism if this linkage did not exist, thus
each non-terminal’s production rule choice is independent of all the other non-
terminals when intrinsic polymorphism comes into play.

2 The Bucket Rule

The linkage between production rules belonging to different non-terminal sym-
bols, in combination with untyped variation operators introduces a bias in the
search process. This bias is undesirable because it depends on the layout of the
program and its impact on the search is not clear. In effect this means that the
order in which the rules are defined are expected to make a difference to the
search efficiency.

Grammatical Evolution Rules: The Mod and the Bucket Rule 125

To remove this bias the mapping rule is changed. Given again our set of
clauses for n non-terminal symbols [c1, . . . , cn], the codon values are now taken
from the interval [0,

∏n
i=1 ci]. The mapping rule is subsequently changed to:

choice(r) =
codon

∏r−1
i=1 ci

mod cr (2)

This rule is simply the standard method for mapping multi-dimensional ma-
trices into a contiguous array of values. With this rule, every legal codon value
encodes a unique set of production rules, one from each non-terminal. In the
grammar discussed here, the codons are drawn from [0, 3]. The codon values
encode for the production rules given the non-terminals in the following way:

Codon Value non-terminal Symbol
<bit> <bitstring>

0 0 <bit>
1 1 <bit> <bitstring>
2 0 <bit> <bitstring>
3 1 <bit>

We choose the name buckets because we believe the manner in which a single
codon value can code for a number of different choices across different rules is
similar to the manner in which keys can hash to identical locations in certain
hashing algorithms.

3 Experimental Setup

Grammatical Evolution is applied to a set of standard Genetic Algorithm [3], [2]
problem domains using two alternative grammars. Applying GE to GA problems
allows us to focus on a simple grammar whose effects are easily analysable.

We perform experiments that demonstrate the existence of these problems,
and consequently we introduce the Bucket Rule as an alternative mapping func-
tion that overcomes the limitations of the standard modulo rule.

Four experimental setups exist using two separate grammars, Grammar 0
and Grammar 1 are given below, where the only difference between these two
grammars is the ordering of the productions rules for the non-terminal <bit> .

Grammar 0

(A) <bitstring> :=
<bit><bitstring> (0)

| <bit> (1)

(B) <bit> := 0 (0)
| 1 (1)

Grammar 1

(A) <bitstring> :=
<bit><bitstring> (0)

| <bit> (1)

(B) <bit> := 1 (0)
| 0 (1)

126 M. Keijzer et al.

The first two experimental setups (Setup 0 and Setup 1) use the two gram-
mars with the standard modulo mapping rule, the third and fourth experimental
setups use grammar 0 (Setup 2) and grammar 1 (Setup 3) respectively, but in
both cases the Bucket rule is adopted.

Three seperate problems are used in the analysis of these grammars, One
Max, a variant of One Max, which we call Half One’s, and a deceptive trap prob-
lem (comprising ten four-bit subfunctions). The problem specific experimental
parameters can be seen in Tables 1 and 2.

In the case of One Max, the goal, as normal, is to set all the bits of the
phenotype string to 1. For the Half One’s problem, the goal is to set the first
half of the string to 1’s and the second half to 0’s. The deceptive trap problem
involves finding ten subfunctions (a subfunction is a group of four-bits), where
the optimum fitness is achieved when all four-bits of each subfunction are 0. The
trap arises due to the fact that when a subfunction has all four-bits set to 1, the
next best fitness is achieved, e.g. looking at one subfunction (the fitness for each
subfunction is summed to produce the overall fitness):

0 0 1 0 (Fitness = 1)

1 0 1 0 (Fitness = 2)

1 1 1 1 (Fitness = 4)

0 0 0 0 (Fitness = 5)

Table 1. Experimental parameters for One Max and Half One’s

Parameter Value
Popsize 50
Generations 20

Maximum genome length 401
Evaluation length 101

Genome Initialisation length 20
Tournament Size 3
Replacement Steady State

Crossover Probability 1
Mutation Probability 0

Wrapping Off

Given the grammars being analysed in this paper we can identify the form of
the global optimum’s genotype for each of the problems addressed. For example,
in the case of One Max, with Grammar 0 this would take the form 0101010101...,
whereas with Grammar 1 this would be 1111111111.... Global genotype forms
for all three problems are given in Table 3.

Grammatical Evolution Rules: The Mod and the Bucket Rule 127

Table 2. Experimental parameters for the Deceptive Trap problem.

Parameter Value
Popsize 1000
Generations 100

Maximum genome length 160
Evaluation length 40

Genome Initialisation length 20
Tournament Size 3
Replacement Steady State

Crossover Probability 1
Mutation Probability 0

Wrapping Off

4 Results

A plot of the average over 100 runs of the mean fitness values at each generation
of a run over the three problems can be seen in Fig. 1.

Table 3. Global optimum genotype forms for both Grammar 0 and Grammar 1 on
each problem examined.

Problem Global Optimum Form
Grammar 0 Grammar 1

One Max 01010101... 11111111...
Half One’s 0101...0000... 0101...0101...
Deceptive Trap 00000000... 01010101...

The mean fitness values for the final generation on each of the three problems
investigated can be seen in Table 4.

Table 4. Average over 100 runs of the mean fitness values for the final generation on
each of the three problems investigated. Setup 0 uses Grammar 0 with the mod rule,
Setup 1 uses Grammar 1 with the mod rule, Setup 2 uses Grammar 0 with the Bucket
Rule, and Setup 3 uses Grammar 1 with the Bucket Rule.

Average Mean Fitness
Problem Setup 0 Setup 1 Setup 2 Setup 3
One Max 42.476 39.627 39.627 39.181
Half One’s 29.026 29.2 30.094 30.335
Deceptive Trap 21.904 23.913 22.077 22.5

Fig. 1. A comparison of the average over the 100 runs of the best fitness on the four
experimental setups for One Max, Half One's, and the Deceptive Trap problems.

A statistical analysis of the mean fitness values contained in Table 4 is con-
ducted using a ttest and, as confirmation of these results, a bootstrap ttest is
also applied. In our analysis we wish to investigate if there is a statistically
significant difference (at the 95% confidence level) between the means for the
different grammars.

Grammatical Evolution Rules: The Mod and the Bucket Rule 129

Table 5. Results of the statistical analysis using both a ttest and bootstrap ttest.
Setup 0 uses Grammar 0 with the mod rule, Setup 1 uses Grammar 1 with the mod
rule, Setup 2 uses Grammar 0 with the Bucket Rule, and Setup 3 uses Grammar 1
with the Bucket Rule.

Significance of Comparison
Problem (Setup 0 vs. Setup 1) (Setup 2 vs. Setup 3)
One Max Yes No
Half One’s No No
Deceptive Trap Yes No

On both One Max and Deceptive Trap there is a statistically significant dif-
ference in the means for the two grammars when adopting the standard modulo
mapping rule (Setup 0 and Setup 1) as can be seen in Table 5. As such, we find
that different grammars can make significant changes to the performance of GE,
due to the improper exploitation of intrinsic polymorphism. In the case of the
Half One’s problem, this is acting like a control experiment in that half of the
optimum solution string is suited to Grammar 0 and half is suited to Grammar 1,
thus any effects due to bias and intrinsic polymorphism should be non-existent.

When comparing Setup 2 and Setup 3 in which the Bucket Rule was adopted
with the two grammars (also see Table 5), there is no statistical difference be-
tween the means. Any difference that existed between the two grammars while
using the modulo rule has been removed as a result of adopting the Bucket rule.
Thus the Bucket rule clearly aids the exploitation of intrinsic polymorphism.
The results of statistical analysis with the remaining combinations of compar-
isons between experimental setups is given in Table 6.

Table 6. Results of the statistical analysis using both a ttest and bootstrap ttest.
Setup 0 uses Grammar 0 with the mod rule, Setup 1 uses Grammar 1 with the mod
rule, Setup 2 uses Grammar 0 with the Bucket Rule, and Setup 3 uses Grammar 1
with the Bucket Rule.

Significance of Comparison
Problem (0 vs. 2) (0 vs. 3) (1 vs. 3) (1 vs. 2)
One Max Yes Yes No No
Half One’s Yes Yes Yes No
Deceptive Trap No Yes Yes Yes

On these problems the performance without the Bucket rule tends to be
better, see Table 6, however, this performance is very sensitive to the setup of
the grammar adopted. Whereas, with the Bucket rule performance is insensitive
to the grammar used.

130 M. Keijzer et al.

5 Conclusions & Future Work

We have presented the Bucket rule, a new mapping function for Grammatical
Evolution that improves upon the standard modulo mapping rule. An analysis
of the Bucket rule compared to the modulo rule has been conducted on a number
of GA problems of varying difficulty in conjunction with two simple grammars.
The grammars and problems were selected to allow our analysis to elucidate the
effects that the mapping rules play on the system’s performance. Results of the
analysis clearly show the benefits of adopting the Bucket in place of the modulo
rule.

Future work will investigate the possiblity of alternative mapping rules for
Grammatical Evolution, and a more thorough analysis of the effects of the Bucket
rule on evolutionary dynamics, particularly with respect to the degenerate code
and neutral evolution. It is hypothesised that the Bucket rule will faciliate the
exploitation of neutral evolution to a greater extent than the modulo rule al-
lowed.

References

1. Banzhaf W., Nordin P., Keller R.E., Francone F.D. (1998) Genetic Programming
– An Introduction; On the Automatic Evolution of Computer Programs and its
Applications. Morgan Kaufmann.

2. Goldberg, D. (1989). Genetic Algorithms in Search, Optimization and Machine
Learning, Boston, USA, Addison Wesley, Longman.

3. Holland, J. (1975). Adaptation in Natural and Artificial Systems. Ann Arbor, USA,
University of Michigan Press.

4. Keijzer M., Ryan C., O’Neill M., Cattolico M, Babovic V. (2001) Ripple Crossover
in Genetic Programming. LNCS 2038, Proc. of the Fourth European Conference
on Genetic Programming, Lake Como, Italy, April 2001, pp.74-86. Springer.

5. Koza, J.R. (1992). Genetic Programming. MIT Press.
6. Koza J.R. (1994). Genetic Programming II: Automatic Discovery of Reusable Pro-
grams. MIT Press.

7. Koza J.R., Andre D., Bennett III F.H., and Keane M. (1999) Genetic Programming
III: Darwinian Invention and Problem Solving. Morgan Kaufman.

8. O’Neill M. (2001) Automatic Programming in an Arbitrary language: Evolving
Programs with Grammatical Evolution. Ph.D. thesis, University of Limerick, 2001.

9. O’Neill M., Ryan C. (2001) Grammatical Evolution. IEEE Trans. Evolutionary
Computation, Vol. 5 No. 4, August 2001.

10. Ryan C., Collins J.J., O’Neill M. (1998). Grammatical Evolution: Evolving Pro-
grams for an Arbitrary Language. LNCS 1391, Proc. of the First European Work-
shop on Genetic Programming, pp. 83-95. Springer-Verlag.

	Grammatical Evolution Rules: The Mod and the Bucket Rule
	Introduction
	The Bucket Rule
	Experimental Setup
	Results
	Conclusions & Future Work
	References

