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Abstract
Evolutionary Computation is used to automatically evolve small cell schedulers on a
realistic simulation of a 4G-LTE heterogeneous cellular network. Evolved schedulers
are then further augmented by human design to improve robustness. Extensive anal-
ysis of evolved solutions and their performance across a wide range of metrics reveals
evolution has uncovered a new human-competitive scheduling technique which gen-
eralises well across cells of varying sizes. Furthermore, evolved methods are shown to
conform to accepted scheduling frameworks without the evolutionary process being
explicitly told the form of the desired solution. Evolved solutions are shown to out-
perform a human-engineered state-of-the-art benchmark by up to 50%. Finally, the
approach is shown to be flexible in that tailored algorithms can be evolved for specific
scenarios and corner cases, allowing network operators to create unique algorithms
for different deployments, and to postpone the need for costly hardware upgrades.

1 Introduction

Wireless communications networks are a global trillion dollar industry. The GSM As-
sociation reports the mobile industry comprised 4.4% of global GDP in 2016, amount-
ing to $3.3 trillion (GSMA, 2017). In order to remain relevant in a vast and increas-
ingly competitive market, network operators value any performance improvements
that yield an edge over competitors. Globally, network operators are forecast to spend
upwards of $1.4 trillion upgrading their systems through to 2020 (GSMA, 2017). As



such, small performance improvements can scale to deliver significant cost savings in
such a large domain.

Until recently, the main focus for the optimisation of wireless communications
networks has observed conflicting goals of maximising coverage and network perfor-
mance whilst minimising power consumption (Hemberg et al., 2011; Tang et al., 2015).
However, with the exponential increase in mobile traffic (Cisco, 2015) arising from both
rapid growth in the mobile devices market and the onset of the internet of things1, this
focus has shifted to pure capacity maximisation as network operators struggle to meet
demand (Bian and Rao, 2014).

Three main avenues are available for network operators to address the capacity
problem. The first is to increase bandwidth, which amounts to an often prohibitive
financial cost. The second approach is to increase the signal to interference and noise
ratio. This can be managed through intelligent network configuration and providing
windows in time where interference is reduced. And the third approach, which is the
focus of this study, is to optimise the number of devices/users sharing the bandwidth
through intelligent scheduling in the time domain.

As part of capacity maximisation problem faced by network operators, it is now
common for these operators to densify their networks through the deployment of small
cells (Bian and Rao, 2014). Effectively, existing high-powered Macro Cell (MC) deploy-
ments are supplemented by lower-powered Small Cells (SCs) in a Heterogeneous Net-
work, or HetNet. These SCs can be deployed Ad hoc within the operational range of
the MC in order to offload User Equipments2 (UEs) from the MC tier. As bandwidth
is scarce and expensive, MCs and SCs typically operate on a co-channel deployment,
using the same bandwidth.

Optimisation of HetNets can occur on a number of fronts, including SC transmit
power optimisation and packet transmission scheduling in the time domain. Intelligent
timeframe scheduling at the SC level is attractive to network operators as it represents
a relatively cheap software solution, and does not require re-configuration of the net-
work. As such, it is the focus of this study.

Previous works by the authors have examined timeframe scheduling at the SC
level (Lynch et al., 2016b; Lynch et al., 2016a; Lynch et al., 2017; Fenton et al., 2017a).
However, detailed global network statistics and measurement reports were available to
evolution which allowed for precise control of all aspects of the network. This provides
an unrealistic level of data granularity with which control decisions can be made in a
real-world environment.

In this study we bring evolutionary computation closer to producing solutions
which can be deployed in real networks. Real-world network deployments are ex-
tremely limited in the quality/granularity of measurement reports. Not only are re-
ports highly constrained and limited, but reported data is quantized and averaged
from its true form. Furthermore, such inaccurate reporting can have a significantly
detrimental effect on end-user performance, to the extent where data transmissions
can be permanently dropped if actual end-user signal differs too greatly from reported
signal (3GPP, 2014). This information paucity adds an extra layer of complexity to the
problem, and as such presents a far greater challenge to optimisation methods.

In this paper we set out to ascertain:

i whether it is possible for the evolutionary process to successfully produce viable
1Cisco estimates the internet of things will consist of 50 billion devices connected to the Internet by 2020,

with the total number of connected devices doubling year-on-year (Cisco, 2016).
2Any network-connected devices, such as smartphones, tablets, laptop computers, etc.
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solutions given sparse and inaccurate information about the true state of the net-
work,

ii how easily and successfully these solutions can be augmented by human experts,
and

iii whether these evolved and augmented solutions can out-perform a state-of-the-art
human-designed benchmark across a range of scenarios.

We report the successful application of evolutionary computation, in particular
a grammar-based form of Genetic Programming (McKay et al., 2010), to this press-
ing real-world communications network problem, which achieves beyond human-
competitive performance, significantly outperforming human-designed state-of-the-
art solutions reported in the communications networks literature. An additional ad-
vantage of the adopted encoding leaves the evolved solutions transparent to the net-
work engineers, making them amenable to human understanding and augmenta-
tion. We demonstrate how an in-depth examination of both the evolved solutions
and their semantic performance can yield an intuitive understanding of how human-
competitiveness has been achieved.

The remainder of this paper is structured as follows. Section 2 details the problem
specifics, while Section 3 overviews HetNet optimization under the current industry
standards and describes grammatical GP. The simulation environment is described in
Section 4, with Section 5 introducing the experiments. The results are examined in
great detail in Section 6, including a breakdown and simplification of the best evolved
solution itself in Sections 6.1 and 6.2. An extensive analysis of the performance of the
solution is given in Section 7, while Section 8 examines the ability of the method to
evolve solutions for different congestion scenarios. The paper closes with concluding
remarks and suggested future directions in Section 9.

2 Problem Definition

Since the transmit power of small cells (SCs) is far lower than that of macro cells (MCs)3,
SCs typically tend to be underutilised as UEs greedily attach to the strongest serving
cell. To increase the use of the SC tier, provision has been made under the 3rd Gener-
ation Partnership Project - Long Term Evolution (3GPP-LTE) framework (3GPP, 2014)
for a Range Expansion Bias (REB) mechanism. REB artificially increases the observed
transmit power of a SC, tricking UEs into attaching to a SC with a weaker signal in
deference to their stronger serving MC for the global good of the network. Each cell i
broadcasts a non-negative constant βi ∈ R≥0 as its REB. A UE u will therefore attach to
a cell k in accordance with Eq. 1:

k = argmax i(Sui + βi), (1)

where Sui ∈ R≥0 is the received signal strength from cell i to UE u, βm = 0,∀m ∈ M,
the set of all MCs, and βs ≥ 0,∀s ∈ S, the set of all SCs. Once cell attachment is set,
data must be scheduled by the hosting cells for transmission to attached UEs.

2.1 Scheduling of Data Transmissions

Cells transmit packets of data to attached UEs on a millisecond timescale known as
subframes. A single subframe f = 1 ms duration, and a full frame F is comprised of 40

3SCs typically transmit at 3.16 W, MCs typically transmit at 21.6 W.

3



subframes. A full frame of data transmissions (40 discrete transmission periods) must
be scheduled by the hosting cell in advance of their transmission, i.e. each cell must
decide when to transmit data to whom over the course of the next 40 ms4. This means
that each cell has exactly 40 ms to decide the optimum schedule for the ensuing 40 ms.

Once attached to a cell, the potential performance of a UE can be broadly known
from its ratio of received signal strength from its serving cell to the combined strengths
of all other interfering signals from all other cells in the network (plus some background
noise), known as the Signal to Interference and Noise Ratio (SINR). The SINR for a UE
u attached to a cell i in a subframe f is given by:

SINRui,f =
Sui,f∑

n∈M∪S Sun,f − Sui,f + Noise
[dB]. (2)

A higher SINR allows data to be transmitted with less interference, resulting in a
stronger connection and faster data transfer rates. However, SINR values can only be
changed either by re-configuring the network (e.g. changing cell powers) or if the UE
moves to a new location with less interference (e.g. closer to the serving cell).

2.2 Almost Blank Subframes and Range Expansion Bias

The SINR defined in Eq. 2 is defined on a per-subframe basis as the received signal
strength from any given cell in a network can vary across the full frame F due to the
effects of interference mitigation schemes such as Almost Blank Subframes. Any SC s
implementing a non-zero REB βs will experience high interference from neighboring
higher-powered MCs at its cell edges. The additional area leveraged by the SC as a
result of its non-zero REB is known as the “expanded region”. From Eq. 1, it can be
seen that any SC-attached UE within the cell’s expanded region will experience greater
signal strength in the form of interference from its strongest serving MC than from its
hosting SC. It can therefore be appreciated from Eq. 2 that the SINR of those UEs in the
expanded region of SCs will be less than unity (i.e. they receive more interference from
neighboring cells than signal from their serving cell).

As SC-attached UEs at the cell edge suffer from significant interference from the
higher-powered MC tier, an enhanced Inter Cell Interference Co-ordination (eICIC) sys-
tem known as Almost Blank Subframes (ABSs) is employed at the MC level under the
3GPP-LTE system (3GPP, 2014). ABSs are individual subframes during which a MC
mutes all transmissions (save for some minimal necessary control signals) in order to
allow nearby SCs to transmit to cell-edge UEs during periods of minimal interference5.
MCs can implement any combination of 8 distinct patterns, shown in Table 1. Each MC
in the network can implement its own unique ABS pattern (asynchronous patterns), or
a global ABS pattern can be dictated to all MCs in the network (e.g. the average pattern
requested by all MCs in the network; synchronous patterns).

The basic eICIC HetNet concept is illustrated in Fig. 1 with a toy HetNet showing
one MC, one SC, and fifteen UEs (Fig. 1a). The SC has been placed within the oper-
ational range of the MC so as to serve a nearby hotspot of 7 UEs, and thus alleviate
congestion from the MC tier. Since the transmission power of the SC is much less than
that of the MC, a positive REB is used by the SC to offload UEs in the hotspot from the
MC tier (Fig. 1b). However, severe cross-tier interference is experienced by UEs in the
expanded region of the SC due to the higher-powered MC. Data is transmitted to these

4Note that any number of UEs can be scheduled to receive data during a single subframe.
5Note that MC-attached UEs can not receive any data transmissions during ABSs.
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Table 1: All 8 possible ABS patterns, shown across the full frame of 40 subframes. 1
indicates MC transmission during that subframe, and 0 indicates an ABS.

Subframe 1 – 8 9 – 16 17 – 24 25 – 32 33 – 40

ABS pattern 1 01111111 01111111 01111111 01111111 01111111
ABS pattern 2 10111111 10111111 10111111 10111111 10111111
ABS pattern 3 11011111 11011111 11011111 11011111 11011111
ABS pattern 4 11101111 11101111 11101111 11101111 11101111
ABS pattern 5 11110111 11110111 11110111 11110111 11110111
ABS pattern 6 11111011 11111011 11111011 11111011 11111011
ABS pattern 7 11111101 11111101 11111101 11111101 11111101
ABS pattern 8 11111110 11111110 11111110 11111110 11111110

UEs during ABSs (Fig. 1c), whereby the MC mutes and interference in the expanded
region is dramatically reduced.

MC 

SC	
Hotspot	

(power = 21.6 Watts) 

(a) SC is placed near a
hotspot, within operational
range of the MC.

MC 

SC	

Severe	
Interference	

Expanded		
Region	

(power = 21.6 Watts) 

(b) Hotspot is captured using
REB, but severe interference is
observed in expanded region.

MC 

SC	

Reduced	
Interference	

Expanded		
Region	

(power = 0 Watts) 

(c) Inter-tier interference is re-
duced during ABS when MCs
mute transmissions.

Figure 1: Toy heterogeneous network with one MC, one SC, and fifteen UEs. The SC
has been placed near a hotspot of seven UEs, who are offloaded from the MC tier by the
use of a positive REB from the SC. Interference is mitigated through the use of ABSs,
during which data can be transmitted to UEs in the expanded region.

2.3 Downlink Rates

The ultimate downlink rate for a UE u attached to a cell i during subframe f is de-
scribed by Shannon’s equation for the transmission of wireless data in the presence of
noise (Shannon, 1949):

Rui,f =
B

Ni,f
× log2(1 + SINRui,f ) [bits/sec] (3)

where B is the available bandwidth (e.g. 20 MHz), and Ni,f ∈ Z≥0 is the total number
of UEs sharing that bandwidth during subframe f 6. From Eq. 3 it can be seen that there
are three main approaches for increasing the downlink rate of a UE u in subframe f :

a. increase the bandwidth (B),

6This assumes a round-robin bandwidth scheduler. Other schemes exist, e.g. proportional fairness (Mo-
torola, 2006).
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b. increase the SINR of UE u in subframe f , or

c. decrease the number of UEs (Ni,f ) sharing that same bandwidth.

Bandwidth is limited and expensive; in 2012 the Irish Commission for Commu-
nications Regulation (ComReg) auctioned off 140 MHz of bandwidth across the 800
MHz, 900 MHz, and 1800 MHz frequency bands to four network carriers for a total
price of e854.68 million (ComReg, 2012). SINR values can only be changed by either
moving the UE to a different location (not under the control of the network operator)
or by re-configuring the network (either by changing MC ABS patterns or SC power or
REB levels (Fenton et al., 2017a)). As such, the greatest resource (excluding bandwidth
scheduling) available to network operators seeking to improve UE data throughput is
therefore to change the numbers of UEs scheduled during each subframe (i.e. manag-
ing per-subframe congestion through intelligent timeframe scheduling).

A simple baseline scheduling technique is to schedule all attached UEs during ev-
ery subframe f ∈ F (MC-attached UEs are thus scheduled). This will usually guarantee
all UEs get some degree of data transmission, but this greedy strategy will maximise
per-subframe congestion leading to unfair average downlink rates. Network opera-
tors typically seek to maximise per-cell throughput with respect to fairness. This is
traditionally achieved through maximising the sum of the log of the downlink rates of
all UEs in the network, commonly known as Sum-Log-Rates, or SLR (Andrews et al.,
2014). The use of a logarithm in this function ensures downlink rate changes for lower-
rate UEs are given a higher weighting than changes for better performing higher-rate
UEs. In terms of timeframe scheduling, this fairness means that those highest-SINR
UEs (i.e. those with the strongest signal strength) can be sacrificed (i.e. scheduled for
less available subframes) in order to minimise congestion and thus increase the down-
link rates of lower-SINR UEs.

2.4 UE Measurement Statistics

Networks are configured and schedules across the full frame set based on measurement
reports from UEs to their serving cells. The serving cell configures the UE to report any
of a range of desired statistics, in the form of channel gains, average downlink rates,
channel quality indicator (CQI), and average SINR values. Full cell channel gains and
average downlink rates provide the best level of detail for network reports, but take an
order of seconds for each UE to collate and as such are not feasible for use in scheduling
applications (these values were used in all previous publications by the authors (Fenton
et al., 2015; Fenton et al., 2017a; Lynch et al., 2016a; Lynch et al., 2016b; Lynch et al.,
2017)). CQI and SINR values on the other hand can be reported instantaneously but
are far less detailed. For time-critical tasks such as scheduling across the full frame in
real-world deployments7, either CQI values or SINR values must be used. Of these,
SINR reports provide a clearer view of the performance of the UE.

In a real-world scenario, UEs are only configured to report two SINR values:

i the estimated average SINR performance during ABSs, and

ii the estimated average SINR performance during non-ABSs.

For SC-attached UEs, the hosting SC dictates the ABS pattern to the UE based on
the strongest interfering MC for that SC. Furthermore, reported averaged SINR values

7Measurement reports must be collated and schedules must be set in less than 40 ms.
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are typically quantized to 1 or 2 dB, meaning reported SINR values can differ signifi-
cantly from values actually received by UEs.

UEs typically experience significant packet losses under conditions of low SINR.
The out-of-sync threshold Qout is defined as the lower SINR limit for which data can
be transmitted without severe packet losses (ETSI, 2016). Any UE with an SINR equal
to or lower than this threshold limit should therefore not be scheduled due to the risk
of dropped transmissions.

Since there exists a discrepancy between the reported (estimated, averaged, quan-
tized) SINR and the actual SINR experienced by UEs, failed transmissions can occur
for UEs at the lower end of the SINR scale. Furthermore, the use of asynchronous ABS
patterns compounds this matter, as the ABS patterns dictated to a UE by their hosting
SC for the purposes of measuring average ABS SINR and average non-ABS SINR may
differ from the actual ABS patterns experienced by the UE in the field.

When a transmission fails, the dropped data is rescheduled for the next available
free subframe in which the UE’s estimated SINR > Qout (a minimum of 4 subframes
after the original transmission due to finite processing time). A free subframe is defined
as any subframe in which that UE is not scheduled, but can be permitted to be scheduled
(due to their estimated SINR > Qout). If there are no free subframes, then the re-
transmission is scheduled for the next subframe in which a transmission is already
scheduled (thus shifting subsequent data transmissions down the transmission queue
for that UE). If there are no more subframes in which data can be transmitted, then the
data is permanently lost.

3 Background

3.1 Optimisation of Heterogeneous Networks

The vast majority of optimisation literature surrounding LTE Heterogeneous Networks
addresses eICIC techniques. Large gains in network performance can be made with the
use of Self-Organising Networks (SONs) (Hämäläinen et al., 2012), covering optimal
cell power control, SC bias control, and cell handovers, among others. The literature
ranges from improving energy efficiency to limit excessive power usage (Tang et al.,
2015), to minimisation of inter-cell interference through automatic re-configuration
(Peng et al., 2013; Madan et al., 2010; Deb et al., 2014). A more in-depth survey of
the field of SONs in LTE can be found in (Aliu et al., 2013).

Madan et al. (Madan et al., 2010) provided a number of different algorithms for
varying optimisation targets, with the aim of maximising downlink rates with respect
to fairness in indoor HetNet/Femtocell deployments. They formulated two classes of
problem: semi-static interference management, where optimisation occurs on the rate
of 100s of milliseconds, and fast-dynamic interference management, where optimisa-
tion happens on a per-subframe (1ms) timescale. As with (Lynch et al., 2016b; Lynch
et al., 2016a; Lynch et al., 2017; Fenton et al., 2017a), their models assumed perfect in-
stantaneous knowledge about UE channel gains; they reasoned that in low-mobility
indoor environments channel gains change far slower than with outdoor deployments.

Siomina & Yuan (Siomina and Yuan, 2012) applied an iterative two-stage approach
to optimise SC range expansion bias in order to maximise Jain’s fairness index (Jain
et al., 1984). Their first step employed a statistical Design Of Experiments (DOE)
approach to identify the most important factors for optimisation. Next, they used a
regression-style analysis to evaluate the next set of factors for identification by the first
stage DOE. By optimising based on cell load, Jain’s fairness index is guaranteed to be
concave and thus contain no local optima for continuous load variables.
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3.2 Scheduling in Heterogeneous Networks

The bulk of literature on scheduling techniques for HetNets describes human-designed
algorithms. The common scheduling strategy is to place the worst-performing UEs in
the best available subframes, while reserving those subframes with the highest inter-
ference for the best-performing UEs.

Jiang and Lei (Jiang and Lei, 2012) developed an algorithm which separates SC-
attached UEs into two distinct queues: those to be scheduled during protected ABS-
overlapping subframes, and those to be scheduled during high-interference non-ABS
subframes. They noted that higher UE numbers scheduled during ABS-overlapping
subframes will require a more aggressive ABS ratio from hosting MCs. Consequently,
they proposed a scheduling scheme that takes into account both the number of ABS
subframes and those UEs to be scheduled during respective subframes. They formu-
lated the problem as a two-player Nash Bargaining Solution game, with resources of
ABS and non-ABS subframes competing for UEs. The ultimate goal of the game is to
maximise the downlink rates of both ABS and non-ABS UEs.

Weber and Stanze (Weber and Stanze, 2012) examined two scheduling techniques
for SC-attached UEs: strict and dynamic. Their strict scheduler schedules cell edge
UEs during ABSs and cell center UEs during non-ABSs (similarly to Jiang and Lei),
while their dynamic scheduler which assigns resources purely based on a proportional
fairness metric. Both approaches rely on the use of proportional fairness bandwidth
scheduling (Motorola, 2006). While their strict approach breaks down during low load
conditions, the dynamic scheduler can allow cell-edge UEs to be scheduled during
both protected ABS and high-interference non-ABS overlapping subframes, potentially
improving their performance.

Similarly to Jiang and Lei, López-Peréz and Claussen (López-Pérez and Claussen,
2013) also divide all SC attached UEs into either ABS or non-ABS overlapping sub-
frame queues. The difference between the two methods lies in which UEs are placed
in either queue. López-Peréz and Claussen divide UEs such that the downlink rates of
the two worst-performing UEs in each queue (i.e. the worst-performing UE in the ABS-
overlapping queue and the worst-performing UE in the non-ABS-overlapping queue)
are equalised. Their approach details an iterative algorithm, continually adding or re-
moving UEs from one queue to another until convergence is achieved. Unlike Weber
and Stanze, López-Peréz and Claussen’s algorithm implicitly addresses corner cases
such as low load conditions, providing good performance in all scenarios.

3.3 EC Applied to Heterogeneous Networks

EC methods have been successfully applied to the optimisation of cellular networks.
Hemberg et al. employed Grammatical Evolution (GE) (O’Neill and Ryan, 2003) to
evolve coverage optimisation algorithms for indoor homogeneous femtocell deploy-
ments in a number of works (Hemberg et al., 2011; Hemberg et al., 2013). In (Hem-
berg et al., 2011), their use of a hybrid of NSGA-II with Tabu search allowed them to
both maximise coverage while minimising power consumption, improving on a sce-
nario with static power levels. In (Hemberg et al., 2013), they compared both regres-
sion and conditional grammar designs for algorithmic femtocell controllers, noting that
regression-based grammars required more fitness evaluations whereas the conditional-
based grammars required more domain knowledge. Notably, in all publications they
reported that the evolutionary methods overfitted to the simulation model by exploit-
ing its assumptions.

Previous work by the authors has used GE and grammar-based Genetic Program-
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ming to optimise three components of a heterogeneous network: SC power and bias
levels, MC ABS patterns, and a simplified version of the SC scheduling problem (Fen-
ton et al., 2017a). Experiments compared the sequential optimisation of all three com-
ponents of the network to the simultaneous optimisation of all three, but ultimately
found that the fitness functions and grammatical representations used were inade-
quately designed. This led to the design of the grammars and fitness functions used
in this study.

Further works examined the sole optimisation of scheduling for SCs in large-scale
urban heterogeneous deployments (Lynch et al., 2016a; Lynch et al., 2016b; Lynch et al.,
2017). However, the simulation environment for these previous methods (including
(Fenton et al., 2017a)) bounded achievable performance under a complete information
model on UE measurement reports, comprised of highly accurate complete channel
gain matrix information (similar to (Madan et al., 2010)). As detailed in Section 2.4,
detailed network reports such as the complete channel gain matrix take on the order of
seconds for UEs to report in a real-world environment, and as such can not be used for
fast-paced outdoor on-line scheduling applications. Furthermore, since instantaneous
channel gain matrix reports are perfectly accurate, no data is dropped as no UEs are
scheduled erroneously. As such, solutions evolved under these prior schemes may
struggle to work in real deployments. This has motivated the work presented in this
paper, where real-world limitations are imposed on the simulation model.

4 Simulation Setup

The simulation covers a 3.61 km2 area of Dublin city center, as shown in Fig. 2. 21
MCs are arranged on a hexagonal grid, with 30 SCs placed in random locations befit-
ting their operator-defined placement. Channel gains are calculated using background
noise, path losses & shadow fading (i.e. signal decay), and environmental losses (e.g.
buildings, trees). Full simulation parameters are given in Table 2.

Table 2: Simulation Parameters.
Parameters Value

Scenario
Indoor/outdoor map Dublin (central eNodeB at WGS84 N 53.340494 and W 6.264374)
MC BS placement 7 eNodeB with 3 sectors each (hexagonal grid)
SC BS placement Uniformly randomly distributed
Inter-MC BS distance 800 m
Scenario resolution 2 m
Transmit power Ptx,n = 21.6W (MC), 3.16W (SC)
Noise density −174dBm/Hz
SC REB 7 dB

Channel
Bandwidth 20 MHz (1 LTE carrier with 10 LPCs of size L = 8
NLOS path-loss GPn = −21.5− 39 log10(d) (MC) (3GPP E-UTRA, 2010)

GPn = −30.5− 36.7 log10(d) (SC) (3GPP E-UTRA, 2010)
LOS path-loss GPl = −34.02− 22 log10(d) (3GPP E-UTRA, 2010)
Shadow fading (SF) 6 dB std dev. (3GPP E-UTRA, 2012)
SF correlation R = e−1/20d, 50% inter-site
Environment loss GE,n = −20 dB if indoor, 0 dB if outdoor

UE Measurement Reports
SINR report range [−5 : 1 : 23] dB
Out-of-Sync Threshold −5 dB
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Figure 2: Simulation area.

4.1 UE Distributions

We simulate static UEs in a “full buffer” traffic model. This is analogous to a statistically
inferred model of network distributions, whereby measurement statistics on UEs are
recorded over a period of time in order to generate a probability distribution of UE
placements, which is then used to generate typical distributions of UEs. In accordance
with the literature (3GPP, 2014; López-Pérez and Claussen, 2013), UEs are uniformly
randomly distributed throughout the network area at an average density of 60 UEs
per MC sector, giving 1260 UEs in total. Between 20-40 UE hotspots are placed on
the map, with each hotspot having a 90% probability of being located beside a SC.
Hotspots range in size from 5 to 25 UEs, with a maximum radius of 24m per hotspot.
The number of UEs attached to a SC has a Gaussian distribution, with a mean UE
attachment number of 20.76 and a standard deviation of 6.8. Multiple “snapshots” of
40 ms of network run-time (i.e. a full frame F) are taken in order to sample variations
across UE distributions. Each such snapshot is analogous to a single data point.

4.2 ABS Setup

In this study, synchronous MC ABS ratios are set according to the rule proposed by
the authors in (López-Pérez and Claussen, 2013). MC ABS patterns are front-loaded,
such that an MC running an ABS ratio (ABSr) of 2/8 will implement patterns 1 & 2, an
ABS ratio of 3/8 will implement the first three patterns, etc. The minimum ABSr that
can be implemented by any MC is 1/8 (meaning no MC can transmit permanently),
and the maximum ABSr is set at 7/8 (meaning no MC can be entirely muted). This
ensures maximal synchronicity of ABS patterns across the entire network, while also
guaranteeing at least one subframe in which SCs receive no interference from MCs.

Since ABS patterns are front-loaded and a static “full buffer” model is assumed,
network conditions do not change across a full frame F of 40 subframes. Thus, UE
SINR values will be repeated every 8 subframes. Knowing this, schedules for the first
8 subframes can be repeated 4-fold in order to complete the scheduling process for
the full frame of 40 subframes. Furthermore, it is possible for the cells to infer from
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failed transmissions. If a transmission fails in subframe n, then it follows that it will
fail again in subframes n + 8, n + 16, n + 24, and n + 32 during a full frame. The
cell can therefore adjust future scheduled transmissions accordingly, thus minimising
failed transmissions and lost data. The out-of-sync threshold Qout is set at -5 dB.

Since the evolved scheduling controllers schedule individual UEs on a per-
subframe basis, it is possible that for SCs with low attachment numbers (e.g. < 6 UEs)
no UEs could be scheduled for particular subframes. In such a case, all attached UEs
are scheduled during any subframes f ∈ F where no UEs are scheduled for any SC.

5 Experiments

In earlier work schedulers were successfully evolved for simulated LTE network sce-
narios with complete & noiseless network state data (Lynch et al., 2016a; Lynch et al.,
2016b; Lynch et al., 2017). In this study we move to the real-world environment when
necessary information about the true state of the network is both severely limited and
somewhat incorrect (true values are quantized, averaged, and given lower and upper
bounds, as described in Section 2.4). If evolution is proven to be successful in such a
situation, we aim to:

1. examine the best-of-run evolved solution and try to uncover its modus operandi,

2. try to augment the best-of-run evolved solution to improve generalisation, and

3. analyse the performance of the best-of-run evolved solution and to compare it
against a state-of-the-art benchmark (López-Pérez and Claussen, 2013).

Finally, we aim to explore the flexibility of the approach for automatic function gener-
ation on varied scenarios of both low and high congestion network simulations.

Grammatical Evolution (O’Neill and Ryan, 2003), a form of grammar-based Ge-
netic Programming (McKay et al., 2010), is used in this application via the PonyGE2
implementation (Fenton et al., 2017b). Evolutionary parameters are described in Table
3. While a full-scale parameter optimisation sweep was not undertaken, our earlier re-
search in this domain did undertake a coarse-grained sampling of the parameter space
(Fenton et al., 2015) and these are basis of the settings employed here.

Table 3: Evolutionary parameter settings.

Initialization: Ramped Half-Half
Max initialized derivation tree depth: 20
Overall max tree depth: 20
Number of runs: 100
Population size: 1000
Number of generations: 200
Selection: Tournament
Tournament size: 1% of population
Replacement: Generational with elites
Elite size: 1% of population
Crossover type & probability: Subtree, 70%
Mutation type: Subtree

In order to find solutions which generalise well, each solution is evaluated on 10
training snapshots of network run-time. As described in Section 4.1, a snapshot is de-
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fined by a unique distribution of UEs across a full frame F . Since the simulation area
contains 30 SCs, 10 unique snapshots results in a training set of 300 unique SCs. Model
selection was performed by subjecting the best evolved solution from each run (as de-
fined by training performance) to unseen test data of 100 snapshots (i.e. a test set of
3,000 SCs). The best solution on test data across all runs was presented as the best
overall solution.

5.1 Fitness Function

The industry standard metric for measuring fairness in network performance is given
by summing the natural logarithm of the average downlink rates of all UEs, known as
the “Sum-Log-Rates” or SLR, as shown in Eq. 4:

SLR =

|U|∑
u′=1

(
loge

(−→
Ru′

))
(4)

where
−→
Ru′ is the average downlink rate of UE u′ (as described in Eq. 3) across the

full frame of 40 subframes. The target for network optimisation is typically to max-
imise this fairness utility. Fairness is ensured by taking the logarithm of average rates;
the logarithm means that increases in average downlink rates for those with the worst
performance will be more heavily weighted than changes in rates for those with the
best performance. Essentially, maximising the SLR from Eq. 4 can be interpreted as
a “Robin-Hood” scenario, where fairness is maximised by removing resources from
those best performers and giving them to those worst performers.

The performance of all evolved solutions is compared against that of a simple
greedy baseline scheduling scenario whereby every UE is scheduled for all subframes
where their estimated SINR > Qout. The overall fitness of a candidate scheduling
solution is given by the percentage increase in global network SLR over this baseline
scheduling method, as shown in Eq. 5.

fitness =
SLRevolved

SLRbaseline
× 100

1
(5)

In order to compute this, the network must be run once for a full frame of 40
subframes under baseline scheduling methods in order to calculate the baseline SLR
for each snapshot. The evolved scheduler is then applied and the network run for a
further full frame for that same snapshot in order to obtain the percentage change in
global network SLR8.

5.2 Grammar Design

In grammar-based Genetic Programming, a BNF grammar defines the space which can
be searched by evolution. Each SC s ∈ S needs to compute optimal schedules for all
attached UEs As such that cell throughput is maximised with respect to proportional
fairness (i.e. maximise per-cell SLR). As such, the terminal set encompasses various
statistics from the domain (u, f) ∈ {As} × F , ∀s ∈ S, where As represents the set of
UEs attached to s. Solutions can use the following terminal set, comprised solely of
information available to real-world SC schedulers:

• |As|, the number of attached UEs for SC s,

8Note that for evolutionary methods the baseline performance only needs to be computed once, rather
than at every individual evaluation.
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• | {SINRu,∗ ≥ Qout} |, the maximum number of subframes in which UE u can re-
ceive data,

• log2(1 + SINRu,f ), the downlink rate that u would receive in f ignoring conges-
tion9,

• max,min, avg, P25, P75 {log2(1 + SINRu,∗)}, statistics on the uncongested rates ex-
perienced by u over all subframes,

• max,min, avg, P25, P75 {log2(1 + SINR∗,f )}, statistics on the uncongested rates ex-
perienced across all UEs As sharing a given subframe f ,

• max,min, avg, P25, P75 {log2(1 + SINR∗,∗)}, statistics on the uncongested rates ex-
perienced across all UEs As across the full frame F ,

• an indicator of which subframes each UE is permitted to be scheduled in (i.e. -1
for SINR ≤ Qout, +1 for SINR > Qout), and

• −0.9,−0.8, . . . ,+0.8,+0.9, ephemeral constants.

Operators max,min, avg, P25, P75 return the maximum, minimum, average, 25th

and 75th percentiles of their arguments. Note that each terminal is an array of shape [1,
8] in order to efficiently schedule the entire full frame (a block of 8 subframes repeated
4 times) simultaneously.

For simplicity, each item from the terminal set described above has been given
an alias of the range T1 - T21 in the grammar, as defined in Table 4. Since it is desir-
able that evolved solutions generalise well, and noting that regression-based grammars
require less domain knowledge than conditional grammars (as reported in (Hemberg
et al., 2013)), a symbolic regression-style grammar was designed for this application.
Standard symbolic regression function sets were used, including protected operators
of log (plog(x) = log(1 + |x|)), square root (psqrt(x) =

√
|x|), and division (division by

0 returns the numerator). The full grammar is shown in Fig. 3. Bias has been given
towards the selection of recursive production choices from the production rule <e> in
order to increase the probability of evolving larger solutions. This grammar has a max-
imum branching factor of 23 (from non-terminal <T>), and can generate a total of 3.280
× 10733 unique solutions up to and including its maximum derivation depth of 20.

<s> ::= <c_t><e>
<c_t> ::= constrained | threshold
<e> ::= <r> | <r> | <r> | <T>
<r> ::= (<e><o><e>) | <ops>(<e>)
<o> ::= + | - | * | %
<ops> ::= plog | sin | psqrt | sign
<T> ::= <sign>0.<n> | <sign>0.<n> | T1 | T2 | T3 | T4 | T5 | T6 |

T7 | T8 | T9 | T10 | T11 | T12 | T13 | T14 | T15 | T16 |
T17 | T18 | T19 | T20 | T21

<sign> ::= - | +
<n> ::= 0|1|2|3|4|5|6|7|8|9

Figure 3: Grammar for evolution of SC scheduling algorithms.

9Note that uncongested downlink rates do not include terms for bandwidth or resource blocks.
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Table 4: Cell-dependent grammar variables.

Element Translation Domain

T1 |As| Z≥0
T2 | {SINRu,∗ ≥ Qout} | Z≥0
T3 log2(1 + SINRu,f ) R≥0

T4 - T8 max,min, avg, P25, P75 {log2(1 + SINRu,∗)} R≥0
T9 - T13 max,min, avg, P25, P75 {log2(1 + SINR∗,f )} R≥0
T14 - T18 max,min, avg, P25, P75 {log2(1 + SINR∗,∗)} R≥0

T19 UE ID Z≥0
T20 Subframe ID Z≥0
T21 -1 for SINRu,f ≤ Qout ∈ [−1, 1]+1 for SINRu,f > Qout

5.3 Mapping Schemes

Since the grammar defined in Fig. 3 is intended for regression-style applications, the
solutions described in Section 5.2 will return a real-valued number when evaluated
on the features for UE u in subframe f . This signal must be interpreted as a Boolean
decision specifying whether uwill be scheduled to receive data from the SC in f or not.
Two different mapping schemes are therefore considered:

i threshold mapping, where any positive real-valued output of the solution is evalu-
ated to True (with negative outputs evaluated to False), and

ii constrained mapping, where the four subframes (out of a repeating block of eight
subframes) with the largest outputs are set to True.

The grammar described in Fig. 3 contains a terminal (c t) which defines which
mapping scheme will be used by a specific solution. Figure 4 illustrates these mapping
processes. Panel 1 details two UEs, of ID ‘6’ and ‘2’. The values in each cell represent
the real-valued outputs of an arbitrary solution generated by the grammar in Fig. 3 in
each subframe 1-8 (recall from Section 2.4 that schedules for each block of 8 subframes
are repeated 4-fold in order to complete the full frame of 40 subframes).

Panel 2 shows the decisions made by a threshold mapper based on outputs de-
scribed in Panel 1. If Outputu,f > 0 then scheduleu,f → True else scheduleu,f → False.
Notice that in this instance UE2 will not receive any data because Output2,f ≤ 0, ∀f ∈
F . Threshold Mapping was used to good effect in (Lynch et al., 2016b), however it was
noted in (Lynch et al., 2016a) that although each UE effectively gets a different ‘Airtime
Ratio’, it can give rise to solutions that ‘play it safe’ at the expense of performance.

Panel 3 of Fig. 4 shows how the constrained mapping method sets the largest four
cells to True in each column (i.e. each UE will be scheduled for exactly 4 subframes out
of |F| = 8). Exploratory experiments conducted in (Lynch et al., 2016a) suggested that
an Airtime Ratio of 4/8 gave the best performance (i.e. all UEs receive data in half of
the total available subframes). (Lynch et al., 2016a) also noted pros and cons to both
methods:

• Each UE is guaranteed to receive data under the threshold scheme.

• Variable airtime ratios across UEs achievable under the threshold scheme can en-
force fairness.

14



UEUEUE

Subfram
e

Subfram
e

Subfram
e

Output Threshold Constrained

‘2’‘6’‘2’‘6’‘2’‘6’

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

-1.1

-2

-3

-5.1

-4

-8

-9

-7

2.4

3

1

4

8

2

4.4

-8.3

T

T

T

T

T

T

T

F

F

F

F

F

F

F

F

F

T

T

T

F

T

F

F

F

F

T

F

T

T

F

T

F

Figure 4: Mapping schemes.

• Congestion is guaranteed to be low with a constrained scheme with lower Airtime
Ratios.

• Better solutions are found earlier in runs when the constrained mapping scheme
is adopted.

6 Results & Augmentation

Training and test performance across 100 independent runs are shown in Figs. 5a and
5b respectively. Runs were parallelized across 80 cores of a Mac Pro cluster, each at 2.66
GHz. The total cumulative CPU time for all 100 runs was 17 days, 2 hours, 23 minutes,
and 53 seconds. Average completion time for a single run was 4 hours and 10 minutes.
It can be seen from Fig. 5a that evolution is indeed capable of evolving viable solutions
given quantized, averaged, and limited information about the true state of the network.
Furthermore, Fig. 5b shows that all best-of-run solutions show positive performance
on unseen test data (i.e. all evolved solutions are capable of improving on the naive
baseline scheduling technique described in Section 5.1).

The best evolved solution across 100 independent runs (based on test performance,
as described in Section 5) is shown in Fig. 6. This solution uses the “threshold” map-
ping scheme, meaning the number of subframes in which a UE can be scheduled is not
fixed. While it appears to be a grey-box solution, it can actually be simplified quite
considerably, resulting in the solution shown in Eq. 6:

log(1 + |T12 − T17 |) +
(

T3 ×
√
|T10 |

)
− (T20 × T6 )

0.5− T4 + (T6 × T17 × (T4 − T5 ))
(6)

A particular strength of EC techniques such as the one utilized in this paper is that
solutions are typically transparent and can be examined by domain experts in order to
understand their behaviour. This is analysis is performed in the following sections.

6.1 Examination of Best Evolved Solution

The solution described in Eq. 6 uses 8 separate terminals: T3, T4, T5, T6, T10, T12, T17
and T20. All terminals are used exactly once, except for terminals T4 and T6, which
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Figure 5: Plots of evolutionary performance on training and test datasets.

sin((sign(pdiv(((log(1+abs((T12-T17)))+(T3*sqrt(abs(T10))))-(T20*T6)),
(log(1+abs(log(1+abs(sin(T6)))))+(((T6*T17)*(T4-T5))-T4))))+log(1+
abs((sign(pdiv(pdiv((T9-T10),(T5+T6)),sign(log(1+abs(T12)))))*(log(1+
abs(sqrt(abs((T5*T20)))))-T15))))))

Figure 6: Best evolved solution, unsimplified. This solution has a maximum depth of
20, with 159 nodes in the derivation tree.

appear twice. One constant is present10, and all terminals (with the exception of T20)
directly reference uncongested downlink rates. The solution mainly consists of a single
division operator, and as such its performance can be analysed to some degree. Since
the “threshold” mapping scheme is used, the equation is interpreted solely with re-
spect to the sign of its output. Therefore, both the numerator and denominator of the
equation can be examined to assess the sign of their respective outputs.

Both the numerator and denominator can be broken down into distinct parts:
Numerator

log (1 + |(T12 − T17 )|) (7)(
T3 ×

√
|T10 |

)
(8)

− (T20 × T6 ) (9)

Denominator

0.5− T4 (10)

T6 ∗ T17 ∗ (T4 − T5 ) (11)

The terminal T3 (the uncongested downlink rate of UE u in subframe f ; log2(1 +
SINRu,f )) occurs only once, in expression 8. Its effect on the overall outcome

10This constant was generated in the simplification process.
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of the solution is low since it is multiplied by the square root of terminal T10
(min {log2(1 + SINR∗,f )}), resulting in very small numbers. However, terminal T20
(the subframe ID) has a large effect on the output of the numerator, since it is mul-
tiplied by the average uncongested downlink rate for UE u across the full frame F
(T6, as seen in expression 9, whereas the other two components of the numerator are
relatively small, being composed of logarithms and square roots). Since python in-
dexes from zero, T20 (i.e. expression 9) will be zero in the first subframe, and negative
thereafter. Therefore, the numerator of the equation will always be positive in the first
subframe (since expressions 7 and 8 will always return a positive result). However, in
subsequent subframes the numerator is almost guaranteed to be negative as the T20
component increases; experimental observations have shown that the numerator of the
equation from expression 6 is always negative for f ≥ 2, and is negative for f = 1 in
the vast majority of cases.

The denominator is similarly straightforward to examine. Since T4
(max {log2(1 + SINRu,∗)}) is greater than 0.5 for all but the very worst-performing UEs
whose SINR is less than -3dB, expression 10 will in general be positive. Expression
11 then essentially separates UEs by performance. Since each UE only reports two
SINR values to the hosting cell, and since maximum SINR values are capped at 23
dB, it is possible for high-SINR UEs to report the same SINR values during both
ABS-overlapping and non-ABS-overlapping subframes (i.e. all terminals T4 - T8 will
be identical across all subframes). Therefore, expression 11 will evaluate to 0 for these
UEs since both their maximum (T4; max {log2(1 + SINRu,∗)}) and minimum (T5;
min {log2(1 + SINRu,∗)}) SINR values will be identical. It can therefore be appreciated
that lower-SINR UEs (i.e. those for whom T4 and T5 are different) will impose a
gradient on the denominator.

In general, it can be said that the numerator of Eq. 6 describes subframe qual-
ity, whereas the denominator describes UE performance. However, unlike in (Weber
and Stanze, 2012) evolution has included the ability to address corner cases, mainly
by imposing a gradient on UE performance in the denominator through expression 11.
Broadly speaking, if a UE’s maximum uncongested downlink rate (T4) is less than 0.5
plus expression 11, they will be scheduled during ABS-overlapping slots (the bench-
mark scheduling method operates in a similar fashion (López-Pérez and Claussen,
2013)). The evolved method generally separates UEs into two discrete groups; those
to be scheduled during ABS-overlapping subframes, and those to be scheduled during
non-ABS-overlapping subframes. Knowing this, it is possible to further generalise and
abstract the solution.

6.2 Further Simplification and Augmentation

Given that we can readily interpret the output solutions from evolutionary computa-
tion (which themselves out-perform the state-of-the-art solutions), these solutions can
be adapted by human experts to produce further enhancements facilitating a process
of augmented design. The evolved solution presented in Eq. 6 presents a heuristic for
scheduling UEs that is highly fit for its environment. However, further examination of
the solution indicates potential pitfalls and indicators of over-fitting to the incubation
environment. It has already been explained that the T20 component of the numerator
(i.e. the subframe ID) has a large effect on the output of the equation by always result-
ing in a positive numerator during the first subframe. However, the good performance
realised by the solution is mainly due to the fact that:

i ABS patterns are front-loaded in our simulation, and
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ii ABS ratios rarely exceed 1/8 in our simulation.

Good performance is observed from this solution as the first subframe (i.e. sub-
frame ID 0) is always guaranteed to offer the highest channel quality due to the front-
loading of ABS frames in our simulation environment (as detailed in Section 4.2). As
reported in (Hemberg et al., 2013), the solution is exploiting the assumptions of the
simulation model; it is providing the best results given its incubating environment. It
can therefore be appreciated that this method will break down either when:

i ABS patterns are not front-loaded (meaning the first subframe is not guaranteed to
provide the best performance), or

ii the ABS ratio is greater than 1/8.

Both of these issues can be resolved by completely abstracting the numerator of Eq.
6 and replacing it with its implicit meaning. A far more robust solution is to replace the
entire numerator with +1 during ABS overlapping subframes and -1 during non-ABS
overlapping subframes, as shown in Eq. 12.

[+1 duringABS ; − 1 duringnonABS ]

0.5− T4 + (T6 × T17 × (T4 − T5 ))
(12)

The resultant solution has far greater generalisation than the original, and is more
robust to changes in ABS patterns. Furthermore, only 4 terminals are used in the entire
equation:

i T4, the maximum uncongested downlink rate for UE u,

ii T5, the minimum uncongested downlink rate for UE u,

iii T6, the average uncongested downlink rate for UE u, and

iv T17, the 25th percentile of all uncongested downlink rates ∀u ∈ As,∀f ∈ F .

The final solution therefore becomes very simple and can be easily interpreted. As
with (Jiang and Lei, 2012; Weber and Stanze, 2012; López-Pérez and Claussen, 2013),
the numerator merely initialises two separate queues (ABS-overlapping and non-ABS-
overlapping), while the denominator defines which UEs are scheduled in the respec-
tive queues. A positive output from the denominator means the UE will be scheduled
during ABS-overlapping subframes, a negative output means the UE will be sched-
uled during non-ABS-overlapping subframes. Note that this methodology is nearly
identical to the benchmark technique, except it does not require a recursive function to
populate the queues. This solution does not break down as a result of changes to ABS
patterns or ratios, it addresses corner cases through its use of gradient, and is shown in
subsequent sections to out-perform both baseline and benchmark scheduling methods
on all observed snapshots. Importantly, the performance gains remain similar between
the original evolved solution and the generalised simplified solution on the test snap-
shots described in Section 4.1. The performance evaluation discussed hereafter details
the generalised solution shown in Eq. 12.
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7 Performance Evaluation

The best evolved solution was run on an unseen test set of 100 network snapshots (as
described in Section 4.1). A number of insights can be made into the performance of
the best evolved scheduler by examining a variety of different metrics: the scheduling
semantics of the evolved method (discussed in Section 7.1), the generalisation of the
evolved method (how well it performs on cells of varying sizes, discussed in Section
7.2), and improvements in ultimate data rates and Sum-Log-Rates (discussed in Section
7.3). The performance of the best evolved solution is compared against:

1. the baseline scheduling method, as described in Section 5.1, and

2. a state-of-the-art human-designed benchmark scheduling method, as described in
(López-Pérez and Claussen, 2013).

7.1 Scheduling Semantics

The plots in Fig. 7 display heatmaps of the scheduling semantics for the first 8 out
of 40 subframes11 of SCs with exactly 10 attached UEs, averaged across 100 network
snapshots. The 10 attached UEs are sorted from worst to best with respect to average
SINR. Recall that ABS patterns are front-loaded in our simulation (as described in
Section 4), meaning the first few subframes in every repeating block of 8 subframes are
guaranteed to have the least MC interference. It can be seen from the heatmaps that in
general the worst performing UEs in every cell (the leftmost columns on the heatmaps)
are scheduled by all methods in the best available subframes (the topmost rows on the
heatmaps). Conversely, the best performing UEs are relegated to those later subframes
where interference is high.
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Figure 7: Heatmaps of UE scheduling semantics for baseline, benchmark (López-Pérez
and Claussen, 2013), and evolved scheduling methods. Each heatmap represents the
conglomeration of the scheduling semantics of all cells with exactly 10 attached UEs
across 100 network snapshots. Note that the color scale across all methods is identical.

The semantics for the baseline method of scheduling (as described in Sec. 5.1) are
shown in Fig. 7a. The dark red colors indicate where individual UEs are consistently

11Recall that since ABS patterns repeat every 8 subframes (as shown in Table 1), and assuming a static “full
buffer” traffic model, each repeated block of 8 subframes in a full frame of 40 subframes will be identical, as
detailed in Section 4.2.
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scheduled. As expected, it can be seen that all UEs are scheduled in the first subframe
since there is no color variation in the heatmap. However, in subsequent subframes
MC interference increases as fewer MCs implement ABSs. Thus, SINRs decrease and
less UEs are eligible to be scheduled (due to their SINR ≤ Qout) in each subsequent
subframe. It is only the very best performing UEs (those UEs with the highest SINR)
that can be scheduled consistently for all subframes.

While both Figs. 7b and 7c are broadly similar in their approach, subtle differences
can be appreciated between the semantics of the benchmark and those of the evolved
scheduling method. Analysis of the network simulation (not discussed here) revealed
that the maximum ABS ratio used by any MC across 100 network snapshots was 2/8.
Since ABSs are front-loaded in our simulation, it follows that all MCs are transmitting
for all snapshots in subframes 3-8. Thus, there are no changes in SINR values for static
UEs (as network interference does not change).

As described in Section 6.2, both the benchmark and evolved scheduling methods
only schedule UEs in ABS-overlapping or non-ABS-overlapping subframes (i.e. they
cannot distinguish between subframes with identical SINR values). This is evident in
Figs. 7b and 7c, where subframes 3-8 have identical semantics. The difference between
the two methods, however, lies in which UEs are scheduled for which slots. Whereas the
benchmark method schedules UEs in either ABS-overlapping or non-ABS-overlapping
slots such that the performance of the worst UE in either slot is equalised (López-Pérez
and Claussen, 2013), the evolved method selects for either queue UEs based on a com-
parison of their average performance against the cell-wide 25th percentile performance.
It would appear that the evolved method schedules fewer cell-center UEs than the
benchmark, giving greater preference to low-SINR cell-edge UEs.

One interesting observation is that neither the benchmark nor the evolved methods
unilaterally schedule the singe worst UE in the single best available subframe. In Fig.
7a it can be seen that the very left-most UE (the worst performing UE in the cell) is
scheduled consistently in subframe 1 (as indicated by the deep red color). Indeed, for
maximising throughput with respect to proportional fairness it would be expected that
the worst-performing UE would be given the strongest airtime advantage. However,
Figs. 7b and 7c show a much lighter shade of red in that same cell, indicating that the
worst performing UE is not guaranteed airtime in the best available slot under these
methods. With both benchmark and evolved methods, it is only the best-performing
UEs (those right-most cell center UEs on the plots) that are consistently scheduled in
any of the available subframes (the subframes with the highest MC interference).

7.2 Solution Generalisation

The generalisation of the evolved scheduling method can be inferred by examining
the performance of cells of specific sizes (based on UE attachment numbers). Each
cell is examined before the evolved scheduling method is applied (i.e. when the base-
line scheduling method is applied, as described in Section 5.1), and once more after
the evolved method is applied in order to ascertain the percentage performance im-
provement with regards to cell SLR in that cell. The average percentage performance
improvements of cells of corresponding sizes are then calculated in order to investigate
the performance of the evolved scheduler across all cell sizes (an indication of good
generalisation).12

Figure 8 compares the average percentage performance improvement of cells of
varying UE attachment numbers when running:

12Note that all results are on unseen test data.
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Figure 8: Standard simulation scenario.

i the baseline scheduling method,

ii the benchmark scheduling method, and

iii the evolved scheduling method.

Overlaid on the plot is the distribution of the frequency of occurrence of cell sizes,
as described in Section 4.1. A straight horizontal line across the plot would indicate
minimal variation across different cell sizes, signifying good robustness with respect to
cell load and similar performance improvements regardless of UE attachment numbers.

It can be seen from Fig. 8 that the evolved scheduling method out-performs both
the baseline and benchmark scheduling methods for all cases, regardless of cell attach-
ment numbers. Taking benchmark improvements over baseline scheduling as 100%,
the evolved scheduling method produces an average improvement of 26% in perfor-
mance over the benchmark. Furthermore, the performance of the evolved scheduler
can be seen to improve with larger cell sizes, indicating it can cope with high network
congestion. This indicates that the evolved & augmented solution is highly generalis-
able.

7.3 Downlink Rates

Figure 9 shows the percentage changes in downlink rates over the baseline scheduling
method. In terms of outright downlink rates expressed as a percentage improvement
over the baseline rate, the single best improved UE in the network (with respect to
percentage improvement) sees on average around a 200% increase in downlink rates.
Up to the 5th percentile, all UEs see greater than a 100% increase in downlink rate
performance over the baseline scheduling method. Furthermore, the top 60% of UEs
in the network see an average downlink rate improvement of 15% over both baseline
and benchmark. Unlike the benchmark scheduling method, no UEs under the evolved
scheme see worse performance than the baseline.

Notably, when compared to the benchmark the evolved scheduling heuristic sees
smaller average improvements in downlink rates for lower-percentile UEs. This is be-
cause the evolved method was trained to maximise cell throughput with respect to
proportional fairness (through the use of the SLR fitness function defined in Section
5.1), whereas the benchmark method eschews global fairness in favor of equalising the
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Figure 9: Percentage improvement in downlink rates over baseline for SC-attached
UEs.

performance of two select UEs per cell. Therefore, while the lower percentile down-
link rates may be marginally higher for the benchmark, the evolved method actually
produces a fairer network environment (in terms of the industry-standard SLR metric)
as the performance of all UEs is taken into account. This can be seen in Fig. 8, which
shows that all SCs in the network simulation see an improvement in SLR over both
baseline and benchmark in all observed cases.
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(a) CDF plot of UE downlink rates, low-SINR UEs.
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(b) CDF plot of UE downlink rates, high-SINR UEs.

Figure 10: Cumulative Distribution Function plots of downlink rates for all SC-attached
UEs. Figure 10a shows the first 50% of UEs, with the second 50% shown in Fig. 10b.

While Fig. 8 shows the average improvement in SLR for cells of varying sizes un-
der the different methods, it only describes part of the performance of the examined
scheduling methods. Figures 10a and 10b show the Cumulative Distribution Function
(CDF) plots of the downlink rates of all SC-attached UEs on the network across all 100
test snapshots for the three observed methods (baseline, benchmark, and evolved). UEs
are plotted on the y-axis, with their average downlink rates plotted on the x-axis13. As

13Note that Figs. 10a and 10b plot two halves of the same data, with Fig. 10a detailing the worst performing
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such, these graphs directly describe the average downlink performance of each indi-
vidual SC-attached UE in the network.

Figure 10a shows that the evolved scheduling method is able to match the per-
formance gains for low-SINR UEs that the benchmark method is able to achieve over
baseline scheduling methods. Figure 10b shows that the benchmark method is only
capable of matching the performance of the baseline scheduling method for top-end
UEs (those UEs with the highest SINR). In effect, the benchmark technique excessively
sacrifices the performance of these UEs in order to improve the performance of low-
end UEs. However, the evolved method is able to provide a ∼1 MB/s performance
improvement for the top 30% of UEs over both baseline and benchmark. Significantly,
this implies that the evolved method is able to provide similar improvements to the
performance of low-SINR UEs to the benchmark, without its attendant sacrifice in top-
end UE performance. Since the objective of the evolved method was to maximise net-
work throughput with respect to proportional fairness, the end result for the evolved
scheduling method is a higher average global network SLR than with both baseline and
benchmark methods.

A two-sample Kolmogorov-Smirnov test was performed on the data from Fig. 10
in order to check for statistically significant differences between the performance of
the evolved method over both the baseline and the state-of-the-art human-designed
benchmark techniques. Taking an alpha value of 0.05, a p-value of 1.07e-05 means we
can confidently reject the null hypothesis that the evolved solution produces the same
performance to that of the baseline. Similarly, a p-value of 8.48e-08 means that we can
confidently reject the null hypothesis that the evolved solution produces the same per-
formance to that of the benchmark technique. We can therefore conclude with a high
confidence that the performance of the evolved technique is statistically significantly
better than both the simple baseline and the state-of-the-art human-designed bench-
mark.

8 Method Generalisation

As it is not commercially viable for network operators to develop unique human-
designed algorithms for an array of unique scenarios, operators are forced to utilize
potentially sub-optimal “one size fits all” solutions which can cater for all eventuali-
ties. However, one of the main advantages of using an automatic algorithmic method
over human design to generate solutions is that the parameters of the problem can eas-
ily be changed without the need for re-investing in human input. Thus far in this paper,
Sections 4 and 5 have described how an experiment can be set up, with the results of a
single run being examined in detail in Section 6. It is a simple matter to change certain
input parameters for the simulation setup, thus changing the specialties of the evolved
solutions.

Figure 8 described the general performance of the evolved algorithm from Eq. 12.
However, this solution was trained and tested on variations of the normal UE distri-
bution shown in blue in Fig. 8. By changing the distribution density of UEs or the
number of SCs in the network simulation, we can easily change the distribution pat-
terns to simulate certain scenarios. Once a new distribution is set, a new problem is
effectively produced. It is then a simple matter to re-run the evolutionary process de-
scribed in Section 5 to evolve a new solution for this particular scenario14. Thus, we are

UEs (i.e. up to the 50th percentile), and Fig. 10b detailing the best performing UEs (i.e. from the 50th to the
100th percentile).

14Following examination of the evolved solution from Fig. 6, a new terminal “ABS” was added to the
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Figure 11: Generalisation on high congestion network.

able to examine the ability of the evolutionary system described in Sections 4 and 5 to
produce solutions which generalize well to different UE distributions. The following
results summarize the performance of individual solutions evolved for their respective
distributions. The performance results of the evolved schedulers are similar to those
discussed in Section 6, and as such the following Sections 8.1 and 8.2 focus more on the
examination, simplification, and augmentation of the solutions themselves rather than
their outright performance.

8.1 High-Congestion Network Scenario

Figure 11 represents the performance of an evolved model from a network of highly
congested (i.e. highly overloaded) SCs. Such a scenario might be indicative of a high
traffic situation such as football stadia, city-center parades, or festivals. This high con-
gestion was achieved by increasing the average number of UEs per MC sector from 60
(the industry-accepted standard (3GPP, 2014)) to 238, i.e. 5,000 total UEs in the simula-
tion environment, with only 30 SCs. Taking benchmark SLR improvements over base-
line scheduling as 100%, the evolved scheduling method for high congestion scenarios
produces an average SLR improvement of 37.81% in performance over the benchmark
on the same scenario.

The best evolved solution is shown in unsimplified form in Fig. 12. As with the
previous solution, this solution also uses the threshold mapping scheme. What is im-
mediately notable is the size of the solution; it is far larger than that shown in Fig. 6.
The size of the solution alone makes augmentation and simplification far more difficult
than with the previous case.15 However, a number of insights can still be made.

The form of the solution shown in Fig. 12 follows that of Eq. 12, namely that it
consists of a single fraction. Therefore, as the threshold mapping scheme is used it is
simply the sign of the solution which dictates whether or not a UE u will be scheduled
in a subframe f . As described in Section 6.1, we only need to examine the outputs of
both numerator and denominator of this solution to gain deeper insight into its overall
modus operandi.

Examination of the denominator of the solution reveals that it works in exactly the
same fashion as the numerator from Eq. 12. Since the encompassing function of the

terminal set. This new terminal operates in the manner of the numerator from Eq. 12.
15Note that the only form of bloat control in use is the maximum overall depth limit of derivation trees.
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pdiv(((log(1+abs((T14-pdiv((pdiv(T21,T17)-log(1+abs(T16))),pdiv((T5+
T5),(T17*T17))))))-(((log(1+abs((T5+T11)))+sqrt(abs(T16)))*log(1+
abs(sqrt(abs(log(1+abs(T4)))))))-log(1+abs((T6-sin(sqrt(abs(
T4))))))))*sqrt(abs((pdiv(pdiv((sin(T5)*(T5*T16)),sin(+0.0)),(sqrt(
abs(sin(T10)))+sqrt(abs(log(1+abs(T4))))))*pdiv(((sign(T21)-T2)*
sin(log(1+abs(T5)))),pdiv(pdiv((T20-T6),sin(T18)),T4)))))),

sign(pdiv(pdiv(sqrt(abs(pdiv(sign(sign(T21)),(T3+(T14+T9))))),pdiv(
sin(sign(pdiv(ABS,T19))),(((T4-T21)+(T6*T5))*(log(1+abs(T10))*
sign(T4))))),(((sqrt(abs(log(1+abs(T6))))+(T6*T5))*log(1+abs(T5)))+
pdiv(((pdiv(T5,T1)+(T21*T10))-sign((T2-T12))),((sqrt(abs(T12))+(T19*
T5))+pdiv((T17*T20),sqrt(abs(T12)))))))))

Figure 12: Best evolved high congestion solution, unsimplified. The solution com-
prises a single fraction, with numerator and denominator distinguished by the para-
graph break above. This solution has a maximum depth of 20, with 527 nodes in the
derivation tree.
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[+1duringABS ;−1duringnonABS ] (13)

denominator is the sign of the expression, the denominator only needs to be examined
for the sign of its outputs. The denominator uses 15 different terminals, including
the newly introduced “ABS” terminal as described in Section 8. However, upon deep
analysis it transpires that the only component of the entire denominator that affects the
actual sign of its output is the single use of the terminal “ABS” itself. Therefore, the
entire denominator can be replaced by the single terminal “ABS”, i.e. the numerator
of Eq. 12. Thus, it can be appreciated that the evolved solution from Fig. 12 operates
in the same manner as both that of Eq. 12 and of the benchmark, i.e. by scheduling
UEs in either ABS or non-ABS overlapping subframes. Identification of which UEs are
scheduled during either slot comes from examination of the numerator.

While the denominator of the solution from Fig. 12 can be entirely reduced and
replaced, the numerator is less easy to simplify beyond simple contractions and re-
moving of obsolete functions such as unnecessary “absolute value” calls on terminals
which are always positive. The final simplified and augmented form of the high con-
gestion solution shown in Fig. 12 is described in Eq. 13.

Opaque though it may seem, deeper insight into the operation of Eq. 13 can be
gained by examining which terminals are used. Overall, the numerator from Eq. 13
uses 12 terminals. By consulting the cell-dependent grammar variables table shown in
Table 4, clusters of terminals become apparent. The numerator obtains the majority of
its information from terminal groups T4-T8 (UE-specific data across all subframes) and
T14-T18 (global data across all UEs and all subframes). By comparing the max (T4),
min (T5) and average (T6) performance of a single UE across all subframes against the
max (T14), average (T16) and 25th-percentile (T17) performance of all UEs across all
subframes, a gradient is imposed on which UEs are to be scheduled during specific
subframes.

This is similar to how Eq. 12 operates; so much so, in fact, that the entire numer-
ator from Eq. 13 can be replaced with the entire denominator from Eq. 12 with nigh
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on identical performance. Significantly, the converse is true for the standard distribu-
tion described in Section 4.1; Eqs. 12 and 13 can be entirely swapped to run on their
respective distributions with no appreciable loss in performance.16 The implications of
this are significant. The main difference between the normal UE congestion and high
UE congestion scenarios is in the mean and variance of their respective normal distri-
butions. Therefore, it can be inferred that if the distribution of SC attachment numbers
is normal, Eqs. 12 or 13 can provide a successful scheduling solution. Furthermore,
since evolution has evolved two highly similar solutions for these two problems, one
can assume that similar solutions will be successful for similar distributions.

8.2 Low-Congestion Network Scenario

As with Figs. 8 and 11, Fig. 13 shows the generalisation performance of a solution
evolved under a low congestion scenario, created by increasing the number of SCs in
the network from 30 to 100 while retaining the original density of 60 UEs per MC sec-
tor. This scenario would be in line with standard network practice of cell densification
to decrease congestion (Bian and Rao, 2014). This scenario has average SC attachment
numbers of 9.56 UEs, but the distribution is heavily right-tailed (as cells cannot have
less than 0 attached UEs). Thus, the distribution differs significantly from the normal
distributions discussed previously. Taking benchmark SLR improvements over base-
line scheduling as 100%, the scheduling method presented in Eq. 14 produces an av-
erage SLR improvement of 50.84% in performance over the benchmark. Furthermore,
it can be seen from Fig. 13 that in some cases of extremely low attachment numbers,
the benchmark method breaks down (i.e. the green line dips below the x-axis, indicat-
ing that the benchmark performs worse than the simple baseline method described in
Section 5.1).
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Figure 13: Generalisation on low congestion network.

The best evolved solution for the low congestion distribution is shown in its un-
simplified form in Fig. 14. As with all previous solutions, this solution uses the “thresh-
old” mapping scheme. Similarly to the original solution shown in Fig. 6, while difficult
to interpret from a first glance this solution can be somewhat simplified and augmented

16The performance is so similar that there is difficulty distinguishing between generalisation graphs (e.g.
Fig. 11) produced by the two solutions on the same dataset.
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T20-(pdiv(T13,T14)-pdiv((((sign(sin(T15))+sign((T16*T10)))*(T6*pdiv(
pdiv(T17,T5),pdiv(T5,T18))))+(((T13*(T4-T4))-(sqrt(abs(T9))+(T21+T18)))
+pdiv(((T21+T20)-T17),sqrt(abs(pdiv(T11,ABS)))))),(((ABS+pdiv(ABS, T4))
-pdiv(pdiv(pdiv(T9,T8),sqrt(abs(T19))),(T13*T9)))+((sign((T16*T5))+
pdiv(ABS,sign(T20)))-sin((log(1+abs(T5))*log(1+abs(T20))))))))

Figure 14: Best evolved low congestion solution, unsimplified. This solution has a
maximum depth of 20, with 293 nodes in the derivation tree.

T20 − T13

T14
−

(2× T6 ×
T17
T5
T5
T18

)−
√

T9 − T21 − T18 + T20+T21−T17√
T11

2×ABS + ABS
T4 + 1− sign(T20 )

(14)

by domain experts. The augmented solution presented in Eq. 14 retains the same per-
formance characteristics of the original, but with a smaller representation. However,
there are major differences between this solution and the solutions discussed in Sec-
tions 6 and 8.1.

Firstly, the solution shown in Eq. 14 contains three separate components, meaning
it differs greatly in its operation from the form of both the previous augmented solu-
tions described in Eqs. 12 & 13, and of the benchmark scheduling method. Whereas
these methods schedule UEs in either ABS or non-ABS overlapping subframes, the
standalone use of T20 (subframe ID) at the beginning of Eq. 14 indicates that the out-
put scheduling semantics of this solution will vary across all subframes.

The final augmented solution contains 12 unique terminals, with 19 terminals over-
all being used. Again, further contrast can be made between the operation of this solu-
tion and that of the previous solutions from Eqs. 12, 13:

1. The solutions examined previously require far less terminals to evaluate their so-
lutions,

2. They use clear clusters of terminals (as indicated by Table 4) while Eq. 14 uses a
more even spread of terminals, and

3. They use more information about the relative performance of individual UEs,
whereas Eq. 14 makes wide use of terminals T20 (subframe ID), T21 (SINR quality
indicator), and ABS, implying it is relying more heavily on the specific attributes
of individual subframes than either of the previous solutions in order to accurately
schedule UEs.

The complex relationships between these terminals make the solution difficult to
interpret further; merely changing or removing any single terminal significantly de-
grades the performance of the solution. Furthermore, it is not possible to use this so-
lution on anything other than the right-tailed distribution shown in Fig. 13. Indeed,
implementing the solutions from Eqs. 12 or 13 on the low congestion scenario sees
performance worse than the simple baseline. It can therefore be inferred that the right-
tailed low congestion distribution is a special case scenario.

9 Conclusions and Future Work

Evolutionary computation has been shown to be capable of producing human-
competitive solutions that improve upon the performance of a state-of-the-art human-
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designed benchmark across a variety of scenarios, despite being given very poor qual-
ity information about the true state of the problem. Extensive analysis of these solutions
reveal that EC has uncovered a new technique for scheduling SC-attached UEs which
is not only generalisable but is both intuitive and easy to implement. Furthermore, evo-
lution has been shown to have twice produced a solution which conforms to accepted
scheduling frameworks which match the literature, despite evolution being given no
information about this form of solution and despite being trained on different datasets.
These solutions do not break down as a result of changes to ABS patterns or ratios, and
address corner cases through their use of gradient.

These presented methods are human-competitive in the traditional Koza
sense (Koza, 2010), as:

1. they are equal to or better than a result that was accepted as a new scientific result
at the time when it was published in a peer-reviewed scientific journal, and

2. they are equal to or better than the most recent human-created solution to a long-
standing problem for which there has been a succession of increasingly better
human-created solutions.

Specifically, the evolved solutions manage to significantly increase cell throughput
with respect to proportional fairness over a state-of-the-art human-designed bench-
mark without excessively sacrificing the performance of high-SINR UEs. In the stan-
dard scenario, 30% of SC attached users are shown to achieve a ∼1 MB/s performance
improvement under the evolved scheme, while the top 60% of all SC-attached users see
an average downlink improvement of 15% over the benchmark. Taking benchmark im-
provements over a simple baseline scheduling method as 100%, the presented method
produces an average improvement of 26% in per-cell Sum-Log-Rate performance over
the benchmark scheme. Low UE congestion network scenarios show average per-cell
SLR improvements of 50.84%, while high congestion scenarios show average improve-
ments of 37.81%.

As network demand rises, SC densification is seemingly the most cost-effective
method for operators to increase capacity within their networks. However, evolution-
ary computation provides a means to not only automatically generate tailored algo-
rithms for specific scenarios, but for human experts to further augment and enhance
these solutions. Targeted solutions can be evolved for different network deployments
that are capable of handling highly congested/overloaded SCs. This presents a low-
cost software alternative to hardware upgrades, thus postponing the need for network
operators to supplement their networks with additional SCs. Moreover, higher attach-
ment numbers allow for more fine-grained performance trade-offs, enabling increased
fairness.

Future 5G systems are increasingly moving towards software-defined networks.
Furthermore, existing 4G architecture will remain in concurrent operation with newly
implemented 5G networks. As such, there remains a need for automatic tools such as
the ones presented in this paper in future networks. Future work may look at evolving
schedulers on multiple different UE distributions, rather than solely on the normal
distribution described in Section 4.1. In theory, this should lead to an even more robust
solution. In addition, a more robust model selection could be performed with the use
of validation sets and by subjecting the entire final population of each run to test data.
Finally, bloat control methods could be utilized in order to remove inactive aspects of
solutions and to reduce overall solution size.
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