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Abstract. In this paper we describe the Distributed Perception Algorithm (DPA)
which is partly inspired by the schooling behaviour of ‘golden shiner’ fish (Notemigonus
crysoleucas). These fish display a preference for shaded habitat and recent exper-
imental work has shown that the fish use both individual and distributed percep-
tion in navigating their environment. We assess the contribution of each element
of the DPA and also benchmark its results against those of canonical PSO.

1 Introduction

The last few decades have seen significant and growing interest in biomimicry or ‘learn-
ing from the natural world’, with many disciplines turning to natural phenomena for
inspiration as to how to solve particular problems. Examples include the development
of pharmaceutical products based on naturally occurring chemicals, and inspiration for
engineering designs based on structures and materials found in nature. Another strand
of ‘learning from nature’ concerns the development of computational algorithms whose
design is inspired by underlying natural processes which implicitly embed computation
[6]. Mechanisms of collective intelligence and their application as practical problem-
solving tools, has attracted considerable research attention leading to the development
of several families of swarm-inspired algorithms including, ant-colony optimisation [7–
9], particle swarm optimisation [10, 13, 14], bacterial foraging [16, 17], honey bee al-
gorithms [18] and a developing literature on fish school algorithms. A critical aspect of
all of these algorithms is that powerful, emergent, problem-solving occurs as a result
of the sharing of information among a population of agents in which individuals only
possess local information. In this paper we extend an initial examination [5] of the dis-
tributed perception algorithm (DPA) and assess its performance against particle swarm
optimisation.

2 Background

A number of previous studies have previously employed a fish school metaphor to de-
velop algorithms for optimisation and clustering ([1, 12, 21, 23] provide a sampling of
this work). Two of the better-known approaches are Fish School Search (FSS) [2] and
the Artificial Fish Swarm Algorithm (AFSA) [15].

A practical issue that arises in attempting to develop an algorithm based on the
behaviour of fish schools is that we have surprising little hard data on the behavioural



mechanisms which underlie their activity. At the level of the individual, agents respond
to their own sensory inputs and to their physiological / cognitive states [11]. It is not
trivial to disentangle the relative influence of each of these. At group-level, it is often
difficult to experimentally observe the mechanics of the movement of animal groups or
fish schools. Much previous work developing fish school algorithms has relied on high-
level observations of fish behaviour rather than on granular empirical data on these
behaviours.

In this paper, we draw inspiration from certain behaviours of the fish species ‘golden
shiners’. This is a fresh water fish which is native to North America, typically grow-
ing to about 4 to 5 inches in length. The species is strongly gregarious. Members of
the species form shoals of up to about 250 individuals [19]. A recent study [4] investi-
gated one aspect of the behaviour of golden shiners, namely their marked preference for
shaded habitat. In order to investigate the mechanism underlying their observed collec-
tive response to light gradients, fish were tracked individually to obtain trajectories. The
study examined the degree to which the motion of individuals is explained by individual
perception (this would produce movement in the steepest direction of light gradient as
seen by the individual fish) and social influences based on distributed perception (this
would produce movement based on the position and movement of conspecifics). The
study indicated that the relative importance of each is context dependent. For example,
when the magnitude of the social vector was high (all conspecifics moving in similar
direction) the social influence was dominant.

3 Distributed Perception Algorithm

An important question that underlies the design of foraging strategies, or the design
of optimisation algorithms, is what is the most effective way of searching for objects
whose location on a landscape is not known a priori? In foraging, the search could be
guided by external cues, either via cognitive skills (memory) or sensory inputs (such as
vision) of the searcher. Alternatively, the search process could be stochastic (i.e., undi-
rected). When the location of the target objects is unknown, a degree of ‘guessing’ is
unavoidable and probabilistic or stochastic strategies are required [22]. More generally,
it is noted that this framework can encompass most foraging-inspired algorithms, as vir-
tually all of them embed personal perception / learning, social influence and a stochastic
element.

In each iteration of the proposed DPA, a fish is displaced from its previous position
through the application of a velocity vector:

pi,t = pi,t−1 + vi,t (1)

where pi,t is the position of the ith fish at current iteration, pi,t−1 is the position of the
ith fish at previous iteration, and vi,t is its velocity.

The velocity update is a composite of three elements, prior period velocity, an in-
dividual perception mechanism, and social influence via the distributed perception of
conspecifics. The update is:

vi,t = vi,t−1 +DPi,t + IPi,t , (2)



or more generally

vi,t = w1vi,t−1 + w2DPi,t + w3IPi,t . (3)

The difference between the two update equations is that weight coefficients are included
in Eq. 3. In all the experiments of this study, Eq. 2 is used for velocity update. While the
form of the velocity update bears a passing resemblance to the standard PSO velocity
update, in that both have three terms, it should be noted that the operationalisation of the
individual perception and distributed perception mechanisms is completely different to
the memory-based concepts of pbest and gbest in PSO. The next subsection explains the
operation of the two perception mechanisms.

3.1 Prior Period Velocity

The inclusion of a prior period velocity can be considered as a proxy for momentum or
inertia. The inclusion of this term is motivated by empirical evidence from the move-
ment ecology literature which indicates that organisms do not follow uncorrelated ran-
dom walks but rather move with a ‘directional persistence’ [22].

3.2 Distributed Perception Influence

The distributed perception influence for the ith fish is determined by the following:

DPi =

∑NDP
i

j=1 (pj − pi)

NDP
i

, j ̸= i (4)

where pi is the position of the ith fish, and the sum is calculated over all neighbours
within an assumed range of interaction of the ith fish rDP , that is 0 <| pj −pi |≤ rDP ,
where pj is the position of the jth neighbouring fish, and NDP

i is number of neighbours
in the assumed range of interaction of the ith fish. If there are no neighbours in its
assumed range of interaction, this term becomes zero.

3.3 Individual Perception Influence

Individual perception is implemented as follows. At each update, each fish assesses the
local ‘light’ gradient surrounding it, by drawing N IP

i samples within an assumed ‘visi-
bility’ region of radius rIP . While a real-world fish will have a specific angle of vision
depending on its own body structure, we adopt a random sampling in a hypersphere
around the fish on grounds of generality. The individual perception influence for the ith

fish is determined by the function as below:

IPi =

∑NIP
i

j=1 (sj − pi) ∗ fitj∑NIP
i

j=1 fitj
, j ̸= i (5)

where pi is the position of the ith fish, rIP is the radius of the assumed range within
which the ith fish can sense environmental information, N IP

i is the number of samples
which the ith fish generates, sj is the position of the jth sample (0 <| sj − pi |≤ rIP ),
and fitj is the fitness value of the jth sample.



4 Results

In this section we describe the experiments undertaken and present the results from
these experiments. Four standard benchmark problems (Table 1) were used to test the
developed algorithms. Two of these functions namely, DeJong and Rosenbrock, repre-
sent unimodal problems; and the other two, Griewank and Rastrigin, are more complex
functions with multiple local optima. The aim in all the experiments is to find the vector
of values which minimise the value of the test functions.

Table 1. Optimisation Problems

DeJong F (x) =
∑n

i=1 x
2
i [−5.12 5.12]n 0.0n

Griewank F (x) = 1 +
∑n

i=1

x2
i

4000
−

∏n
i=1 cos(

xi√
i
) [−600 600]n 0.0n

Rastrigin F (x) = 10n+
∑n

i=1[x
2
i − 10 cos(2πxi)] [−5.12 5.12]n 0.0n

Rosenbrock F (x) =
∑n−1

i=1 [100(xi+1 − x2
i )

2 + (1− xi)
2] [−30 30]n 1.0n

In our experiments we assess the performance of the DPA on the four benchmark
problems and also investigate the importance of the three components in the DPA algo-
rithm, namely momentum, DP and IP using the DeJong function. The aim is to examine
whether these components play a significant role in determining the DPA’s performance.
Three algorithms are developed which switch off in turn the momentum, DP and IP in-
fluences, denoted as DPAa1, DPAa2 and DPAa3 respectively. The performance of the
three variants are compared with that of the standard DPA algorithm which has all three
components (denoted as DPAa).

The second set of experiments examines the sensitivity of the DPA to changes in
two of its parameters, namely the radius of perception (rDP , rIP ) and the number of
samples used in the simulated individual perception component (s). The chosen values
of these parameters are shown in Table 2. From a biological point of view it is plausible
to assume that fish have a bigger radius for DP than IP, namely rDP > rIP . The value
chosen for the two radii is problem specific, as it is influenced by the choice of the
number of fish (N ), the radius (size) of the search space (R) and the dimensionality
of the this space (D). In the DAPa algorithm, the values of rDP and rIP were chosen
after initial experimentation as R

1.5
D√

N
and R

1.8
D√

N
so that in most cases each fish has

neighbouring fish within the radius rDP . In order to undertake some sensitivity analysis,
two variants of the DPAa algorithm are developed. In the DPAb algorithm, the values
of rDP and rIP are set to be twice as large as those in the DPAa algorithm. In the DPAc
algorithm, the value of s is increased to 10 (as against 5 in the DPAa algorithm).

Finally, the results from the DPA are compared against those of canonical Particle
Swarm Optimisation (PSO). In order to allow a reasonably fair comparison, we control
for the number of fitness function evaluations. The canonical PSO algorithm is run for
five times as many iterations as DPA, as each canonical version of the DPA undertakes
five fitness samplings in the IP mechanism.



Table 2. Parameter Setting of Algorithms

Algorithm Radius of DP (rDP ) Radius of IP (rIP ) Number of Velocity Updating Equation

Samples in IP (s)

DPAa R

1.5
D√

N

R

1.8
D√

N
5 vi,t = vi,t−1 +DPi,t + IPi,t

DPAa1 R

1.5
D√

N

R

1.8
D√

N
5 vi,t = 0 +DPi,t + IPi,t

DPAa2 R

1.5
D√

N

R

1.8
D√

N
5 vi,t = vi,t−1 + 0 + IPi,t

DPAa3 R

1.5
D√

N

R

1.8
D√

N
5 vi,t = vi,t−1 +DPi,t + 0

DPAb R

3
D√

N

R

3.6
D√

N
5 vi,t = vi,t−1 +DPi,t + IPi,t

DPAc R

1.5
D√

N

R

1.8
D√

N
10 vi,t = vi,t−1 +DPi,t + IPi,t

Note: R is the radius of the search space, D is the dimension of the test problem and N is the number of fish.

4.1 Hypotheses and Parameter Settings

In all the experiments, we undertake thirty runs of each algorithm and average the re-
sults obtained over these runs. In order to assess the relative performance of each algo-
rithm variant we examine the statistical significance of differences in performance at a
conservative 99% level using a t-test.

The first set of hypotheses concern the testing of the importance of each component
of the DPA. The null hypothesis is that the algorithm with a component turned off
performs better than the canonical DPA (DPAa). Therefore three hypotheses are tested
as follows.

– Ha1: the DPAa1 algorithm outperforms the DPAa algorithm;
– Ha2: the DPAa2 algorithm outperforms the DPAa algorithm;
– Ha3: the DPAa3 algorithm outperforms the DPAa algorithm;

The next set of hypotheses concern the analysis of the two variants with different
parameter settings (DPAb and DPAc) of the canonical algorithm (DPAa).

– Hba: the DPAb algorithm outperforms the DPAa algorithm;
– Hca: the DPAc algorithm outperforms the DPAa algorithm;

The final set of hypotheses concern the analysis of the performance of the three
versions of the canonical algorithm with PSO.

– Ha0: the PSO algorithm outperforms the DPAa algorithm;
– Hb0: the PSO algorithm outperforms the DPAb algorithm;
– Hc0: the PSO algorithm outperforms the DPAc algorithm.

In all experiments, 30 fish (in DPAs), or in the case of PSO 30 particles, are used.
The results are described in the following three sections.



Table 3. Results of Component Analysis

DeJong (20D) DeJong (40D) DeJong (60D)

DPAa Best 13.8490 39.8309 82.9444

Mean 16.7810 53.3594 99.3693

Std Dev 1.6621 4.4814 5.4045

DPAa1 Best 101.3639 146.8877 173.8090

Mean 108.8814 154.1140 190.1412

Std Dev 3.3446 4.5209 7.5146

Ha1 0.00 0.00 0.00

DPAa2 Best 76.9869 211.8659 384.0815

Mean 88.1540 261.8146 459.8905

Std Dev 6.2977 17.8869 21.6424

Ha2 0.00 0.00 0.00

DPAa3 Best 104.0716 346.6357 522.4203

Mean 181.4443 409.8456 636.0020

Std Dev 29.0740 38.0923 58.6390

Ha3 0.00 0.00 0.00

4.2 Analysis of Components in DPA

The developed algorithms, DPAa, DPAa1, DPAa2 and DPAa3, were tested on the De-
Jong problem with 20, 40, and 60 dimensions respectively. Fig. 1 compares the average
fitness of the four algorithms for the three tested problems. Table 3 shows the best fitness
value obtained from all 30 runs (‘Best’), the average of the best fitness (‘Mean’) and its
standard deviation over all 30 runs. The results show that the standard DPA algorithm
(DPAa) significantly outperforms the other three algorithms, which indicates that none
of the three components, momentum, DP and IP, are sufficient on their own to produce
a good search process. It is also observed that DPAa3 (which has individual percep-
tion ‘switched off’) performs the worst. This is not surprising as the IP component is
fitness-guided.

We also carry out a statistical significance test of the differences on performance
between the DPAa algorithm and the other three algorithms, namely DPAa1, DPAa2
and DPAa3 and the p-values are shown in Table 3. The results indicate that the DPAa
algorithm outperforms the DPAa1, DPAa2 and DPAa3 algorithms on all tested problems
at a significance level of 0.99.

4.3 Parameter Sensitivity Analysis

The results of the DPAa, DPAb and DPAc algorithms are shown in Table 4 and Fig.
1. As can be seen, the DPAa and DPAc algorithms perform significantly better than
the DPAb algorithm, which indicates that the radii of DP and IP are a critical factor in
determining the performance of DPA algorithm. A larger radius means that the fish can



sample more broadly in the IP component and can be influenced by more fish in the DP
component of the algorithm.

Comparing the DPAa and DPAc variants of the algorithm (these focus on the sensi-
tivity of the results to the number of samples in the IP mechanism), the results in Fig. 1
show that the DPAc tends to do slightly better than DPAa but this difference is not gen-
erally statistically significant. This indicates that the results obtained are not crucially
dependent on the number of samples used in the IP mechanism.

Table 4. Results of Algorithm Comparison

DeJong (60D) Griewank (60D) Rastrigin (60D) Rosenbrock (60D)

PSO Best 229.6262 705.1046 706.8452 1.8195E+8

Mean 313.7544 1059.4572 809.0102 4.2095E+8

Std Dev 41.3335 205.1225 57.0805 1.0482E+8

DPAa Best 82.9444 314.6526 499.8868 0.4054E+8

Mean 99.3693 340.4509 535.9554 0.5268E+8

Std Dev 5.4045 14.8251 15.9696 0.0591E+8

Ha0 0.00 0.00 0.00

DPAb Best 454.0024 1459.6416 872.9574 8.2966E+8

Mean 488.4168 1670.7541 947.8529 9.1680E+8

Std Dev 17.5184 71.9513 24.9544 0.3978E+8

Hb0 1.00 1.00 1.00

Hba 0.00 0.00 0.00

DPAc Best 66.9831 251.4181 492.2972 0.2669E+8

Mean 88.2610 315.1278 530.1059 0.4270E+8

Std Dev 8.2310 24.7452 13.4010 0.0689E+8

Hc0 0.00 0.00 0.00

Hca 1.00 1.00 1.00

4.4 Comparisons with Canonical PSO

The comparisons between the DPA algorithms and the PSO algorithm are shown in
Table 4 and Fig. 1. Two of the DPA algorithm variants, DPAa and DPAc, are seen to
outperform the PSO algorithm across all benchmarks. The standard deviations of all the
DPA algorithms are smaller than for the PSO algorithm.

5 Conclusions

In this paper we describe the distributed perception algorithm which is inspired by
schooling behaviour of ‘golden shiner’ fish. We assess the utility of the algorithm on
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Fig. 1. Top three figures analyse components in DPA using DeJong 20,40 and 60D cases (x-axis
shows the iteration number). The bottom four figures compare DPA variants vs PSO on four 60D
problems



a series of test problems and undertake an analysis of the algorithm by examining the
importance of its component elements for the search process. The results obtained are
benchmarked against those from particle swarm optimisation (PSO). The results indi-
cate that the algorithm is competitive against canonical PSO and support a claim that
algorithms employing fish-school behaviour mechanisms can be a useful addition to an
optimisation toolkit. The current study indicates several interesting areas for follow up
research. Obviously the results from any study only extend to the problems examined
and future work is required to examine the utility of the algorithm. It is also noted that
other fish school algorithms have been developed using search mechanisms inspired
by various fish behaviours and as this area of research matures, it would be useful to
integrate these into a broader, general, framework.

Another interesting avenue would be to investigate alternative ways of modelling
the distributed perception (DP) mechanism. In this study, following [4], we assume that
this sensory mechanism has a fixed metric range, in other words, a fish ‘interacts’ with
all its neighbours within a defined radius. Alternative assumptions as to the nature of
interaction range can be made including [20], a fixed number of nearest neighbours
(topological range) or a shell of near neighbours (Voronoi range). In [20], a novel ap-
proach is adopted whereby each fish is assigned a ‘visual field’ and only neighbours
within this field impact on the social information processed by that fish. An interesting
finding of this work is that there is lower redundancy of information (transitivity) in
visually-defined networks than in metric or topological networks. This could be a use-
ful characteristic in the context of designing an optimisation algorithm, particularly for
application in a dynamic environment.
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