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Abstract. This study examines the utility of employing digit concate-
nation, as distinct from the traditional expression based approach, for
the purpose of evolving constants in Grammatical Evolution. Digit con-
catenation involves creating constants (either whole or real numbers)
by concatenating digits to form a single value. The two methods are
compared using three different problems, which are finding a static real
constant, finding dynamic real constants, and a quadratic map, which
on iteration generates a chaotic time-series. The results indicate that the
digit concatenation approach results in a significant improvement in the
best fitness obtained across all problems analysed here.

1 Introduction

The objective of this study is to determine whether the adoption of a novel
approach to constant creation by digit concatenation can outperform the more
traditional expression based approach to constant creation in Grammatical Evo-
lution, that relies on the recombination of constants using the functions and
operators provided. Digit concatenation involves creating constants, which can
be either whole or real numbers, by concatenating digits to form a single value.

Existing applications of digit concatenation in Grammatical Evolution
adopted this approach to constant creation in the automatic generation of
caching algorithms, and a financial prediction problem [10,3]. This paper extends
these previous studies by conducting an analysis of the digit concatenation ap-
proach in comparison to the more traditional expression based approach using
specific constant creation problem domains. The two problem domains tackled
previously did not exploit constant creation to a substantial degree in success-
ful solutions, hence the need to conduct our current investigation on different
problems.

1.1 Background

Ephemeral random constants are the standard approach to constant creation in
Genetic Programming (GP), having values created randomly within a prespec-
ified range at a runs initialisation [6]. These values are then fixed throughout
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a run, and new constants can only be created through combinations of these
values and other items from the function and terminal set.

Since then there have been a number of variations on the ephemeral random
constant idea in tree-based GP systems, all of which have the common aim of
making small changes to the initial constant values created in an individual.

Constant perturbation [14] allows GP to fine-tune floating point constants by
multiplying every constant within an individual by a random number between
0.9 and 1.1, having the effect of modifying a constants value by up to 10% of
their original value.

Numerical terminals and a numerical terminal mutation were used in [1] in-
stead of ephemeral random constants, the difference being that the numerical
terminal mutation operator selects a real valued numerical terminal in an indi-
vidual and adds to it Gaussian noise with a particular variance, such that small
changes are made to the constant values.

A numeric mutation operator, that replaces all of the numeric constants in an
individual with new ones drawn at random from a uniform distribution within
a specified selection range, was introduced in [4]. The selection range for each
constant is specified as the old value of that constant plus or minus a temperature
factor. This method was shown to produce a statistically significant improvement
in performance on a number of symbolic regression problems ranging in difficulty.

1.2 Structure of Paper

This contribution is organised as follows. Section 2 provides a short introduction
to Grammatical Evolution. Section 3 describes the problem domains and the
experimental approach adopted in this study. Section 4 provides the results under
each of the grammars. Finally, conclusions and an outline of future work are
provided in Section 5.

2 Grammatical Evolution

Grammatical Evolution (GE) [12,11,9] is an evolutionary algorithm that can
evolve computer programs in any language. Rather than representing the pro-
grams as parse trees, as in GP [6], a linear genome representation is used. Each
individual, a variable length binary string, contains in its codons (groups of 8 bits
in these experiments) the information to select production rules from a Backus
Naur Form (BNF) grammar. BNF is a notation that represents a language in
the form of production rules. It is comprised of a set of non-terminal symbols
that can be mapped to elements from the set of terminal symbols, according to
the production rules. An example excerpt from a BNF grammar is given below.

These productions state that S can be replaced with either one of the non-
terminals expr, if-stmt, or loop.

S ::= expr (0)
| if-stmt (1)
| loop (2)
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The grammar is used in a generative process to construct a program by
applying production rules, selected by the genome, beginning from a given start
symbol (S in this case).

In order to select a rule in GE, the next codon value on the genome is
generated and placed in the following formula:

Rule = Codon V alue MOD Num. Rules

For example, if the next available codon integer value was 4, given that we have
3 rules to select from as in the above example, we get 4 MOD 3 = 1. S will
therefore be replaced with the non-terminal if-stmt.

Beginning from the the left hand side of the genome codon integer values
are generated and used to select rules from the BNF grammar, until one of
the following situations arise: (a) a complete program is generated. This occurs
when all the non-terminals in the expression being mapped are transformed
into elements from the terminal set of the BNF grammar. (b) the end of the
genome is reached, in which case the wrapping operator is invoked. This results
in the return of the genome reading frame to the left hand side of the genome
once again. The reading of codons will then continue unless an upper threshold
representing the maximum number of wrapping events has occurred during this
individuals mapping process. (c) in the event that a threshold on the number of
wrapping events has occurred and the individual is still incompletely mapped,
the mapping process is halted, and the individual assigned the lowest possible
fitness value. A full description of GE can be found in [11].

3 Problem Domain and Experimental Approach

In this study, we compare the utility of different grammars for evolving constants
by performance analysis on three different types of constant creation problems.
The problems tackled are, Finding a Static Real Constant, Finding Dynamic
Real Constants, and the Logistic Equation. A description of each problem fol-
lows.

3.1 Finding a Static Real Constant

The aim of this problem is to evolve a single real constant. Three target constants
of increasing difficulty were selected arbitrarily, 5.67, 24.35, and 20021.11501.
Fitness in this case is the absolute difference between the target and evolved
values, the goal being to minimise this difference value.

3.2 Finding Dynamic Real Constants

This instance of finding dynamic real constants involves a dynamic fitness func-
tion that changes its target real constant value at regular intervals (every 10th
generation). Two instances of this problem are tackled, the first sets the succes-
sive target values to be 24.35, 5.67, 5.68, 28.68, 24.35, and the second instance
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oscillates between the two values 24.35 and 5.67. The aim with these problems
is to analyse the different constant representations in terms of their ability to
adapt to a changing environment, and to investigate that behaviour in the event
of both small and large changes. As in the finding static real constant problem,
fitness in this case is the absolute difference between the target and evolved
values, with the goal being the minimisation of this difference value.

3.3 The Logistic Equation

In systems exhibiting chaos, long-term prediction is problematic as even a small
error in estimating the current state of the system leads to divergent system
paths over time. Short-term prediction however, may be feasible [5]. Because
chaotic systems provide a challenging environment for prediction, they have
regularly been used as a test-bed for comparative studies of different predictive
methodologies [8,2,13]. In this study we use time-series information drawn from
a simple quadratic equation, the logistic difference equation1. This equation has
the form:

xt+1 = αxt(1 − xt) x ∈ (0.0, 1.0)

The behaviour of this equation is crucially driven by the parameter α. The
system has a single, stable fixed point (at x = (α − 1)/α)for α < 3.0 [13].
For α ∈ (3.0,≈ 3.57) there is successive period doubling, leading to chaotic
behaviour for α ∈ (≈ 3.57, 4.0). Within this region, the time-series generated by
the equation displays a variety of periodicities, ranging from short to long [7]. In
this study, three time-series are generated for differing values of α. The choice of
these values is guided by [7], where it was shown that the behaviour of the logistic
difference equation is qualitatively different in three regions of the range (3.57
to 4.0). To avoid any bias which could otherwise arise, parameter values drawn
from each of these ranges are used to test the constant evolution grammars.
The goal in this problem is to rediscover the original α value. As this equation
exhibits chaotic behaviour, small errors in the predicted values for α will exhibit
increasingly greater errors, from the target behaviour of this equation, with each
subsequent time step. Fitness in this case is the mean squared error, which is to
be minimised. 100 initial values for xt were used in fitness evaluation, and for
each xt iterating 100 times (i.e. xt to xt+100).

3.4 Constant Creation Grammars

The grammars adopted are given below. The concatenation grammar (Cat) only
allows the creation of constants through the concatenation of digits, this is in
contrast to the Traditional grammar (Trad) that restricts constant creation to
the generation of values from expressions. The third grammar analysed here
is the Traditional & Concatenation Combination grammar (Cat+Trad), which
1 This is a special case of the general quadratic equation y = ax2 + bx+ c where c = 0

and a = −b.
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allows the use of both the digit concatenation and expression based constant
creation approaches. The fourth grammar (Trad+Real) provides real values to
the Trad grammar, giving an explicit mechanism for creating real values without
relying on the arithmetic operators.

Concatenation (Cat) Grammar

value : real

real: int dot int | int

int: int number | number

number: 0 | 1 | 2 | 3 | 4 | 5
| 6 | 7 | 8 | 9

dot: .

Traditional (Trad) Grammar

value: value op value
| ( value op value )
| number

op: + | - | / | *

number: 0 | 1 | 2 | 3 | 4 | 5
| 6 | 7 | 8 | 9

Traditional & Concatenation
Combination (Cat+Trad) Grammar

value: value op value
| ( value op value )
| real

op: + | - | / | *

real: int dot int | int

int: int number | number

number: 0 | 1 | 2 | 3 | 4 | 5
| 6 | 7 | 8 | 9

dot: .

Traditional & Real Combination
(Trad+Real) Grammar

value: value op value
| ( value op value )
| number
| real

op: + | - | / | *

number: 0 | 1 | 2 | 3 | 4 | 5
| 6 | 7 | 8 | 9

real : .1 | .2 | .3 | .4 | .5
| .6 | .7 | .8 | .9

4 Results

For each grammar on every problem instance, 30 runs were conducted using
population sizes of 500, running for 50 generations on the static and dynamic
constant problems, and 100 generations for the logistic equation, adopting one-
point crossover at a probability of 0.9, and bit mutation at 0.1, along with
roulette selection and a replacement strategy where 25% of the population is
replaced each generation. The crossover operator was allowed to select crossover
points within the 8-bit codons adopted here. The results are as follows.

4.1 Finding a Static Real Constant

On all three instances of this problem, a t-test and bootstrap t-test (5% level)
on the best fitness values reveal that the digit concatenation grammars (Cat
& Cat+Trad) significantly outperform the standard expression based approach
(Trad & Trad+Real) to constant creation through expressions. Statistics of per-
formance for each grammar are given in Table 1, and a plot of the mean best
fitness at each generation for the three grammars analysed can be seen in Fig. 1.
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Fig. 1. Mean best fitness values (lower value is better) plotted against generations
for each of the three grammars. Target values are 5.67 (left), 24.35 (center), and
20021.11501 (right).

Table 1. Statistics for best fitness values (lower value is better) at generation 50 on
the Static Real Constant Problem.

Target Constant Grammar Mean Median Std. Dev.
5.67 Trad 0.33 0.33 0.0

Trad+Real 0.071 0.03 0.118
Cat+Trad 0.004 0.0 0.017

Cat 0.0 0.0 0.0
24.35 Trad 0.36 0.35 0.055

Trad+Real 0.261 0.35 0.205
Cat+Trad 0.057 0.01 0.081

Cat 0.002 0.0 0.009
20021.11501 Trad 7741.35 1.000e+04 3828.9

Trad+Real 1.000e+04 1.000e+04 0.0
Cat+Trad 689.01 2.117e+01 2531.2

Cat 1005.24 9.100e-01 3049.5

Interestingly, the Trad+Real grammar did not perform as well as the Trad
grammar on the hardest of these three problem instances, while the Cat and
Cat+Trad grammars performance was statistically the same. This demonstrates
that a grammar that has a concatenation approach to constant creation is sig-
nificantly better at generating larger numbers2.

4.2 Finding Dynamic Real Constants

For the first instance of this problem where the successive target constant values
are 24.35, 5.67, 5.68, 28.68, 24.35 over the course of 50 generations, performance
2 It is worth stressing that larger numbers could just as easily be large whole numbers

or numbers with a high degree of precision (reals).
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Fig. 2. Mean best fitness values (lower value is better) plotted against generations for
each of the three grammars. Target values are 24.35, 5.67, 5.68, 28.68, 24.35 (left), and
24.35, 5.67,.. (right).

Table 2. Statistics for best fitness values (lower value is better) on the Dynamic Real
Constant Problem (Target Constants: 24.35, 5.67, 5.68, 28.68, 24.35).

Generation Target Constant Grammar Mean Median Std. Dev.
10 24.35 Trad 0.4 0.35 0.114

Trad+Real 0.766 0.35 1.539
Cat+Trad 0.219 0.11 0.296

Cat 0.061 0.01 0.133
20 5.67 Trad 0.33 0.33 0.0

Trad+Real 0.05 0.03 0.078
Cat+Trad 0.017 0.006 0.025

Cat 0.047 0.0 0.17
30 5.68 Trad 0.32 0.32 1.129e-16

Trad+Real 0.04 0.02 7.7499e-02
Cat+Trad 0.009 0.001 2.283e-02

Cat 0.046 0.0 1.724e-01
40 28.68 Trad 2.063 1.5 3.474

Trad+Real 1.356 0.68 2.581
Cat+Trad 0.283 0.16 0.347

Cat 0.707 0.007 3.585
50 24.35 Trad 0.937 0.35 2.755

Trad+Real 0.638 0.3 1.56
Cat+Trad 0.101 0.05 0.244

Cat 0.541 0.002 2.799

statistics are given in Table 2, and a plot of mean best fitness values for each
grammar can be seen in Fig. 2 (left).

Performing a t-test and bootstrap t-test on the best fitness values at genera-
tions 10, 20, 30, 40 and 50, it is shown that there is a significant (5% level) perfor-
mance advantage in favour of the concatentation grammars (Cat & Cat+Trad)
up to generation 30, beyond this point the advantages of one grammar over the
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Table 3. Statistics for best fitness values (lower value is better) on the Oscillating
Dynamic Real Constant Problem (Target Constants: 24.35, 5.67, 24.35, 5.67, 24.35).

Generation Target Constant Grammar Mean Median Std. Dev.
10 24.35 Trad 0.507 0.35 0.426

Trad+Real 0.302 0.35 0.148
Cat+Trad 0.252 0.35 0.143

Cat 0.089 0.011 0.193
20 5.67 Trad 0.33 0.33 0.0

Trad+Real 0.065 0.03 0.092
Cat+Trad 0.222 0.33 0.156

Cat 0.005 0.0 0.0167
30 24.35 Trad 0.487 0.35 0.426

Trad+Real 0.55 0.35 1.113
Cat+Trad 0.963 0.35 2.765

Cat 0.046 0.022 0.07
40 5.67 Trad 0.33 0.33 0.0

Trad+Real 0.050 0.03 0.077
Cat+Trad 0.222 0.33 0.155

Cat 0.004 0.0 0.010
50 24.35 Trad 0.487 0.35 0.426

Trad+Real 0.625 0.35 1.53
Cat+Trad 1.358 0.35 3.815

Cat 0.061 0.014 0.131

other are not as clear cut. Given the dynamic nature of this problem other issues
such as loss of diversity may be coming into play, possibly obfuscating any effect
of the different constant generation techniques.

In the second instance of this problem, where the target constant value os-
cillates, every 10 generations, between 24.35 and 5.67 over the 50 generations,
again we see a similar trend. In this case, the concatenation grammar (Cat) is
significantly better (based on best fitness analysis using t-tests and bootstrap
t-tests at the 5% level) than all the other constant creation grammars at each
of 10, 20, 30, 40 and 50 generations, however, this difference is decreasing over
time. Again, loss of diversity over time is most likely playing a role here. A plot
of the mean best fitness can be seen in Fig. 2 (right), and statistics are presented
in Table 3.

From the results on both of these dynamic problem instances, there are
clearly adaptive advantages to using the concatenation grammar over the tradi-
tional expression based approach.

4.3 The Logistic Equation

The results for all three instances of this problem can be seen in Table 4 and
Fig. 3. Statistical analysis using a t-test and bootstrap t-test (5% level) reveal
that the concatenation grammars (Cat & Cat+Trad) significantly outperform
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Table 4. Statistics for best fitness values (lower value is better) at generation 100 on
the Logistic Equation Problem.

Target Constant Grammar Mean Median Std. Dev.
3.59 Trad 6.074e-03 6.074e-03 2.647e-18

Trad+Real 2.203e-04 3.613e-06 1.108e-03
Cat+Trad 1.109e-05 8.256e-13 5.321e-05

Cat 4.818e-07 3.902e-19 1.249e-06
3.80 Trad 1.310e-03 1.310e-03 6.616e-19

Trad+Real 5.715e-04 1.485e-06 0.001
Cat+Trad 4.724e-19 4.724e-19 0.0

Cat 4.724e-19 4.724e-19 0.0
3.84 Trad 7.113e-04 7.113e-04 2.206e-19

Trad+Real 4.146e-04 7.113e-04 3.457e-04
Cat+Trad 6.564e-05 6.065e-19 2.017e-04

Cat 6.065e-19 6.065e-19 9.794e-35
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Fig. 3. Mean best fitness values (lower value is better) plotted against generations
for each of the three grammars. Target α values are 3.59 (left), 3.80 (center), and 3.84
(right).

the traditional constant creation approach on each problem instance, successfully
rediscovering the target α value in each case.

5 Conclusions and Future Work

An analysis of a digit concatenation approach to constant creation in Gram-
matical Evolution is presented. In general, the performance of concatenation
grammars across the three problem domains investigated here, exhibits signifi-
cantly improved fitness when compared to the more traditional expression based
constant creation approach.
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We now intend to extend this study by conducting a comparison of digit
concatenation to an equivalent version of ephemeral random constants in Gram-
matical Evolution, and to look at a broader set of problem domains.
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