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Abstract. Grammatical Evolution (GE) is a novel data-driven, model-
induction tool, inspired by the biological gene-to-protein mapping pro-
cess. This study provides an introduction to GE, and demonstrates the
methodology by applying it to construct a series of models for the predic-
tion of bankruptcy, employing information drawn from financial state-
ments. Unlike prior studies in this domain, the raw financial information
is not preprocessed into pre-determined financial ratios. Instead, the ra-
tios to be incorporated into the classification rule are evolved from the
raw financial data. This allows the creation and subsequent evolution of
alternative ratio-based representations of the financial data. A sample of
178 publicly quoted, US firms, drawn from the period 1991 to 2000 are
used to train and test the model. The best evolved model correctly clas-
sified 86 (77)% of the firms in the in-sample training set (out-of-sample
validation set), one year prior to failure.
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1 Introduction

The last decade has seen significant advances in the field of computational in-
telligence, leading to the development of powerful new modelling technologies.
Generally, these technologies fall into three categories, those which are inspired
by the workings of biological neurons (Neural Networks), those which are inspired
by an evolutionary metaphor (Genetic Algorithms, Genetic Programming and
Grammatical Evolution), and those which are inspired by studies of social inter-
actions (Particle Swarm and Ant Colony models). While neural networks, and
to a lesser extent genetic algorithms and ant-algorithms, have attracted consid-
erable interest, other forms of computational intelligence have received relatively
less attention.

Grammatical Evolution (GE) (O’Neill and Ryan, 2003), represents an evo-
lutionary automatic programming methodology, and can be used to evolve ‘rule



sets’. These rule sets can be as general as a functional expression which pro-
duces a good mapping between a series of known input-output data vectors. A
particular strength of the methodology is that the form of the model need not
be specified a priori by the modeler. This is of particular utility in cases where
the modeler has a theoretical or intuitive idea of the nature of the explanatory
variables, but a weak understanding of the functional relationship between the
explanatory and the dependent variable(s). GE does not require that the model
form is linear, nor does the method require that the measure of model error used
in model construction is a continuous or differentiable function. A key element
of the methodology is the concept of a Grammar, which governs the creation
of the rule sets. This paper introduces the GE methodology, and applies the
methodology to construct a series of models for the prediction of bankruptcy,
employing information drawn from financial statements.

Classification is a commonly encountered decision scenario in business. Ex-
amples include decisions as to whether or not to invest in a firm, whether to
extend trade credit to a new customer, or whether to extend a bank loan. In
each of these scenarios, the possibility of financial loss exists if a firm is in-
correctly classified as being financially healthy, when in fact it is not. Corpo-
rate bankruptcy can impose significant private costs on many parties including
shareholders, providers of debt finance, employees, suppliers, customers and au-
ditors. Nonetheless, it must also be recognized that corporate failure is a natural
component of a market economy, facilitating the recycling of financial, human
and physical resources into more productive organizations (Easterbrook, 1990;
Schumpeter, 1934). At an atomic level of analysis, many individuals including
shareholders, providers of debt finance, employees, suppliers, customers, man-
agers and auditors have an interest in the financial health of organizations as
corporate failure can impose significant private costs on all these groups. It has
been suggested that indicators of corporate failure can be present up to ten years
prior to final failure (Hambrick and D’Aveni, 1988), providing an opportunity
for construction of models which predict corporate failure.

Corporate failure can arise for many reasons. It may result from a single
catastrophic event, or it may be the terminal point of a process of decline. Un-
der the second perspective, corporate failure is a process which is rooted in
management defects, resulting in poor decisions, leading to financial deteriora-
tion and finally corporate collapse (Altman, 1993; Hambrick and D’Aveni, 1988).
Most attempts to predict corporate failure implicitly assume that management
decisions critically impact on firm performance (Argenti, 1976). Although man-
agement decisions are not directly observable by external parties, their conse-
quent affect on the financial health of the firm can be observed through their
impact on the firm’s financial ratios. Previous studies have utilized a wide va-
riety of explanatory variables in the construction of corporate distress models,
including data drawn from the financial statements of firms, data from finan-
cial markets, general macro-economic indicators, and non-financial, firm-specific
information. In this study, we limit our attention to information drawn from
financial statements.



1.1 Motivation for study

There are a number of reasons to suppose a priori that the use of an evolutionary
automatic programming (EAP) approach such as GE, can prove fruitful in the
financial prediction domain. The field is characterized by the lack of a strong
theoretical framework and has a multitude of plausible, potentially interacting,
explanatory variables. The first problem facing the modeler is the selection of a
‘good’ subset of these variables, and the second problem is the selection of an
appropriate model form, representing a high-dimensional combinatorial problem.
Evolutionary methodologies such as GE which can automate this process will
be valuable.

To date, most attempts at developing models for the prediction of corporate
failure have utilized a limited set of financial ratios (Altman, 1993). These ratios
are generally selected on an ad-hoc basis by the modeler (Morris, 1997). Unfor-
tunately, the number of ratios which can be calculated from a set of financial
statements is large. A set of financial statements could contain several hundred
numbers between the primary financial statements and the detailed notes accom-
panying the primary statements, resulting in a multitude of possible financial
ratios which could potentially be included in a classification model. Most studies
in this domain utilize similar financial ratios, typically justifying the choice of
ratios by reference to earlier studies. This methodological approach leaves open
the possibility that alternative, better, representations of the financial data ex-
ist. This study applies GE to this task, and novelly allows the modelling process
to evolve different ratio representations from raw financial information.

The rest of this contribution is organized as follows. The next section provides
an overview of the literature on corporate failure, followed by a section which
describes Grammatical Evolution. We then outline the data set and methodology
utilized. The following sections provide the results of the study followed by a
number of conclusions.

2 Background

Research into the prediction of corporate failure using financial data, has a long
history (Fitzpatrick, 1932; Smith and Winakor, 1935; Horrigan, 1965). Early sta-
tistical studies such as Beaver (1966), adopted a univariate methodology, identi-
fying which accounting ratios had greatest classification accuracy in separating
failing and non-failing firms. Although this approach did demonstrate classifica-
tion power, it suffers from the shortcoming that a single weak financial ratio may
be offset (or exacerbated) by the strength (or weakness) of other financial ratios.
This issue was addressed in Altman (1968) by developing a multivariate LDA
model and this was found to improve classification accuracy. Altman’s (1968)
discriminant function had the following form:

Z = .012X1 + .014X2 + .033X3 + .006X4 + .999X5 (1)



where:
X1 = working capital to total assets

X2 = retained earnings to total assets

X3 = earnings before interest and taxes to total assets

X4 = market value of equity to book value of total debt

X5 = sales to total assets

A later study by Altman, Haldeman and Narayanan (1977), using a larger data-
set, selected the following set of explanatory variables (the study did not disclose
the coefficients):

X1 = return on assets (EBIT / Total Assets)

X2 = stability of earnings

X3 = debt service (EBIT / Total Interest)

X4 = cumulative profitability (Retained Earnings / Total Assets)

X5 = liquidity (Current Assets / Current Liabilities)

X6 = capitalization (Equity / Total Capital)

X7 = firm size (Total Assets)

Since the pioneering work of Beaver (1966) and Altman (1968), a vast ar-
ray of methodologies have been applied for the purposes of corporate failure
prediction. In the 1970s and 1980s, attention was focussed on Logit and Pro-
bit regression models (Gentry, Newbold and Whitford, 1985; Zmijewski, 1984;
Ohlson, 1980). In more recent times, as the field of biologically-inspired com-
puting has flourished, the methodologies applied to the domain of corporate
failure prediction have expanded to include artificial neural networks (Shah and
Murtaza, 2000; Serrano-Cinca, 1996; Wilson, Chong, Peel, 1995; Tam, 1991),
genetic algorithms (Varretto, 1998; Kumar, Krovi and Rajagopalan, 1997), and
grammatical evolution (Brabazon, O’Neill, Matthews and Ryan, 2002). Other
methodologies applied to this problem include support vector machines (Fan
and Palaniswami, 2000), rough sets (Zopounidis, Slowinski, Doumpos, Dimitras
and Susmaga, 1999), and multicriteria decision analysis models (Zopounidis and
Dimitras, 1998). Review studies covering much of the above literature can be
found in Dimitras, Zanakis and Zopounidis (1996), and Morris (1997). Zhang,
Hu, Patuwo and Indro (1999) provide a good review of prior applications of
artificial neural networks to the domain of corporate failure.

2.1 Definition of Corporate Failure

No unique definition of corporate failure exists (Altman, 1993). Possible defini-
tions range from failure to earn an economic rate of return on invested capital, to
legal bankruptcy, followed by liquidation of the firm’s assets. Typically, financial
failure occurs when a firm incurs liabilities which cannot be repaid from liquid
financial resources. However, this may represent the end of a period of financial
decline, characterized by a series of losses and reducing liquidity. Any attempt
to uniquely define corporate failure is likely to prove problematic. While few



publicly quoted companies fail in any given year (Morris (1997) suggests that
the rate is below 2% in the UK, and Zmijewski (1984) reports that this rate is
less than 0.75% in the US), poorer performers are liable to acquisition by more
successful firms. Thus, two firms may show a similar financial trajectory towards
failure, but one firm may be acquired and ‘turned-around’ whilst the other may
fail.

The definition of corporate failure adopted in this study is the court filing of a
firm under Chapter 7 or Chapter 11 of the US Bankruptcy code. The selection of
this definition provides an objective benchmark, as the occurrence (and timing)
of either of these events can be determined through examination of regulatory
filings. Chapter 7 of the US Bankruptcy code covers corporate liquidations and
Chapter 11 covers corporate reorganizations, which usually follow a period of
financial distress. Under Chapter 11, management is required to file a reorgani-
zation plan in bankruptcy court and seek approval for this plan. On filing the
bankruptcy petition, the firm becomes a debtor in possession. Management con-
tinues to run the day-to-day business operations, but a bankruptcy court must
approve all significant business decisions. In most cases, Chapter 11 reorganiza-
tions involve significant financial losses for both the shareholders (Russel, Branch
and Torbey, 1999) and the creditors (Ferris, Jayaraman and Makhija, 1996) of
the distressed firm. Moulton and Thomas (1993), in a study of the outcomes
of Chapter 11 filings, found that there were relatively few successful reorgani-
zations, despite a perception that some management teams were using Chapter
11 filings as a deliberate strategy for dealing with certain firm specific events
such as onerous labor contracts or product liability claims. Out of a sample of
73 firms entering Chapter 11 between 1980 and 1986 that were examined in the
study, only 44 were successfully reorganized and only 15 of these firms emerged
from Chapter 11 with more than 50% of their pre-bankruptcy assets.

2.2 Explanatory variables utilized in prior literature

A comprehensive survey of the financial ratios employed in 47 journal articles on
corporate failure is provided by Dimitras, Zanakis and Zopounidis (1996). If at-
tention is restricted to ratios drawn from the financial statements of companies,
five groupings are usually given prominence in the literature namely, liquidity,
debt, profitability, activity, and size (Altman, 2000). Liquidity refers to the avail-
ability of cash resources to meet short-term cash requirements. Debt measures
focus on the relative mix of funding provided by shareholders and lenders. Prof-
itability considers the rate of return generated by a firm in relation to its size,
as measured by sales revenue and/or asset base. Activity measures consider the
operational efficiency of the firm in collecting cash, managing stocks and con-
trolling its production or service process. Firm size provides information on both
the sales revenue and asset scale of the firm and acts as a proxy metric on firm
history (Levinthal, 1991). A range of individual financial ratios can represent the
groupings of potential explanatory variables, each with slightly differing infor-
mation content. The groupings are interconnected, as weak (or strong) financial
performance in one area will impact on another. For example, a firm with a high



level of debt may have lower profitability due to high interest costs. Whatever
modelling methodology is applied in order to predict corporate distress, the ini-
tial problem is to select a quality set of model inputs, to preprocess these into a
suitable ratio format, and then to combine the ratios using suitable weightings
in order to construct a high quality classifier.

3 Grammatical Evolution

Evolutionary algorithms (EAs) operate on principles of evolution, usually being
coarsely modelled on the theories of survival of the fittest and natural selection.
In general, evolutionary algorithms can be characterized as:

x[t+ 1] = v(s(x[t])) (2)

where x[t] is the population of solutions at iteration t , v(.) is the random varia-
tion operator (crossover and mutation), and s(.) is the selection operator. There-
fore the algorithm turns one population of candidate solutions into another, using
selection, crossover and mutation. Selection exploits information in the current
population, concentrating interest on ‘high-fitness’ solutions. Crossover and mu-
tation perturb these solutions in an attempt to uncover better solutions, and
these operators can be considered as general heuristics for exploration.

GE is a grammatical approach to Genetic Programming (GP) that can evolve
computer programs (or ‘rulesets’) in any language, and a full description of GE
can be found in (O’Neill and Ryan, 2003; O’Neill and Ryan, 2001; O’Neill, 2001;
Ryan, Collins and O’Neill, 1998). Rather than representing the programs as
syntax trees, as in Koza’s GP (Koza, 1992), a linear genome representation is
used. Each individual, a variable length binary string, contains in its codons
(groups of 8 bits) the information to select production rules from a Backus Naur
Form (BNF) grammar. In other words, an individual’s binary string contains
the instructions that direct a developmental process resulting in the creation
of a program or ‘rule’. As such, GE adopts a biologically-inspired, genotype-
phenotype mapping process.

At present, the search element of the system is carried out by an evolu-
tionary algorithm, although other search strategies with the ability to operate
over binary or integer strings have also been used (O’Neill and Brabazon, 2004;
O’Sullivan and Ryan, 2002). In particular, future advances in the field of evolu-
tionary algorithms can be easily incorporated into this system.

3.1 The Biological Approach

The GE system is inspired by the biological process of generating a protein from
the genetic material of an organism. Proteins are fundamental in the proper
development and operation of living organisms and are responsible for traits
such as eye color and height (Lewin, 2000).

The genetic material (usually DNA) contains the information required to
produce specific proteins at different points along the molecule. For simplicity,



consider DNA to be a string of building blocks called nucleotides, of which there
are four, named A, T, G, and C, for adenine, tyrosine, guanine, and cytosine
respectively. Groups of three nucleotides, called codons, are used to specify the
building blocks of proteins. These protein building blocks are known as amino
acids, and the sequence of these amino acids in a protein is determined by the
sequence of codons on the DNA strand. The sequence of amino acids is very
important as it determines the final three-dimensional structure of the protein,
which in turn has a role to play in determining its functional properties.

TRANSCRIPTION

TRANSLATION

DNA

RNA

Acids
Rules

Grammatical Evolution

Protein

Integer String

Binary String

Amino

Biological System

Phenotypic Effect

Program /
Function

Executed Program

Fig. 1. A comparison between the grammatical evolution system and a biological ge-
netic system. The binary string of GE is analogous to the double helix of DNA, each
guiding the formation of the phenotype. In the case of GE, this occurs via the appli-
cation of production rules to generate the terminals of the compilable program. In the
biological case by directing the formation of the phenotypic protein by determining the
order and type of protein subcomponents (amino acids) that are joined together.

In order to generate a protein from the sequence of nucleotides in the DNA, the
nucleotide sequence is first transcribed into a slightly different format, that being
a sequence of elements on a molecule known as mRNA. Codons within the mRNA
molecule are then translated to determine the sequence of amino acids that are
contained within the protein molecule. The application of production rules to the
non-terminals of the incomplete code being mapped in GE is analogous to the
role amino acids play when being combined together to transform the growing
protein molecule into its final functional three-dimensional form.

The result of the expression of the genetic material as proteins in conjunction
with environmental factors is the phenotype. In GE, the phenotype is a sentence
or sentences in the language defined by the input grammar. These sentences
can take the form, for example, of functions, programs, or as in the case of
this study, rule sets. The phenotype is generated from the genetic material (the
genotype) by a process termed a genotype-phenotype mapping. This is unlike
the standard method of generating a solution directly from an individual in an
evolutionary algorithm by explicitly encoding the solution within the genetic



material. Instead, a many-to-one mapping process is employed within which
the robustness of the GE system lies. Figure 1 compares the mapping process
employed in both GE and biological organisms.

3.2 The Mapping Process

When tackling a problem with GE, a suitable BNF (Backus Naur Form) gram-
mar definition must first be defined. The BNF can be either the specification
of an entire language or, perhaps more usefully, a subset of a language geared
towards the problem at hand.

In GE, a BNF definition is used to describe the output language to be pro-
duced by the system. BNF is a notation for expressing the grammar of a language
in the form of production rules. BNF grammars consist of terminals, which are
items that can appear in the language, e.g. binary operators +, -, unary oper-
ators Sin, constants 1.0 etc. and non-terminals, which can be expanded into
one or more terminals and non-terminals. For example from the grammar de-
tailed below, <expr> can be transformed into one of four rules, i.e it becomes
<expr><op><expr>, (<expr><op><expr>) (which is the same as the first, but
surrounded by brackets), <pre-op>(<expr>), or <var>. A grammar can be rep-
resented by the tuple {N,T, P, S}, where N is the set of non-terminals, T the
set of terminals, P a set of production rules that maps the elements of N to T ,
and S is a start symbol which is a member of N . When there are a number of
productions that can be applied to one element of N the choice is delimited with
the ‘|’ symbol. For example,

N = { <expr>, <op>, <pre_op> }
T = {Sin, +, -, /, *, X, 1.0, (, )}
S = <expr>

And P can be represented as:

(A) <expr> ::= <expr> <op> <expr> (0)
| ( <expr> <op> <expr> ) (1)
| <pre-op> ( <expr> ) (2)
| <var> (3)

(B) <op> ::= + (0)
| - (1)
| / (2)
| * (3)

(C) <pre-op> ::= Sin

(D) <var> ::= X (0)
| 1.0 (1)

The program, or sentence(s), produced will consist of elements of the terminal
set T . The grammar is used in a developmental approach whereby the evolution-
ary process evolves the production rules to be applied at each stage of a mapping
process, starting from the start symbol, until a complete program is formed. A
complete program is one that is comprised solely from elements of T .

As the BNF definition is a plug-in component of the system, it means that GE
can produce code in any language thereby giving the system a unique flexibility.



For the above BNF, Table 1 summarizes the production rules and the number
of choices associated with each.

Rule no. Choices

A 4
B 4
C 1
D 2

Table 1. The number of choices available from each production rule.

The genotype is used to map the start symbol onto terminals by reading codons
of 8 bits to generate a corresponding integer value, from which an appropriate
production rule is selected by using the following mapping function:

Rule = Codon V alue % No. Rule Choices (3)

Consider the following rule from the given grammar i.e., given the non-terminal
op, which describes the set of binary operators that can be used, there are four
production rules to select from.

(B) <op> :: = + (0)
| - (1)
| / (2)
| * (3)

If we assume the codon being read produces the integer 6, then

6 % 4 = 2

would select rule (2) /. Each time a production rule has to be selected to trans-
form a non-terminal, another codon is read. In this way the system traverses the
genome.

During the genotype-to-phenotype mapping process, it is possible for indi-
viduals to run out of codons, and in this case we wrap the individual and reuse
the codons. This is quite an unusual approach in EAs, as it is entirely possible
for certain codons to be used two or more times. This technique of wrapping the
individual draws inspiration from the gene-overlapping phenomenon that has
been observed in many organisms (Lewin, 2000).

In GE, each time the same codon is expressed it will always generate the
same integer value, but, depending on the current non-terminal to which it is
being applied, it may result in the selection of a different production rule. This
feature is referred to as intrinsic polymorphism. Crucially, however, each time
a particular individual is mapped from its genotype to its phenotype, the same
output is generated. This is the case because the same choices are made each
time. However, it is possible that an incomplete mapping could occur, even after
several wrapping events, and in this case the individual in question is given the



lowest possible fitness value. The selection and replacement mechanisms then
operate accordingly to increase the likelihood that this individual is removed
from the population.

An incomplete mapping could arise if the integer values expressed by the
genotype were applying the same production rules repeatedly. For example, con-
sider an individual with three codons, all of which specify rule 0 from below,

(A) <expr> :: = <expr><op><expr> (0)
|(<expr><op><expr>) (1)
|<pre-op>(<expr>) (2)
|<var> (3)

even after wrapping the mapping process would be incomplete and would carry
on indefinitely unless stopped. This occurs because the nonterminal <expr> is be-
ing mapped recursively by production rule 0, i.e., it becomes <expr><op><expr>.
Therefore, the leftmost <expr> after each application of a production would it-
self be mapped to a
<expr><op><expr>, resulting in an expression continually growing as follows:
<expr><op><expr><op><expr><op><expr> etc.

Such an individual is dubbed invalid as it will never undergo a complete
mapping to a set of terminals. For this reason we impose an upper limit on
the number of wrapping events that can occur. It is clearly essential that stop
sequences are found during the evolutionary search in order to complete the
mapping process to a functional program. The stop sequence being a set of
codons that result in the non-terminals being transformed into elements of the
grammars terminal set.

Beginning from the left hand side of the genome then, codon integer values
are generated and used to select rules from the BNF grammar, until one of the
following situations arise:

1. A complete program is generated. This occurs when all the non-terminals
in the expression being mapped are transformed into elements from the
terminal set of the BNF grammar.

2. The end of the genome is reached, in which case the wrapping operator is
invoked. This results in the return of the genome reading frame to the left
hand side of the genome once again. The reading of codons will then continue,
unless an upper threshold representing the maximum number of wrapping
events has occurred during this individual’s mapping process.

3. In the event that a threshold on the number of wrapping events has oc-
curred and the individual is still incompletely mapped, the mapping process
is halted, and the individual is assigned the lowest possible fitness value.

To reduce the number of invalid individuals being passed from generation to
generation, a steady state replacement mechanism is employed. One consequence
of the use of a steady state method is its tendency to maintain fit individuals at
the expense of less fit, and in particular, invalid individuals.

In this study, the GE algorithm uses a steady state replacement mechanism,
such that, two parents produce two children the best of which replaces the worst
individual in the current population, if the child has greater fitness. The standard



genetic operators of bit mutation (probability of 0.01), and crossover (probabil-
ity of 0.9) are adopted. A series of functions, are pre-defined as are a series of
mathematical operators. A population of initial rule-sets (programs) are ran-
domly generated, and by means of an evolutionary process, these are improved.
No explicit model specification is assumed ex-ante, although the choice of math-
ematical operators defined in the grammar do place implicit limitations on the
model specifications amongst which GE can search.

4 Problem Domain & Experimental Approach

This section describes both the data utilized by, and the model development
process adopted in, this study.

4.1 Sample Definition and Model Data

A total of 178 firms were selected judgemental (89 failed, 89 non-failed), from the
Compustat Database. Firms from the financial sector were excluded on grounds
of lack of comparability of their financial ratios with other firms in the sample.
The criteria for selection of the failed firms were:

i. Inclusion in the Compustat database in the period 1991-2000
ii. Existence of required data for a period of three years prior to entry into

Chapter 7 or Chapter 11
iii. Sales revenues must exceed $1M

The first criterion limits the study to publicly quoted, US corporations. For
every failing firm, a matched non-failing firm is selected. Failed and non-failed
firms are matched both by industry sector and size (sales revenue three years
prior to failure). It is recognized that the use of an equalized, matched sample
entails sampling bias and eliminates firm size and industry nature as poten-
tial explanatory variables (see Morris (1997) for a detailed discussion of these
points), and it is noted that utilizing an unmatched sample imposes its own
bias. The set of 178 matched firms are randomly divided into model building
(128 firms) and out-of-sample (50 firms) data-sets, with each data-set consisting
of matched pairs of failed and non-failed firms. The dependant variable is binary
(0,1), representing either a non-failed or a failed firm. In this study, rather than
pre-specifying financial ratios, GE can create ratios from raw financial data. We
have initially restricted our choice of raw financial data to the following twelve
items, extracted from their annual financial statements:

i. Sales
ii. Net Income
iii. Gross Profit
iv. EBIT
v. EBITDA
vi. Total Assets
vii. Total Current Assets



viii. Total Liabilities

ix. Total Current Liabilities

x. Total Long-term Debt

xi. Cash from Operations

xii. Free-Cash Flow

This information was collected for each firm for the three years prior to entry,
either by it or its matched firm, into Chapter 7 or Chapter 11 (denoted as T-
3, T-2 and T-1, where T-3 is three years prior to failure). The date of entry
into Chapter 7 or Chapter 11 was determined by examining US Securities and
Exchange Commission (SEC) regulatory filings for each firm.

Three Grammars are employed, in order to examine the impact on predictive
accuracy of allowing GE to evolve classification rules of varying complexity. The
three Grammars are as follows:

Grammar 1

<lc> ::= output = <coeff> * ( ( <var> ) / ( <var> ) );
<coeff> ::= ( <coeff> ) <op> ( <coeff> )

| <float>
<var> ::= Sales | Net Income | Gross Profit

| EBIT | EBITDA | Total Assets
| Total Current Assets | Total Liabilities
| Total Current Liabilities | Total Long Term Debt
| Cash From Operations | Free Cash Flow

<op> ::= +
| -

<float> ::= 20 | -20 | 10 | -10 | 5 | -5 | 4 | -4
| 3 | -3 | 2 | -2 | 1 | -1 | .1 | -.1

Grammar 2

<lc> ::= output = <expr> ;
<expr> ::= ( <expr> ) + ( <expr> )

| <coeff> * ( <var> / <var> )
<var> ::= Sales | Net Income | Gross Profit

| EBIT | EBITDA | Total Assets
| Total Current Assets | Total Liabilities
| Total Current Liabilities | Total Long Term Debt
| Cash From Operations | Free Cash Flow

<coeff> ::= ( <coeff> ) <op> ( <coeff> )
| <float>

<op> ::= +
| -

<float> ::= 20 | -20 | 10 | -10 | 5 | -5 | 4 | -4
| 3 | -3 | 2 | -2 | 1 | -1 | .1 | -.1

Grammar 3

<lc> ::= output = <expr> ;
<expr> ::= ( <expr> ) + ( <expr> )

| <coeff> * ( <ratio> / <var> )
<ratio> ::= <ratio> <op> <ratio>

| <var>
<var> ::= Sales | Net Income | Gross Profit

| EBIT | EBITDA | Total Assets
| Total Current Assets | Total Liabilities
| Total Current Liabilities | Total Long Term Debt
| Cash From Operations | Free Cash Flow

<coeff> ::= ( <coeff> ) <op> ( <coeff> )
| <float>

<op> ::= +



| -
<float> ::= 20 | -20 | 10 | -10 | 5 | -5 | 4 | -4

| 3 | -3 | 2 | -2 | 1 | -1 | .1 | -.1

Grammar one permits the construction of a predictive rule consisting of a sin-
gle ratio, formed from any two discrete pieces of raw financial data. This ratio
can be rescaled as required by an evolved coefficient parameter. In essence, this
Grammar searches for the best univariate predictive model. Grammar two per-
mits the construction of predictive rules which chain ratios together, producing
linear rules of the form:

output = coefficient * Ratio X + coefficient * Ratio Y + ...

In each of these Grammars, only ratios of the form a
b , where a and b are discrete

pieces of financial data are permitted. Grammar three allows the construction
of a linear chain of ratios, where the ratios can take the form a+b+...

x , greatly
increasing the number of possible ratios that can be formed from the raw data.
The output from the classifier is post-processed using a cut-off value of 0.50 to
produce a classification.

4.2 Selection of Fitness Function

Most studies of corporate failure adopt classification accuracy as their error
(fitness) criterion. If misclassification costs are symmetric, the sample error rate
is:

errorsample =
m1 +m2

n1 + n2
(4)

where m1 is the number of failed firms (out of n1) in the sample that are mis-
classified and m2 is the number of non-failed firms (out of n2) in the sample
that are misclassified. It is recognized that misclassification costs will not always
be symmetric, and in this case, overall classification accuracy will not be an
adequate measure of model performance because it does not reflect the relative
costs of misclassifications between the two groups. However, misclassification
costs cannot be defined uniquely, as their relative sizes will vary depending on
the identity of decision-maker. This study assumes that misclassification costs
are symmetric, but alternative treatments could be easily incorporated in the
fitness function.

5 Results

The results from our experiments are now provided. Each of the GE experi-
ments is run with a population size of 500, for 100 generations, with one-point
crossover at a probability of 0.9, one point bit mutation at a probability of 0.01,
roulette selection, and steady-state replacement. 30 independent runs of the GE
algorithm were undertaken in each experiment, and the reported results include



the best evolved individual, the mean best fitness and mean average fitness over
the 30 runs in each case.

Three series of models were constructed for each Grammar, using raw finan-
cial information drawn from one, two and three years (T-1, T-2 and T-3) prior
to failure. In all cases the reported accuracies are determined across three re-
cuts of the dataset into training and test (out-of-sample) data, maintaining an
equal balance of failed/non-failed companies in the resulting training and test-
ing datasets. The average of the best individuals evolved, across all three data
recuts, for each period are reported in Table 2.1

Years Prior Grammar
to Failure 1 (%) 2 (%) 3 (%)

1 82.67 (70.67) 85.67 (73.33) 86.00 (76.67)
2 77.33 (68.67) 80.33 (73.33) 80.33 (73.33)
3 71.67 (57.33) 73.00 (62.67) 75.00 (56.67)

Table 2. The in-sample (out-of-sample) classification accuracies for the best individ-
uals, averaged across the three recuts of the dataset, in each Grammar for the three
years prior to failure.

As expected, the classification accuracies improve as the date of failure ap-
proaches, ranging from approximately 85% (in-sample) at T-1, to approximately
73% (in-sample) at T-3. Across the three Grammars, Grammar 1 which can only
evolve a univariate ratio, is slightly out-performed both in and out-of-sample by
Grammars 2 and 3. Neither Grammar 2 or 3 clearly dominate each other, sug-
gesting that the ability of Grammar 3 to evolve complex ratio forms has not led
to the generation of better quality classifiers.

To assess the overall hit-ratio of the developed models (out-of-sample), Press’s
Q statistic (Hair, Anderson, Tatham and Black, 1998) was calculated for each
model. For T-1 and T-2, the null hypothesis, that the obtained out-of sample
classification accuracies are not significantly better than those that could occur
by chance alone, was rejected at the 5% level. A t-test of the hit-ratios also
rejected a null hypothesis that the classification accuracies were no better than
chance at the 5% level for both T-1 and T-2.

Additional metrics were collected on the positive accuracy (correct prediction
of non-failure) and negative accuracy (correct prediction of failure) for each of
the models. Table 3 provides these for the out-of-sample datasets. All reported
results are averaged across the three different randomizations of the dataset for
each year. In the case of the univariate Grammar (Grammar 1), the results for
T-2 and T-3 display asymmetry, with the evolved classifier identifying surviving
companies more easily than failing companies. Generally the results for Gram-
mars 2 and 3 are reasonably symmetric, but in line with prior findings (Altman,

1 The best individual is defined with reference to performance on the in-sample data.



1993) the evolved classifiers find it slightly easier to correctly classify non-failing
than failing companies.

Years Prior Grammar
to Failure 1 (%) 2 (%) 3 (%)

1 69.33 (72.00) 77.33 (69.33) 78.67 (74.67)
2 90.67 (46.67) 73.33 (73.33) 74.67 (72.00)
3 65.33 (49.33) 65.33 (60.00) 65.33 (48.00)

Table 3. Positive (negative) classification accuracy out-of-sample for the best individ-
uals, averaged across all three recuts.

Graphs of the evolution of fitness during the training run, for the best individual
for each Grammar, time period and data cut are provided in Figures 2, 3 and 4.
Graphs are also provided of the fitness evolution for the average of the best indi-
viduals across all 30 runs. The graphs suggest that the choice of 100 generations
was sufficient to allow for evolution of quality classifiers for each Grammar, with
most of the gains in evolutionary fitness occurring in the first 50 generations.
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Fig. 2. Best (left) and average (right) fitness values for all three recuts, for one year
prior to failure, for all three grammars on the in-sample dataset.

In order to provide insight into the form of the classifier rules evolved by the
Grammars, Table 4 lists the best classifiers (defined as producing the ‘best’
classification performance on the training dataset) for each Grammar for T-
1 to T-3. In some cases, there was more than one rule producing equivalent
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Fig. 3. Best (left) and average (right) fitness values for all three recuts, for two years
prior to failure, for all three grammars on the in-sample dataset.

classification accuracy. In these cases, the best classifier listed in the table was
chosen judgementally. The interpretation of these classifier rules is considered in
section 5.1.

Years Prior Best Classifier
to Failure

Grammar 1
1 - 2*(Total Current Liabilities / Net Income)
2 1 -19*(Net Income / Total Current Liabilities)
3 1 - 7*(Net Income / Total Current Liabilities)

Grammar 2
1 ( -1 - 6*(Cash From Operations / Sales) )

+ 2*(Total Liabilities / Total Assets)
2 1*(Total Liabilities / Total Assets) -5*(EBIT / Sales)
3 -2*(Cash From Operations / Gross Profit)

+ 3 -29.9*(Net Income / Total Current Liabilities)
Grammar 3

1 -4*( (Total Assets - Total Current Assets + EBIT) / Sales )
+ -20*( (EBITDA - Net Income) / Net Income )

2 ( -5*(Net Income / Total Current Liabilities) )
+ .1*(Sales / Gross Profit)

3 ( 3 - 20*(Net Income / Total Current Liabilities) )
-20*(Cash From Operations / Sales)

Table 4. The best classifiers evolved for each of the years and Grammars.

5.1 Discussion

Despite using financial data drawn from a wide variety of industrial sectors, the
evolved models showed a capability to discriminate between failing and non-
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Fig. 4. Best (left) and average (right) fitness values for all three recuts, for three years
prior to failure, for all three grammars on the in-sample dataset.

failing firms, most notably in the two years prior to corporate collapse. The
risk factors suggested by each classifier in Table 4 differ somewhat but present
plausible findings.

In Grammar 1, the best evolved ratios for all three time periods contain an
earnings (profit) component, and relate the size of the company’s profits to its
short-term liabilities. In all cases, the sign of the ratio coefficient is plausible,
with lower (or negative) earnings indicating greater risk of failure.

The classifier rule for T-1 under Grammar 2 utilizes a combination of ratios
which focus on the ability of the company to generate cash from its sales, and
the size of the debt of the company relative to its asset base. The coefficients
are plausible with strong cash generation and low indebtedness suggesting a
financially healthy company. For T-2, the classifier concentrates on the ability
of the company to generate profits from its sales, and the size of the debt of
the company relative to its asset base. Strong profitability and low indebtedness
indicate financial health. In the case of T-3, the evolved ratios concentrate on
the cash generation ability of the company, and the level of short-term debt
relative to its profitability. High cash generation relative to sales, and low levels
of short-term debt relative to profits, indicate a healthy company.

The evolved classifiers under Grammar 3 are similar in form for T-3 and
T-2, emphasizing the cash generation ability of the company and the level of
profit relative to the company’s short-term liabilities. In both cases, strong cash
generation and low levels of short-term debt relative to the company’s profit
suggest a financially viable company. For T-1, the evolved classifier concentrates
on the level of profit generated by the company relative to its short-term liabili-
ties. Again, high levels of profit relative to short-term debt indicate a financially
strong company.



The evolved rules and their related coefficients, across all Grammars and
across all time periods, are in accordance with financial intuition, and do not
display evidence of merely resulting from data-mining. The results also suggest
that Grammars 2 and 3, which have the capability to evolve complex combi-
nations of the financial data, did not greatly out-perform the simpler models
produced by Grammar 1. Considering the individual Grammars, it interesting
that despite the potential of Grammars 2 and 3 to generate long, complex ra-
tio chains, this bloating did not occur and the evolved classifiers are reasonably
concise in form. We also note that the evolved classifiers (unlike those created by
means of a neural network methodology, for example) are amenable to human
interpretation.

6 Conclusions

In this paper a novel methodology, GE, was introduced and applied for the pur-
poses of prediction of corporate failure. It is noted that this novel methodology
has general utility for rule-induction applications. GE was found to be able to
evolve quality classifiers for corporate failure from raw financial information. In
performing this task, GE was required to evolve its own ratio representation
of the financial data, rather than being supplied with modeler-defined financial
ratios as is typically the case in studies of corporate failure.

In assessing the performance of the developed models, a number of caveats
must be borne in mind. The premise underlying this paper and all empirical
work on corporate failure prediction, is that corporate failure is a process, com-
mencing with poor management decisions, and that the trajectory of this pro-
cess can be tracked using accounting ratios. This approach does have inherent
limitations. It will not forecast corporate failure which results from a sudden en-
vironmental event. Although not undertaken in this study, the incorporation of
non-financial qualitative explanatory variables or variables related to the firm’s
share price performance could further improve classification accuracy. Finally,
the firms sampled in this study are relatively large and are publicly quoted.
Thus, the findings of this study may not extend to small businesses. Despite
these limitations, the high economic and social costs of corporate failure im-
ply that models which can indicate declining financial health will have utility.
Given the lack of a clear theory underlying corporate failure, empirical modelling
usually adopts a combinatorial approach, a task for which GE is well suited.
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