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Abstract—Effective hedging of derivative securities is of
paramount importance to derivatives investors and to market
makers. The standard approach used to hedge derivative instru-
ments is delta hedging. In a Black-Scholes setting, a continu-
ously rebalanced delta hedged portfolio will result in a perfect
hedge with no associated hedging error. In reality, continuous
rehedging is impossible and this raises the important practical
question such as when should a portfolio manager rebalance the
portfolio? In practice, many portfolio managers employ relatively
simple deterministic rebalancing strategies, such as rebalancing
at uniform time intervals, or rehedging when the underlying
asset moves by a fixed number of ticks. While such strategies
are easy to implement they will expose the portfolio to hedging
risk, both in terms of timing and also as the strategies do not
adequately consider market conditions. In this study we propose
a rebalancing trigger based on the output from a GP-evolved
hedging strategy that rebalances the portfolio based on dynamic
nonlinear factors related to the condition of the market, derived
from the theoretical literature, including a number of liquidity
and volatility factors. The developed GP-evolved hedging strategy
outperforms the deterministic time based hedging methods when
tested on FTSE 100 call options. This paper represents the first
such application of GP for this important application.

I. INTRODUCTION

Derivatives market makers will typically seek to manage the
risk of holding contracts on derivative instruments by taking
a balancing (hedging) position in the underlying stock, or in
an appropriate futures or option contract. The objective of a
hedge is to minimize the risk from the position in the derivative
security. The position in the hedging security is intended to
offset the position in the derivative contract and in a perfect
Black-Scholes market a derivatives market maker who hedges
their position continuously will bear no price risk.

Delta hedging is an options strategy that aims to hedge the
option risk associated with underlying price movements by
trading the underlying assets. The delta of a stock option (∆)
is the ratio of the change in the price of the stock option
(being one example of a derivative instrument) to the change
in the price of the underlying stock. A derivatives market
maker will need to sell ∆ shares of the underlying stock to

hedge a short put option. The gain (loss) from the short put
option offsets the loss (gain) from the short stock position.
According to the Black-Scholes model (BSM) [1] as long as
the hedging portfolio including the underlying stock, is re-
balanced continuously with ∆ re-calculated continuously, the
portfolio will be perfectly hedged with a zero hedging error,
i.e., the payoffs from the option and position in the underlying
stock offset each other. However, in real world financial
markets this is not the case because the strict assumptions of
the BSM do not hold. The payoff from the hedging portfolio
will not be the same as the derivative payoff and the difference
is called hedging error.

Key assumptions of the original BSM include assumptions
that there are no transaction costs and that security trading
is continuous. Recent advances in theory have relaxed these
assumptions [2] [3] [5] [6] [7] [8] [10] [11] [12] [13] and
have shown that optimal hedging involves a trade-off between
rebalancing costs and risk. More frequent rebalancing will
reduce hedging error but comes at the expense of the higher
transaction costs incurred from the more frequent rebalancings.

However the question of when a portfolio should be re-
balanced in real world financial markets cannot be easily
answered without empirical tests using real data. This is
because real-world financial markets are incomplete and many
of the assumptions in the more advanced theoretical models
(such as [2] [3] [5] [6] [7] [8] [10] [11] [12] [13]) do not
hold in practice. For risk management purposes, option traders
are often required to close their book or limit their exposure
during periods of no trading of the underlying asset therefore
they need to rebalance the option hedge back to a delta-neutral
position at least daily.

Very little published research has examined the issue of
optimal timing of rehedging using empirical data drawn from
financial markets. This study aims to address this gap by
examining discrete hedging error using high frequency data.
In addition, we employ a novel methodology in this domain,
Genetic Programming (GP). A GP-evolved hedging strategy
is developed in which a rehedging decision is triggered con-
ditional on intraday market conditions. The results from this978-1-4799-7492-4/15/$31.00 c©2015 IEEE



strategy are then benchmarked against a number of time-based
deterministic hedging strategies.

A. Structure of Paper
The remainder of this study is organized as follows. Section
II provides some background on option delta hedging and
provides the motivation for applying Genetic Programming to
evolve a hedging strategy. Section III describes the data and
methodology used. A discussion of the empirical results is pro-
vided in Section IV and finally, conclusions and opportunities
for future work are discussed in Section V.

II. OVERVIEW OF OPTIONS DELTA HEDGING

In the Black-Scholes model [1] the underlying stock price S
at time t is assumed to follow a geometric Brownian motion
as in Eq. 1 below:

dS

S
= µdt+ σdz, (1)

where dz is a standard Wiener process, µ is the drift and
σ is the volatility of the stock and these are assumed to be
constant. In the BSM, the principle of no arbitrage oppor-
tunities applies. A portfolio composed of an option and ∆
units of the underlying stock earns the risk-free rate as long
as the portfolio is rebalanced continuously to update the ∆.
The riskless portfolio with one short call (put) option needs
to be long (short) ∆ (1−∆) shares of the underlying stock at
any given time, where the ∆ of a European call option with
dividend is given as in Eq. 2.

∆ = e−qTN(d1) (2)

where
d1 =

ln(S/K) + (r − q + σ2/2)T

σ
√
T

(3)

where N(x) is the cumulative probability distribution function
for a standardised normal distribution, K is the strike price of
the option, r is the continuously compounded risk-free rate, q
is the rate of dividend yield and T is the time-to-maturity of
the option.

The most restrictive assumptions in BSM from the per-
spective of derivatives market makers are the assumptions of
continuous trading and no transaction costs. Recent theoretical
advances have relaxed these assumptions to examine option
pricing and hedging in the presence of transaction costs and
discrete time trading. The next section provides background
on some of these studies.

A. Rebalancing at Discrete Time Intervals
One of the earliest studies to examine discrete hedging was
[2] which analysed the main components of returns from a
discretely re-balanced hedge portfolio. Leland [3] explicitly
proposed a modified option replicating strategy based on the
BSM where the hedging strategy itself depends on transaction
costs and the revision interval. A number of studies followed
this direction including [10], where the hedging strategies pro-
posed were able to cover large transaction costs or small time-
intervals between rebalancing, and [11], where the strategy

TABLE I
REBALANCING FREQUENCY IN DISCRETE HEDGING STRATEGIES

Paper Revision Frequency
[2] 1 day
[3] 1 week, 4 weeks, 8 weeks
[10] 0.26 day, 0.52 day, 2.6 days
[6] 1 day, 1 week, 2 months
[13] 1 day, 1 week, 1 month and 6 months

developed includes a fixed cost structure and also reduces the
modified variance described by Leland in the case of a single
option. Parallel with this work, [6] proposed a hedging strategy
covering transaction costs from a binomial lattice framework.

The rebalancing frequencies in the above studies are pro-
vided in Table I. Theoretically the more often the portfolio
is re-balanced, the lower the hedging risk, but the greater the
transaction costs. Therefore the hedging strategy is a trade-
off between these items. The analysis of [12] suggests an
optimal rebalancing frequency of approximately a week under
a very strong assumption that the growth rate of the underlying
security is more than the risk-free rate. While this assumption
seems reasonable in the long run, it is questionable in the short
run as growth rates can vary markedly from time to time.

B. Rebalancing Triggered by Underlying Price/Delta Move
In BSM delta hedging, the underlying price is the only item
that changes according to Eq. 2. There are hedging strategies
where the revision is triggered by an underlying price change,
for example in [8] and [13], or by a change in the delta
itself, for example [9] and [10]. However, these studies do
not provide a simple answer as to how a threshold size for
movement of the underlying price or delta should be set in
order to trigger a revision in the hedging portfolio.

In the study of [8], the (price) move based and discrete
time based hedging strategies were compared. Assumptions
were made as to expected transaction costs and the variance
of the total cash flow for both strategies. Toft [13] simplified
these expressions and computed general input parameters. The
results indicated that neither strategy is always dominant and
that the best choice of strategy depends on the underlying
volatility and transaction costs. When volatility is low and
transaction costs are high then a time based strategy produces
better outcomes.

C. Optimal Hedging Strategy
The optimal hedging strategy in the presence of proportional
transaction costs was proposed in [5] and [7] through “Utility
Maximisation”. The option writing price was obtained in [7]
by comparing the maximum utilities available to the writer
by trading in the market with and without the obligation to
fulfil the terms of an option contract at the exercise time.
Optimality in their model is attractive. However, this approach
is computationally expensive as it usually results in three
or four dimensional free boundary problem. This method
rebalances the portfolio whenever a control variable hits the



boundary of a no transaction region. This control variable is
optimised endogenously. The analysis was extended in [15]
under a general cost function with fixed and proportional costs.
A number of studies attempted to improve the computation
speed for this hedging strategy, and approaches proposed
included use of asymptotic analyses [14] and [16], and the
analytic approximation approach adopted in [19].

Compared with the models discussed in Sections II-A and
II-B, these hedging strategies give endogenous re-balancing
frequencies and the optimal rebalancing frequency is solved
theoretically based on the model’s assumptions. However, the
these approaches are not practical as apart from computational
cost issues, they also require that investors’ risk preference
functions can be specified.

D. Motivation of Applying GP for Option Delta Hedging
Delta hedging is dynamically trading the underlying to hedge
the option position, therefore the gain (loss) from the option
position offsets the loss (gain) from the underlying security
position to achieve a status so that the return of the overall
portfolio composed by the option and underlying security
is zero. This may sound easy if there is only one hedging
point that must be assessed, as hedging is just minimising the
portfolio variation in terms of its monetary value. However,
in reality, the lifetime of an option contract normally spans a
few months. The final hedging result depends on all rehedging
actions during this time window. The hedging error depends
not only on the initial and final market condition, but also
on the entire sequence of the market changes in between.
Though BSM delta hedging tells us how much to hedge, it
is not possible to rehedge continuously as it is too expensive.
Although a simple approach is to rehedge at fixed intervals or
when the underlying price or the delta moves by a set amount,
the problem then becomes how should the relevant threshold
values be set. In all deterministic schemes, no account is taken
of market conditions which is an obvious flaw.

In the utility based optimal hedging strategy as discussed in
Section II-C, rehedging is triggered endogenously by maximis-
ing hedgers’ utility. A simplified method for operationalising
the utility based optimal hedging strategy is outlined in [5] and
[7]. In this approach, no-transaction regions and transaction
regions are defined by defining a control variable which we
term the hedging band. If the current hedging ratio lies within
this hedging band then no rehedging action is needed.

If the current hedging ratio is outside of the hedging band,
rehedging is triggered and the hedging ratio is brought back
to the nearest boundary of the band by changing the quantity
of the underlying security held. As reviewed in Section II-C
there is no close form solution for this utility based optimal
hedging strategy. More specifically there is no close solution
to determine the boundary points of the hedging band. Asymp-
totic analysis in [14] and [16] and analytic approximation in
[19] have been used to get an approximate solution for it.

Genetic programming (GP) [20] [21] was initially developed
to allow the automatic creation of a computer program from a
high-level statement of a problem’s requirements, by means

of an evolutionary process. In GP, a computer program to
solve a defined task is evolved from an initial population of
random computer programs. An iterative evolutionary process
is employed by GP, where better (fitter) programs for the
task at hand are allowed to ‘reproduce’ using recombination
processes to recombine components of existing programs. The
reproduction process is supplemented by incremental trial-and-
error development, and both variety-generating mechanisms
act to generate variants of existing good programs. In contrast
to some other evolutionary algorithms such as the genetic
algorithm, GP uses a variable-length representation in that
the size of the structure of a solution may not be known.
Hence, the number of elements used in the final solution, as
well as their interconnections, must be open to evolution. This
property allows GP to evolve a simple or a complex structure,
depending on the nature of the problem being solved. More
generally, GP can be applied for symbolic regression, in other
words, to recover a data-generation process / model from a
dataset. This powerful model induction capability has seen
GP widely applied in the finance domain. A review of some
of these works can be found in [22] [23].

GP offers particular utility in the study of optimal hedging.
With intraday data available this is a data-rich area. While
many plausible explanatory variables exist from theory the
interrelationship among the relevant variables is uncertain. The
hedging problem given to GP is a path dependent minimisation
problem based on lots of unknown points where the market
conditions are different during the option’s trading window.
The utility maximisation in the utility based optimal hedging
strategy is simplified to minimise the hedging error in this GP
approach. The hedging band in this GP-evolved strategy is a
nonlinear function of a number of market variables including
recent traded price, trading volume, implied volatility, etc.,
which are used to detect the market change. This hedging
band creates a boundary around the BSM delta ratio. When
current hedging ratio moves out of this boundary, it gives
an instruction for rehedge; when the current hedging ratio is
within this boundary, it indicates that there is no dramatic
market change therefore no action is needed.

III. DATA AND METHODOLOGY

A. Data
For this study data was drawn from market prices on futures
and options on the FTSE 100 index. The dataset consists of
all recorded traded prices, volumes, bid and ask quotations
and depths from 2nd January 2004 to 31 December 2004.
This dataset has been selected because FTSE index futures and
option markets are very actively traded markets and therefore
suffer less from known microstructure issues which can cause
problems when modelling less liquid markets [24]. The FTSE
100 Dividend Yields and the Bank of England LIBOR rates
(1 day, 1 week, 2 weeks, 1 month, 3 months, 6 months, 1
year) were obtained from Datastream. The risk-free interest
rate term structure was estimated using the Nelson and Siegel
interest rate model [4]. The model parameters were obtained
by calibrating the model to LIBOR rates for 2004.



Under the BSM, option prices are determined by the under-
lying price, time to maturity (current time to contract expiry),
strike price, risk-free rate, and volatility. All these inputs
except volatility are observable from the market.

In this paper the Black-Scholes model implied volatilities
from trading prices were used to estimate an implied volatility
surface using the two-dimensional kernel density smoothing
method approach from [25]. The estimated volatility surface is
a function of option’s moneyness and time to maturity. During
the hedging process, the implied volatility surface for time t
was estimated from all options traded one hour before t.

Daily options trading runs from 8:00 to 16:30. An option
contract is characterised by option type, strike price and matu-
rity date. Options with differing moneyness behave differently
and therefore need to be modelled separately. In this study
we focus on at-the-money (ATM) call options which are the
most liquid options. There were 96 ATM call options in this
one year dataset and of these 29 call option contracts were
selected for modelling purposes with 23 contracts being used
for in-sample training and 6 for out-of-sample testing.

The hedging window for each option contract in the tests is
decided by its first and last transaction time in the dataset. In
the majority of cases, the first transaction time is close to the
start of the contract’s life and the last trade is one or two days
before its expiry. Therefore the length of the hedging window
of each contract is close to the time to maturity, calculated at
its first occurrence time in the data.

Delta hedging an option contract is performed by trading the
underlying securities. Ideally, the BSM delta and hedging band
should be updated every time market information changes but
to render the updating process computationally feasible, we
only update BSM delta and the GP hedging band when the
underlying price moves at least 3 ticks.

As already discussed, transaction costs are an important
factor in delta hedging practice. Another important practical
factor is to better understand BSM delta hedging, by using
real-world high frequency data to find the relationship between
rebalancing frequency and hedging error. In this study, we
place our focus on this latter issue and therefore ignore
transactions costs, leaving the embedding of these into the
analysis for future work.

B. Time based strategies

In time based strategies, rebalancing occurs at uniform time
intervals. Seven rebalancing frequency (level) strategies are
examined: where rehedging occurs at 5-minute, 10-minute, 20-
minute, 30-minute, 1-hour, 5-hour and 1-day intervals. The 5-
minute interval is selected as the minimum rebalancing time
interval, as the typical choice for modelling frequency is 5-
minutes or lower to avoid distortions from market microstruc-
ture effects [18]. The FTSE 100 index futures market starts at
8:00 and ends at 17:30. For the highest frequency (5-minute
intervals) there are 114 trading opportunities each day. There
is only one trading opportunity for the lowest frequency 1-day
interval as in Table II.

TABLE II
TIME BASED REHEDGING STRATEGIES

Frequency Number of Possible Rehedges Per Day
Every 5-min 114
Every 10-min 57
Every 20-min 28
Every 30-min 19
Every 1-hour 10
Every 5-hour 2
Every 1-day 1

TABLE III
GP TERMINAL SET IN OPTION DELTA HEDGING

Underlying traded price
Dividend yield
Option moneyness
Time to maturity
BSM implied volatility
Risk-free interest rate
Underlying price change duration
Option BSM delta
N

′
(d1): Numerator of BSM Gamma calculation

Option BSM Gamma
Underlying ask price
Underlying bid price
Log of trading volume
Bid-ask spread, the difference of ask and bid price
Bid-ask spread change compared with 1 minute ago

C. GP Based Optimal Hedging

In GP based optimal hedging, GP’s model induction and
optimisation capability are utilised to determine the relevant
market information explanatory variables, to automatically
detect market changes and give the instruction of rehedging to
achieve an objective of minimising the hedging error during
the option hedging window. As discussed in Section II-D, GP
is used to explore the functional form of the hedging band.
If the current underlying holding exceeds the hedging band
thresholds, a rehedging process takes place. The flowchart for
the GP application is given in Fig. 1.

In the experiments, the population size is set at 2000, each
run consist of 50 generations, and the experiments are run 30
times during training. The initial analysis shows that 30 gener-
ations should be enough to return a matured answer. However,
we do not want to truncate the training process. Therefore we
set 50 generations for each run. A large population size is
employed in order to avoid corner solutions. To reduce the
chance of over fitting, a relatively small maximum tree depth
of 5 is selected. The terminal set and function set are in Tables
III and IV.

In this application GP is used to solve a path dependent min-
imisation problem as discussed in Section II-D. The hedging
band from GP as in Fig. 1, has two important functions during
the hedging process. First, it instructs when to rehedge, i.e.,



TABLE IV
GP FUNCTION SET IN OPTION DELTA HEDGING

Addition
Subtraction
Multiplication
Division
Normal cumulative distribution function
Exponential function
Natural log
Square root
Cube root

Fig. 1. GP Based Optimal Hedging Flowchart

when the quantity of the current underlying held, φ, is outside
the boundary of BSM delta ∆ ± hedging band (β). Second,
it instructs how much to rehedge, i.e., the portfolio is adjusted
so that the underlying position held is altered to the closest
edge of the band, ∆± β.

Each time the market information updates, the investor’s
overall net portfolio value changes, due to changes in the
value of FTSE 100 index futures or changes in the value of
FTSE 100 index options held. The portfolio value is also net
of accumulated financing costs.

When the short option position is closed out, the hedging
process finishes and the underlying holding is sold. The
final hedging error is then calculated as the summary of all

cash flows, including the positive cash flow from selling the
final underlying holding, the negative cash flow from closing
the option position and the accumulated hedging costs that
occurred during the whole hedging window. The accumulated
hedging costs during the full path are from the underlying
trading and interest charges on financing the trade as in Eq. 4,
where φ is the underlying holding, s and p are the prices of
the underlying and option, t is the end of the hedging window,
0 is the beginning of the hedging window, φ0 is the size of
the underlying requiring purchase when the option is sold, it is
the BSM ∆ at time 0, j indicates the time stamp whenever the
market information changes in the hedging window, θ is the
quantity underlying position that needs to be adjusted and its
value is assigned in Eq. 5 and int is the accumulated interest
charged daily on accumulated cash balance. In this application
the objective is to minimise the hedging error, which could be
positive or negative therefore the fitness function is the square
root of the mean sum of squared errors as in Eq. 6 below,
where, FHEi is the final hedging error from the ith option
contract as calculated in Eq. 4 and n, is the option contract
number available in the training dataset.

FHEi = φt×st−pt+(p0−φ0×s0+
t−1∑

j=1

(θ×sj+int)) (4)

Where

θ =






∆− β − φ
0
∆+ β − φ

if
φ < ∆− β
∆− β ≤ φ ≤ ∆+ β
φ > ∆+ β

(5)

fitnessfunction =

√∑n
i=1 FHE2

i

n
(6)

IV. RESULTS

In assessing the results of the GP-evolved hedging strategy, we
benchmark it against 7 time based exogenous delta hedging
strategies, across all 29 ATM call option contracts. Following
[17] and [19], this study compares the performance of the
alternative hedging strategies in the mean-variance framework.
The mean and standard deviation are reported for all strategies
(averaged over the 29 contracts) in Table V. For the GP-
evolved strategy there are in-sample training and out-of-sample
results and we provide comparative results for both the full
sample (including training and testing) and the out-of-sample
dataset separately. The fitness of the best individual over GP
training generations from the best run is given in Fig. 2.

The performance for 7 time based strategies from the full
dataset is illustrated in Fig. 3, where the left vertical axis is
the mean of the hedging errors, the right vertical axis is the
standard deviation of the hedging errors and the horizontal
axis is the hedging frequency setting. In the horizontal axis,
the frequency increases from right to left. Therefore we expect
to see the mean of the hedging errors converge to zero and
its volatility (the standard deviation) for different frequencies
decrease from right to left.
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There are two objectives in this application. The first is
to examine BSM delta hedging using high frequency data
to find the relationship between rebalancing frequency and
hedging error in real market data. The second is to compare
the performance of different hedging strategies including the
GP-evolved hedging strategy.

The trend lines in Fig. 3 show that the expected hedging
error and rehedging frequency relationship holds in general
for the ATM call option segment. That is when rehedging
frequency increases the hedging error (indicated by the trend
line of the mean hedging errors) and risk (indicated by
the trend line of the standard deviations) decrease. There is
also a risk-rewarding trend noticed that when the hedging
return increases, the risk represented by the standard deviation
increases and when the hedging return decreases the risk
decreases. However, when we look at the isolated strategies
(frequency setting 4 and 5), these relations do not exist. This
may be plausibly explained by market microstructure frictions.

In the mean-variance framework, the best hedging strategy

TABLE V
HEDGING PERFORMANCE

Out-of-Sample (6 Contracts) Full-Sample (29 Contracts)

Strategy Mean STD Trades Mean STD Trades

5-min 46.44 108.46 8075 86.81 80.60 8959

10-min 47.79 108.67 4038 88.51 80.97 4479

20-min 49.14 109.2 1983 88.84 80.52 2200

30-min 49.18 108.55 1346 89.18 79.87 1493

1-hour 45.11 111.29 708 87.31 83.20 786

5-hour 46.82 110.47 142 88.67 82.25 157

1-day 48.36 116.63 71 91.31 85.72 79

GP 36.22 109.92 6493 72.85 79.23 6975

should give the lowest mean and standard deviation of the
hedging errors. In Table V, by the mean of the hedging error,
GP-evolved hedging strategy gives the lowest hedging error
36.22 in the out-of-sample data. The performance of the 7
time based strategies are similar to each other and the lowest
hedging error is (within time based strategies) 45.11 from 1-
hour frequency. GP has reduced the hedging error by 19.7
percent. However, by looking at the standard error of the
difference between the means from GP and from the 5-m
strategy, the computed t statistic, -1.69 shows that these two
means are not statistically different.

Looking at the standard deviations of the hedging error,
the lowest one 108.46 is from 5-minute frequency time based
strategy. The standard deviation of the hedging error from GP
is 109.92, which is only 1.3 percent higher. Note that the 5-
minute frequency time based strategy give a higher hedging
error (46.44) than the hedging error (45.11) of the 1-hour
frequency strategy, and the standard deviation of of 1-hour
frequency strategy is 111.29, which is 2.6 percent higher than
that based on a 5-minute frequency. Therefore overall the GP-
evolved hedging strategy gives a better performance compared
with time based strategies, which is plausible given that the
GP-evolved hedging strategy triggers rebalancing based on
market conditions, whereas deterministic time based strategies
take no account of these factors.

The number of trades from each strategy are also listed in
Table V. In practice, there is a bid-ask transaction cost and pos-
sibly some fixed fees occurring at each transactions/rehedging
point. Therefore the strategy with the highest number of trans-
actions is the most expensive one. The transactions number
from the GP-evolved hedging strategy is less than the 5-
minute strategy and more than 10-minute strategy and other
less frequent strategies. It may appear that GP is the second
most expensive strategy. In this initial application of GP to
this domain we do not explicitly consider transactions costs,
leaving this for future work. Incorporation of this factor into
the fitness function would tend to favour strategies with less
frequent trading.



V. CONCLUSIONS

Effective hedging of derivative securities is of paramount
importance to derivatives investors and to market makers.
Although the standard delta hedging approach is widely used,
there is no simple way to determine when rehedging should
occur. In this study we novelly develop a rebalancing trigger
based on the output from a GP-evolved hedging strategy
that rebalances the portfolio based on dynamic nonlinear
factors related to the condition of the market, derived from
the theoretical literature, including a number of liquidity and
volatility factors. The results of the empirical tests conducted
in this study indicate that when delta hedging rebalancing
frequency increases, the hedging return decreases and the
corresponding risk decreases. This trend holds clearly for time
based hedging strategies with ATM options. As noted above,
we do not consider transactions costs in this study, and future
work will seek to embed this issue in the analysis. Another
useful area for future work could focus on using a GP based
hedging strategy with a joint objective function of maximizing
hedging return whilst minimizing hedging risk.
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