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Abstract:

Trade execution is concerned with the actual mechanics of buying or
selling the desired amount of a financial instrument. Investors wishing
to execute large orders face a tradeoff between market impact and
opportunity cost. Trade execution strategies are designed to balance
out these costs, thereby minimising total trading cost. Despite the
importance of optimising the trade execution process, this is difficult
to do in practice due to the dynamic nature of markets and due to
our imperfect understanding of them. In this paper we adopt a novel
approach, combining an evolutionary methodology whereby we evolve
high-quality trade execution strategies, with an Agent-based Artificial
Stock Market, wherein the evolved strategies are tested. The evolved
strategies are found to outperform a series of benchmark strategies and
several avenues are suggested for future work.
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1 Introduction

Algorithmic trading (AT) can be broadly defined as the use of computers to
automate aspects of the investment process. Hence, AT can encompass the
automation of decisions ranging from stock selection for investment, to the
management of the actual purchase or sale of that stock. A significant proportion
of all financial asset trading is now undertaken by AT systems with this form
of trading accounting for approximately 20-25% of total US market volume in
2005. Boston-based research firm Aite Group predicts that AT will account for
more than half of all shares traded in the U.S. by the end of 2010 (Kim, 2007).
AT is also common in European financial markets with approximately 50% of
trading volumes being accounted for by algorithmic trading programs (Engle et al.,
2008). Significant volumes in Asian markets are similarly traded (Decovny, 2008).
Algorithmic trading is seen in multiple financial markets ranging from equities to
FX (foreign exchange), to derivative (futures, options etc.) markets. In this paper
we restrict attention to one aspect of financial trading to which AT can be applied,
namely efficient trade execution.

A practical issue that arises for investors is how they can buy or sell large
quantities of a share (or some other financial asset) as efficiently as possible in
order to minimise market impact and information leakage. The obvious strategy to
minimise market impact is to break up the order up into smaller lots and spread
it over several purchases. While this will reduce the market impact, it incurs the
risk of suffering opportunity cost, that market prices may start moving against
the trader during the multiple purchases. This produces what is referred to as the
trader’s dilemma (Kissell & Glantz, 2003).

Added to this, the steady flow of small orders over time may inform other
market participants of the presence of a large order and so encourage them to
‘run ahead’ of the investor. Hence, the design of trade execution strategies is
intended to balance out the total cost of market impact and opportunity cost
while maintaining a tight control over information leakage. In selecting a trade
execution strategy, the investor must not only balance her preferences but must
also be prepared to adapt and change strategy as market conditions evolve with
the aim of selecting best trading tactic under current market conditions.

The task in devising an efficient execution strategy is complex as it entails
multiple sub-decisions including how best to split up the large order, what style to
adopt in executing each element of the order (aggressive or passive), how execution
performance is to be measured, and what type of order to use. When an asset
is traded simultaneously on multiple markets a further decision must be made as
to how to split up the order amongst these markets. In addition, the electronic
order books faced by the investor are constantly changing. In the past the task
of designing an execution strategy was typically undertaken by human experts
but this is infeasible as the number of sub-decisions increases, suggesting that an
automated approach is required. Critically, any approach must be dynamic and
responsive to underlying market conditions in real-time.

In this study we adopt an evolutionary methodology, called Grammatical
Evolution (GE) (O’Neill & Ryan, 2003), to ‘evolve’ a high-quality trade execution
strategy. GE is an Evolutionary Automatic Programming (EAP) technique which
allows the generation of computer programs (or ‘rule sets’) in an arbitrary
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language. GE can conduct an efficient exploration of a search space, and notably
permits the incorporation of existing domain knowledge in order to generate
‘solutions’ with a desired structure. In finance (for example), this allows the users
to seed the evolutionary process with their current trading strategies in order to
see what improvements the evolutionary process can uncover. Recently GE has
been successfully applied to a number of financial problems. These include financial
time series modelling, intraday financial asset trading, corporate credit rating, and
the uncovering of technical trading rules (Brabazon & O’Neill, 2006).

To test the performance of the evolved trade execution strategies, we employ
an artificial stock market (ASM). A critical aspect of real-world design and testing
of execution strategies, is that they cannot be easily backtested using historical
data as it is very difficult to assess the impact that an execution strategy would
have produced ex ante. Apart from this issue, another practical problem is that
historical order book information only represents a single sample path through
time and hence, using this information to estimate the likely future utility of
any specific execution strategy is problematic. By implementing an artificial stock
market environment, it is possible to create a closed world which allows the testing
of new execution strategies over multiple runs, potentially allowing us to develop
robust execution strategies.

1.1 Structure

This paper is organised as follows. The next section provides some background
on the typical operation of an electronic double auction marketplace; Section 3
discusses trade execution strategies; Section 4 describes the evolutionary approach
adopted in this study, namely Grammatical Evolution; our experimental approach,
including the artificial stock market model used to test the evolved execution
strategies is outlined in Section 5; Section 6 provides our results, with conclusion
and some suggestions for future work being presented in the final section of this
paper.

2 Background

In this section we provide an introduction to the market structure most commonly
found in large international equity markets, and we also discuss some relevant
concepts from the market microstructure literature.

2.1 Market Mechanism

Today most equity markets operate an electronic double auction limit order
book. Examples include the Electronic Communication Networks (ECNs) in the
United States, the Toronto Stock Exchange, and the Hong Kong Stock Exchange.
Electronic trading platforms in derivative markets have also gained popularity in
recent years over the traditional open-outcry auctions, such as Chicago Mercantile
Exchange’s (CME) Globex platform and International Securities Exchange’s
electronic option trading platform. One advantage of an open limit-order book
is the greater transparency offered by these systems when compared with dealer
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market settings. Price quotes and transactions are visible to all participants
which generally improves the efficiency of price discovery, thus promoting market
confidence. It also promotes competition as dealers/market makers are encouraged
to post the best prices to attract order flow (CFA, 2009).

In a limit order market, traders can either submit a limit order or a market
order. A market order is an order to buy or to sell a specified number of shares. It
guarantees immediate execution but provides no control over its execution price. In
contrast, a limit order is an order to buy or to sell a specified number of shares at a
specified price. It provides control over its execution price but does not guarantee
its execution.

Table 1 Order Book 1

Bid Ask
Shares Prices Prices Shares

300 50.19 50.22 200
200 50.18 50.23 300
400 50.17 50.24 100
500 50.16 50.25 300
300 50.15 50.26 200
100 50.14 50.27 400

Table 2 Order Book 2

Bid Ask
Shares Prices Prices Shares

300 50.19 50.22 200
500 50.18 50.23 300
400 50.17 50.24 100
500 50.16 50.25 300
300 50.15 50.26 200
100 50.14 50.27 400

Table 3 Order Book 3

Bid Ask
Shares Prices Prices Shares

300 50.19 50.22 100
500 50.18 50.23 300
400 50.17 50.24 100
500 50.16 50.25 300
300 50.15 50.26 200
100 50.14 50.27 400

Table 4 Order Book 4

Bid Ask
Shares Prices Prices Shares

300 50.19 50.23 100
500 50.18 50.24 100
400 50.17 50.25 300
500 50.16 50.26 200
300 50.15 50.27 400
100 50.14 50.28 300

Table 1 shows a sample order book, where all the buy and sell orders are
visible/transparent to traders in the market. It consists of two queues which store
buy and sell limit orders, respectively. Buy limit orders are called bids, and sell
limit orders are called offers or asks. The highest bid price on the order book is
called best bid, and the lowest ask price on the order book is called best ask. The
difference between best bid and best ask is called bid-ask spread. Prices on the
order book are not continuous, but rather change in discrete quanta called ticks.

Beginning in 2001, the US equity markets changed their minimum tick size
from one sixteenth of a dollar to one cent. Since decimalisation, the average trade
size has declined from 1,200 shares per transaction in 2000 to 300 shares today.
This in turn has led to an explosion in the number of trades executed and a
narrowing of spreads with large institutional orders taking longer to execute. Due
to these changes, Wall Street firms (both buy-side and sell-side) have started
to embrace AT for trade execution over the last few years (Kissell, 2006). The
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emergence of AT has resulted in a substantial increase in the speed of trade
execution and a significant reduction in the average value of each trade (ASX,
2010).

In a limit order market, orders arrive randomly in time. The price limit of
a newly arrived order is compared to those of orders already held in the system
to ascertain if there is a match. If so, the trade occurs at the price set by the
first order. The set of unexecuted limit orders held by the system constitutes the
dynamic order book, where limit orders can be cancelled or modified at any time
prior to their execution. Limit orders on the order book are typically (depending
on market rules) executed strictly according to (1) price priority and (2) time
priority. Bid (ask) orders with higher (lower) prices get executed first with time of
placement being used to break ties. A buy (sell) market order is executed at the
best ask (bid) price. The limit order book is highly dynamic, because new limit
orders will be added into the order book, and current limit orders will get executed
or cancelled from the order book throughout the trading day. Table 2 shows the
order book after a trader submits a buy limit order with 300 shares placed at price
50.18. Table 3 shows the order book after a trader submits a buy market order
with 100 shares. Table 4 shows the order book after a trader submits a buy market
order with 300 shares.

Apart from market and limit orders, some stock exchanges also offer
hidden/iceberg orders to allow traders to conceal the total size of a large limit
order. Such orders consist of two components, a small component whose size is
visible in the order book and a larger hidden component with a size known only
to the order submitter. The hidden component is exposed to the market gradually
through execution of the visible part of the order (Aitken et al., 2001; Biais
et al., 1995). Many electronic trading platforms have introduced this kind of order,
including Euronext, the Toronto Stock Exchange, the London Stock Exchange, and
XETRA. Hidden limit orders are often used by large liquidity traders to hide their
intent to trade (Bongiovanni et al., 2006). However, iceberg orders exhibit a less
favorable time priority compared with pure limit orders (Bessembinder et al., 2009;
Esser & Monch, 2007). After the visible portion of an iceberg order is completely
matched, other visible limit orders at the same limit price that were entered before
the new portion is displayed take priority.

An alternative form of market is provided by a crossing network (CN). This
network may be operated internally by a large financial trading house, or by an
independent entity. In a crossing network, buyers and sellers are electronically
paired for an agreed-on quantity, and the trade is priced by reference to a price
determined in another market. Unlike visible order books, the level of liquidity is
unknown a priori in a crossing network which is a dark pool. The investor’s trade
is not revealed until after the order has been filled. One advantage of trading in a
dark pool is that the trade will usually take place within the bid-ask spread thereby
providing a better price than might be available elsewhere. Another advantage
of trading large orders in a crossing network is that market impact costs are
minimized since investors avoid adverse price movements which would otherwise
occur upon the revelation of such large orders in the market (CFA, 2009). A
disadvantage of submitting a trade to a crossing network is that the investor does
not usually know the level of liquidity available in the network for the financial
asset of interest, hence it is possible that a trade will not be fully executed (Gresse,
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2006). The main CNs currently operating in North America are Reuters’ Instinet
Crossing Network, Pipeline Trading System, Liquidnet, ITG’s POSIT (Portfolio
System for Institutional Traders) and the New York Stock Exchange’s after-hours
Crossing Network.

As technology has developed, investors are able to implement more
sophisticated execution strategies whereby orders can be routed to multiple
markets simultaneously, and then adapted on the fly.

2.2 Trading Cost

Trading cost is one of the two important factors which reflect investment
performance while the other is the underlying investment strategy of the portfolio
manager (Borkovec et al., 2009; Keim & Madhavan, 1995; Keim, 1999). Execution
costs can have a significant impact on investment performance. For example,
Perold (1988) observed that a hypothetical or ‘paper’ portfolio constructed
according to the Value Line rankings outperforms the market almost 20% per year
during the period from 1965 to 1986, whereas the actual portfolio (the Value Line
Fund) outperformed the market by only 2.5% per year, the difference arising from
execution costs. 40% of market participants believe that alpha is lost primarily
through trading costs, while 14% of respondents attribute the loss of alpha to
bad timing of their transactions (Sussman, 2008). Today, 98% of large institutions
and 88% of medium-sized institutions globally are consumers of transaction cost
research (Borkovec et al., 2009).

Consideration of trading costs is vital in determining a quality trade execution
strategy (Kissell & Glantz, 2003). If trading costs are not properly managed they
could cause a superior opportunity to become only marginally profitable or a
normally profitable opportunity to turn into a loss (Keim & Madhavan, 1995;
Kissell, 2006).

Trading costs can be decomposed into direct costs and indirect costs. Direct
costs are observable and include commissions, fees and taxes. Indirect costs are
typically more difficult to estimate and can be divided into three main components:

• market impact cost,

• opportunity cost, and

• bid-ask spread.

Execution needs to balance all of these components (Almgren, 2008). There
is ample empirical evidence dating from Kraus & Stoll (1972) to Chan &
Lakonishok (1995) and Chan & Lakonishok (1997), indicating that price impact
is the dominant component of transaction costs. As markets become increasingly
automated, fixed costs of trading are driven down, and this effect is more
pronounced. Thus, there is no loss in generality in equating transaction costs with
market impact cost (Hora, 2006).

Market impact occurs when the actions of an investor start to move the price
adversely against themselves. Hence, market impact is the difference between a
transaction price and what the market price would have been in the absence of
the transaction. For example, an order may be executed as quickly as possible
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through sweeping all orders posted to the limit-order book, however this would
incur significant cost and drive the price of the security against the investor.
In this case the investor avoids market risk but, by demanding instantaneous
liquidity, incurs significant market impact cost. Market impact can be divided into
permanent impact cost caused by information leakage and instantaneous impact
cost caused by liquidity demand, where the latter is typically about 95% of entire
market impact cost (Kim, 2007).

Opportunity cost arises due to two primary reasons (Keim & Madhavan, 1998).
One reason is that an order is only partially filled or in a more extreme case, is not
executed at all. This is most likely to occur when using passive trading strategies,
such as limit order strategies.

There are many factors which influence trading costs. It is less expensive to
trade a small volume of stock than a larger quantity (Yang & Jiu, 2006). Trading
costs are also driven by the desired trading time frame (it costs more to transact
over shorter time intervals as the investor has to pay for liquidity). Trading costs
vary during the day as the amount of market liquidity typically varies between
mid-session and the open/close. Buying/selling high capitalisation stocks typically
yields lower price impact cost for a given order size due to the liquidity available
in a high cap stock (Lim & Coggins, 2005a). Price impact costs typically increase
as order imbalance increases (Lim & Coggins, 2005a). Furthermore, research has
shown that important determinants of the price effect are investment style, trade
type (agency, single, or principal), market momentum, stock price volatility, and
trading venue (Keim & Madhavan, 1998). Execution needs to balance all of
these factors and the resulting strategy should ideally be dynamically adaptive
depending on observed liquidity and other market data (Almgren, 2008).

2.3 Market Impact Asymmetry

Many empirical studies document asymmetries in the trading costs (market impact
costs) of large order purchases and sales. Kraus & Stoll (1972), Holthausen
et al. (1987, 1990), Chan & Lakonishok (1993, 1995), Gemmill (1996), Keim &
Madhavan (1995, 1996, 1997), Saar (2001), Bikker et al. (2007) find that buys have
larger price impact than sells. Not only is the price impact larger for buys, but
the subsequent reversal is also much smaller than for sells. While prices go up on
buys and down on sells, they revert after sells but remain high after buys, creating
a permanent price impact asymmetry. Thus there is an asymmetry in the overall
impact of buys and sells.

Several explanations appear in the literature to account for this phenomenon.
Chan & Lakonishok (1993) and Keim & Madhavan (1996) argue that sells are more
often liquidity-motivated rather than information-based than buys. Buys create
new long-term positions and thus imply a preference to hold a particular stock.
Saar (2001) provides a different explanation for the price impact asymmetry. He
builds a theoretical model which demonstrates how the price impact asymmetry
can arise. The main implication of the model is that the history of price
performance of a stock affects the degree of asymmetry: the longer the run of price
appreciations, the less positive the difference in permanent price impact between
buys and sells. When the price run-up is long enough, sells may even have higher
price impact than buys. Another explanation for the price impact asymmetry is
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given by Chiyachantana et al. (2004). They find that the asymmetry depends on
particular market conditions: price effects of buyer-initiated trades are greater in
bull markets (as in 1997-1998) whereas those of seller-initiated trades are larger
in bear markets (as in 2001). Boscuk & Lasfer (2005) take a different view and
show that the type of investor and the combination of the size of the trade and the
trader’s resulting level of ownership are the major determinants of price impact
asymmetry at the London Stock Exchange.

3 Trade Execution Strategy

A dilemma facing traders is that trading aggressively is associated with high cost
and trading passively is associated with high risk. Traders can not reduce one
component without adversely affecting the other. Hence, these factors are balanced
in trade execution strategies.

Trade execution strategies are predefined sets of instructions for trade
execution, which include how best to break up a large order for execution and the
actual mechanisms for placing and managing the orders. When deciding whether
or not to submit an order to the market place an algorithm must decide on an
order’s:

• Submission Time - when should the order be placed?

• Size - what size order should be sent to the market?

• Type - should the order be a market, limit or a hidden order?

• Pricing - at what price should the order be placed?

• Destination - there are many market destinations and types, which one will
provide the best conditions of execution for the order?

• Management - if a limit order has been submitted, how should this order be
managed post submission?

The total trading volume of the order to be traded is often expressed as a
percentage of the average daily volume (ADV) of the stock (Kissell & Glantz,
2003). An order of less than 5% of ADV can generally be traded over a day without
much price impact. On the contrary, if the target volume is larger than 25% of
ADV, it may require execution over several days in order to minimise market
impact. Orders between 5 and 15% of ADV can be traded during the course of a
trading day but with some work; orders between 15 and 25% of ADV are difficult
trades to execute which require traders to minimize information leakage pertaining
to their trading intentions (Kissell & Glantz, 2003). Cai & Sofianos (2006) also
suggest that the limit of one day trading typically ranges from 10 to 30% of ADV.

We assume that the order to be traded consists of V shares. The order is
usually sliced into N smaller or child orders (each of which will be submitted to
the market according to our trading strategy), with an order size of s1, s2, . . ., sN
respectively, where
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V =

N∑
i=1

si .

Commonly these child orders are submitted at regular intervals. Intervals of half
an hour and fifteen minutes are usually adopted in practice. The sizes of these
child orders (s1, s2, . . ., sN ) can be (conceptually) determined using the following
formula (Kissell & Glantz, 2003)

Min : Cost(x) + λ ∗Risk(x) ,

which seeks to balance the trading cost and associated risk. In the formula,
Cost(x) is the forecasted trading cost estimate, Risk(x) is timing risk which
represents the associated uncertainty surrounding the forecasted trading cost
estimates due to price volatility and liquidity risk, λ is the risk aversion factor
depicting an investor’s desired tradeoff between cost and risk, and x is the
corresponding order schedule of the large order represented by a size vector in the
form

x = (s1, s2, . . . , sN ) .

The trade schedule problem has been investigated by many researchers including
Bertsimas & Lo (1998), Almgren & Chriss (1999), Almgren & Chriss (2000),
Almgren (2003), Coggins et al. (2003), Obizhaeva & Wang (2005), Almgren &
Lorenz (2007), and Alfonsi et al. (2010).

The actual implementation of the child orders consists of several decisions. For
example, if a market order is being placed, the trader must decide which market
to use (as most large companies will trade in multiple locations). If a limit order is
being placed, additional considerations are, what limit price to set and when (and
how) this price will be adjusted if the order does not execute within a certain time
frame.

An important characteristic of an order is its level of aggressiveness. At the
most aggressive end of the spectrum are market orders; at the least aggressive end
of the spectrum are limit orders with prices that are far away from the current
market price. Empirically, traders determine their order aggressiveness depending
on their trading preferences and on available market information when submitting
their orders (Ng, 2010).

3.1 Order Book Information Content

There are a large number of studies analysing the relationship between order
aggressiveness and the information content of limit order books. It has been
reported that limit orders submitted at the best quote or inside the spread have
lower trading costs than market orders (Harris & Hasbrouck, 1996). Similarly,
Griffiths, Turnbull and White (2000) recommend placing buy (sell) limit orders
at the best bid (ask) as an optimal strategy for minimising the implementation
shortfall. As far as the probability of a limit order execution is concerned there
is evidence that it is primarily determined by the distance of the limit price from
the best quote. Orders closer to the best quote have a higher execution probability
and a shorter time to execution (Cho & Nelling, 2000; Lo et al., 2002). Lo & Sapp
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(2010) find that traders are hesitant to submit aggressive orders. They are less
likely to submit market orders, than limit orders at the best price and limit orders
improving the best price.

Table 5 Definitions of Market Variables

Variables Definitions
BidDepth Number of shares at the best bid
AskDepth Number of shares at the best ask

RelativeDepth
Total number of shares at the best five ask prices divided by
total number of shares at the best five bid and ask prices

Spread Difference between the best bid price and best ask price

Volatility Standard deviation of the most recent 20 mid-quotes

PriceChange
Number of positive price changes within the past ten
minutes divided by the total number of quotes submitted
within the past ten minutes

It has been found that if one side of the order book is dominant, where the
dominant side is the one with more depth, then there is an imbalance between
supply and demand, and limit orders on the dominant side take longer to execute
(Al-Suhaibani & Kryzanowski, 2000) and have a higher risk of an adverse price
movement leading to non-execution. Consequently, traders on the same side of the
market as the dominant side of the book are more likely to submit market orders
to achieve an immediate execution (Cao et al., 2009; Griffiths et al., 2000; Omura
et al., 2000; Ranaldo, 2004; Verhoeven et al., 2004).

Traders are more willing to place market orders when the market depth on
the same side of the order book is large. If the market depth on the opposite side
is larger, traders prefer to submit limit orders (Cao et al., 2008; Duong et al.,
2009; Ranaldo, 2004; Xu, 2009). When the bid-ask spread widens, traders prefer
to submit limit orders in order to avoid large bid-ask spread cost (Biais et al.,
1995; Cao et al., 2008; Duong et al., 2009; Pascual & Verdas, 2009; Ranaldo,
2004; Verhoeven et al., 2004; Xu, 2009). Prior research is inconclusive on the effect
of market volatility on order aggressiveness. Pascual & Verdas (2009) show that
higher historic volatility suggests limit order submission in mid cap stocks, but the
opposite phenomenon is observed in large cap stocks. It has also been reported that
limit orders are submitted more frequently when price volatility is high (Chung
et al., 1999). Hall & Hautsch (2006) observe an increase of all kinds of order
submission during periods of high volatility. Ranaldo (2004) supports an inverse
relation between order aggression and volatility, while Lo and Sapp (2010) report a
positive relationship between order aggression and volatility. Cao et al. (2008) find
that volatility has a minimal effect on order aggression. Verhoeven et al. (2004)
argues that greater price volatility implies that a trader has a greater chance of
executing his order at a better price. The inconsistency concerning the effects of
market volatility in previous studies can be partially explained by the notable
changes of market structure in recent years.

From the above, it can be seen that prior literature suggests a range
of possible explanatory variables, but indicates that we have an incomplete
theoretical understanding of how these factors interact. This suggests that there
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will be particular utility for the application of evolutionary methods to uncover a
suitable model structure (trade execution strategy). Other explanatory variables
considered in previous literature include time of day effects and waiting time of
trading process. The six information indicators (Table 5), BidDepth, AskDepth,
RelativeDepth, Spread, V olatility and PriceChange, are the explanatory
variables mostly employed in recent literature of market microstructure. Thus,
we use these six information indicators to construct a dynamic trade execution
strategy

3.2 Performance Evaluation

The standard industry metric for measuring trade execution performance is the
VWAP measure, short for Volume Weighted Average Price. The VWAP price as a
quality of execution measurement was first developed by Berkowitz et al. (1988).
They argue that ‘a market impact measurement system requires a benchmark price
that is an un-biased estimate of prices that could be achieved in any relevant
trading period by any randomly selected trader’ and then define VWAP as an
appropriate benchmark that satisfies this criteria.

The VWAP is calculated as the ratio of the value traded and the volume traded
within a specified time horizon (Berkowitz et al., 1988)

VWAP =

∑
(V olume ∗ Price)∑

(V olume)

where V olume represents the number of shares in each trade and Price represents
its corresponding traded price. An example is shown in Table 6.

Table 6 VWAP Calculation of A Sample Buy Strategy

Submission
Shares

Traded
Value

Time Price
Child Order 1: t0 400 ∗ 50.15 = 20,060

600 ∗ 50.16 = 30,096
Child Order 2: t1(t0 +∆t) 1,000 ∗ 50.40 = 50,400
Child Order 3: t2(t0 + 2∆t) 200 ∗ 50.34 = 10,068

800 ∗ 50.36 = 40,288
Child Order 4: t3(t0 + 3∆t) 1,000 ∗ 50.39 = 50,390
Child Order 5: t4(t0 + 4∆t) 1,000 ∗ 50.68 = 50,680
Child Order 6: t5(t0 + 5∆t) 1,000 ∗ 51.10 = 51,100
Child Order 7: t6(t0 + 6∆t) 1,000 ∗ 50.87 = 50,870
Child Order 8: t7(t0 + 7∆t) 700 ∗ 50.98 = 35,686

300 ∗ 51.00 = 15,300
Child Order 9: t8(t0 + 8∆t) 1,000 ∗ 50.39 = 50,390
Child Order 10: t9(t0 + 9∆t) 1,000 ∗ 50.26 = 50,260

Total: 10,000 505,588
VWAP = 505, 588/10, 000 = 50.5588

In order to evaluate the performance of a trade execution strategy, its VWAP is
compared against the VWAP of the overall market. The rationale here is that
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performance of a trade execution strategy is considered good if the VWAP of the
strategy is more favorable than the VWAP of the market within the trading period
and poor if the VWAP of the strategy is less favorable than the VWAP of the
market within the trading period. For example, if the VWAP of a buy strategy
(VWAP strategy) is lower than the market VWAP (VWAPmarket), it is considered
a good trade execution strategy. Conversely, if the VWAP strategy is higher than
the VWAPmarket, it is considered a poor trade execution strategy. Although this
is a simple metric, it largely filters out the effects of volatility, which composes
market impact and price momentum during the trading period (Almgren, 2008).
The performance evaluation functions are as follows (which were used by Lim &
Coggins (2005b)):

VWAP Ratio =


104∗(VWAP strategy−VWAPmarket)

VWAPmarket
(BuyStrategy)

104∗(VWAPmarket−VWAP strategy)
VWAPmarket

(SellStrategy)

where VWAPmarket is the average execution price which takes into account all
the trades over the day excluding the strategy’s trades. This corrects for bias,
especially if the order is a large fraction of the daily volume (Lim & Coggins,
2005b). For both buy and sell strategies, the smaller the VWAP Ratio, the better
the strategy is.

3.3 Prior Evolutionary Approaches for Trade Execution

Despite the importance of optimising trade execution, there has been relatively
little attention paid in the literature to the application of evolutionary methods
for this task. One notable exception is Lim and Coggins (2005b) who applied a
Evolutionary Algorithm (discussed in the next section) to evolve a trade execution
strategy using order book data from a fully electronic limit order market, the
Australian Stock Exchange (ASX). In their study, a large order is to be completed
within one trading day. The order is divided into ten child orders which are
submitted to the market at regular intervals of half an hour. The relative sizes
of these child orders are determined according to share volume trading patterns,
which typically follow a U-shaped pattern with increased volumes trading at the
open and close. The child orders are placed into the market as limit orders at the
best available price and the Evolutionary Algorithm is used to find the optimal
lifetime that a limit order would remain on the order book (if it had not already
been executed) before it was automatically ticked over the spread to close out the
trade. The fitness function was the VWAP performance of that strategy relative
to the benchmark daily VWAP. Each strategy was trained on three months’ worth
of transaction-level data using a market simulator. The results were tested out of
sample on three highly liquid stocks and tested separately for sell side and buy
side. The in sample and out of sample performances were better than those of the
two benchmark strategies.

While the above study represents an interesting application of an evolutionary
methodology for trade execution, it should be noted that the process was employed
as an optimisation heuristic within a fixed, static, trade execution strategy.



short title 13

However, evolutionary methodologies are also capable of uncovering/discovering
entire structures, such in this case as an entire trade execution strategy. This is the
approach that is adopted in this paper, which novelly applies a variant of genetic
programming called Grammatical Evolution (GE) in order to uncover a dynamic
execution strategy.

4 Evolutionary Approach

Evolutionary processes represent an archetype, whose application transcends
their biological root. In biological evolution, species are positively or negatively
selected depending on their relative success in surviving and reproducing in the
environment. Differential survival, and variety generation during reproduction,
provide the engine for evolution (Darwin, 1859; Spencer, 1864) (Figure 1).

Figure 1 Evolutionary cycle
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These concepts have metaphorically inspired the field of evolutionary
computation (EC). Algorithm 1 outlines the evolutionary meta-algorithm. There
are many ways of operationalising each of the steps in this meta-algorithm,
consequently, there are many different, but related, evolutionary algorithms (EA).
Just as in biological evolution, the selection step is a pivotal driver of the
algorithm’s workings. The selection step is biased in order to preferentially select
better (or ‘more fit’) members of the current population. The generation of new
individuals creates children which bear some similarity to their parents but are
not identical to them. Hence, each individual represents a trial solution in the
environment, with better individuals having increased chance of influencing the
composition of individuals in future generations. This process can be considered
as a ‘search’ process, where the objective is to continually improve the quality
of individuals in the population. In financial markets, EC methodologies have
been used for solving a broad selection of problems, ranging from prediction, asset
selection, portfolio optimization, derivatives pricing and credit risk assessment. An
overview of some EC applications in finance can be seen in Brabazon et al. (2008).
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Initialise the population of candidate solutions;
repeat

Select individuals (parents) for breeding from the current population;
Generate new individuals (children) from these parents;
Replace some / all of the current population with the newly-generated individuals;

until until terminating condition;

Algorithm 1: Evolutionary Algorithm

4.1 Grammatical Evolution

Grammatical Evolution (GE) (O’Neill & Ryan, 2003) is an evolutionary
methodology, and can be used to evolve structures or ‘rule sets’. These rule sets
can be as general as a functional expression which produces a good mapping
between a series of known input-output data vectors. A particular strength of
the methodology is that the form of the model need not be specified a priori by
the modeler. This is of particular utility in cases, such as in this study, where
we have a theoretical or intuitive idea of the nature of the relevant explanatory
variables, but a weak understanding of the functional relationship between the
explanatory and the dependent variable(s). GE does not require that the model
form is linear, nor does the method require that the measure of model error used
in model construction is a continuous or differentiable function. Another useful
feature of a GE approach is that it produces human-readable rules that have the
potential to enhance understanding of the problem domain.

4.1.1 Genotype-phenotype Mapping

A genotype-phenotype mapping is employed such that each individual’s variable
length binary string, contains in its codons (groups of 8 bits) the information
to select production rules from a Backus Naur Form (BNF) grammar. The user
can tailor the grammar to produce solutions that incorporate domain knowledge
by biasing the grammar to produce very specific forms of sentences. BNF is
a notation that represents a language in the form of production rules. It is
comprised of a set of non-terminals that can be mapped to elements of the set
of terminals (the primitive symbols that can be used to construct the output
program or sentence(s)), according to the production rules. A simple example
BNF grammar is given below, where <expr> is the start symbol from which all
programs are generated. The grammar states that <expr> can be replaced with
either <expr><op><expr> or <var>. An <op> can become either +, -, or *, and a
<var> can become either x, or y.

<expr> ::= <expr><op><expr> (0)

| <var> (1)

<op> ::= + (0)

| - (1)

| * (2)

<var> ::= x (0)
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| y (1)

The grammar is used in a developmental process to construct a program by
applying production rules, selected by the genome, beginning from the start
symbol of the grammar. In order to select a production rule in GE, the next codon
value on the genome is read, interpreted, and placed in the following formula:

Rule = Codon V alue Mod Num. Rules

where Mod represents the modulus operator. Given the example individual’s
genome (where each 8-bit codon has been represented as an integer for ease of
reading) in Fig.2, the first codon integer value is 220, and given that we have 2
rules to select from for <expr> as in the above example, we get 220 Mod 2 = 0.
<expr> will therefore be replaced with <expr><op><expr>.

Figure 2 An example GE individual’s genome represented as integers for ease of
reading.

220 20253101203220240 102203 55 202221

241 133 30 204 140 39 202 203 10274

Beginning from the left hand side of the genome codon integer values are
generated and used to select appropriate rules for the left-most non-terminal in the
developing program from the BNF grammar, until one of the following situations
arise:

• A complete program is generated. This occurs when all the non-terminals
in the expression being mapped are transformed into elements from the
terminal set of the BNF grammar.

• The end of the genome is reached, in which case the wrapping operator is
invoked. This results in the return of the genome reading frame to the left
hand side of the genome once again. The reading of codons will then continue
unless an upper threshold representing the maximum number of wrapping
events has occurred during this individual’s mapping process.

• In the event that a threshold on the number of wrapping events has occurred
and the individual is still incompletely mapped, the mapping process is
halted, and the individual assigned the lowest possible fitness value.

Returning to the example individual, the left-most <expr> in <expr><op><expr>

is mapped by reading the next codon integer value 240 and used in 240 Mod 2 =
0 to become another <expr><op><expr>. The developing program now looks like
<expr><op><expr><op><expr>. Continuing to read subsequent codons and always
mapping the left-most non-terminal the individual finally generates the expression
y*x-x-x+x, leaving a number of unused codons at the end of the individual, which
are deemed to be introns and simply ignored.
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4.1.2 Mutation and Crossover

The representation of the individuals to which the genetic operators in GE
are applied are variable-length linear strings. Due to this representation, the
standard genetic operators such as crossover and mutation in the canonical
Genetic Algorithm (Holland, 1975) can be applied to the underlying genotypic
representation irrespective of the form of the phenotype. Mutation changes a bit
or an integer to another random value, and one-point crossover swaps sections of
the genetic code between parents. However, because of the mapping process, the
effects on the phenotype can be complex.

In the case of mutation events at the codon level, the integer value of a
codon will be modified. However, this change may or may not have effects at the
phenotypic level. For example, given the following BNF production rule:

<variables> ::= a

| b

where the non-terminal < variables > can be replaced with the variables a or b.
Using this rule, an integer codon value of 10 will result in < variables > being
replaced with a; after mutation to 11 it will results in the use of b. On the other
hand, a mutation event that results in an integer codon value of 10 becoming 12
leaves < variables > being replaced with a. This type of mutation event is referred
to as neutral mutation as it has no effect on the phenotype’s functionality (fitness).
A standard one-point crossover event on a GE chromosome results in the right-
hand sides of the parental chromosomes undergoing a simple swap in a standard
GA fashion. In the case of GE, again due to the mapping process, the impact
on the phenotype may not be so simple. Crossover in GE has a ripple effect on
the derivation sequence after the crossover point. Figure 3 helps to illustrate this
process. The mapping process in GE can be described as a sequence of derivations,
which in turn can be represented as a derivation tree. From the example derivation
tree in Figure 3, we can see that a number of ripple sites at different locations on
the derivation tree are created once the genetic material on the right-hand side of
the crossover site is removed, the result being that the codons swapped over from
the second parent are used to complete the derivation sequence at these incomplete
points. A full description of GE can be found in O’Neill & Ryan (2003).

In the context of this study, GE is used to evolve trade execution strategies.
A population of strategies is maintained and iteratively improved via a simulated
evolutionary process. The structure of these rules is governed by a choice of
grammar and the utility of evolved strategies is assessed by testing them in an
artificial stock market environment. Both the choice of grammar and the design of
the stock market environment are discussed in the next section.

5 Experimental Approach

In this section we describe the experimental approach adopted in this study. Two
separate sets of simulation experiments were undertaken. In the first set of these
experiments we examine the simpler case where a trader wishes to create a quality
execution rule which will allow her to decide how to amend unfilled limit orders as
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Figure 3 An illustration of ripple crossover in grammatical evolution using the
chromosome (represented as rule choices) (b) and its corresponding derivation
tree, which is produced as a result of the grammar (a). The site of one-point
crossover is indicated (b) on the chromosome and the derivation tree. The
resulting derivation tree ripple sites are indicated with ‘?’ (c)
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market conditions change, limiting the option to a decision as to whether to cross
the spread immediately or whether to leave the limit order unchanged. Critically,
the decision is determined by information concerning current market conditions at
the time of order amendment. In the second set of experiments, we examine the
case where the trader can create a rule which allows her to amend unfilled limit
orders by altering their limit price to varying degrees. Again, the decision as to
how to amend the limit price is determined by current market conditions.

Initially we describe the experimental design and the grammars used in each set
of experiments. Then we describe the artificial stock market environment which is
used to test the evolved execution strategies in both sets of experiments. A critical
aspect of real-world design and testing of execution strategies, is that they cannot
be easily backtested. Apart from this issue, another practical problem is that
historical information from order books represents a single sample path through
time. By implementing an artificial stock market environment, it is possible to
create a closed world which allows the testing of new execution strategies over
multiple runs, potentially allowing us to develop robust execution strategies.

5.1 Experiment One

In the first set of experiments we consider a large order of 10% of ADV of the
artificial market, which is to be traded over one day. This order is equally divided
into ten child orders. In all trade execution strategies, any uncompleted orders
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are crossed over the spread at the end of trading day in order to ensure order
completion.

In our evolved strategies, the timing of order aggression is determined by an
execution rule evolved using GE. At each amendment time (an integral multiple
of ∆t minutes after submission), if the market condition satisfies the condition of
the execution rule, order aggression happens (the spread is crossed), otherwise, the
uncompleted order is amended to the current best price as per the order book. An
amendment frequency of 10 minutes is adopted in all limit order strategies. The
grammar adopted in our first set of experiments is defined in Figure 4.

Figure 4 Grammars in Experiment One

<lc> ::= if (<stamt>)

class = "CrossingSpread"

else

class = "NotCrossingSpread"

<stamt> ::= <cond1><op><cond2><op><cond3><op><cond4>

<op><cond5><op><cond6>

<op> ::= and | or

<cond1> ::= (BidDepth>AvgBidDepth) is <boolean>

<cond2> ::= (AskDepth>AvgAskDepth) is <boolean>

<cond3> ::= (RelativeDepth>AvgRelativeDepth) is <boolean>

<cond4> ::= (Spread>AvgSpread) is <boolean>

<cond5> ::= (Volatility>AvgVolatility) is <boolean>

<cond6> ::= (PriceChange>AvgPriceChange) is <boolean>

<boolean> ::= True | False

In this grammar (Figure 4), we include the market information which GE
can use in evolving execution strategies. Specifically, AvgBidDepth represents the
average bid depth of the market, AvgAskDepth represents the average ask depth
of the market, AvgRelativeDepth represents the average relative depth of the
market, AvgSpread represents the average spread of the market, AvgV olatility
represents the average volatility of the market and AvgPriceChange represents
the average price change of the market. The six financial variables are observed at
the time of order submission or at the time of subsequent order amendment.

The evolved rule consists of a Boolean expression which when evaluated using
real-time information from the market outputs either a ‘0’ or a ‘1’. In the latter
case, class = “CrossingSpread”, and the uncompleted limit order will be crossed
over the bid-ask spread. Otherwise, its limit price will be amended to the current
best price.

In order to evaluate the results from our evolved trading strategies we compare
them against those of two benchmark execution strategies, which were used
as benchmarks of trade execution strategies in previous work (Lim & Coggins,
2005b). One benchmark trade execution strategy is a pure market order strategy
in which each child order is submitted as a market order every half hour. This
strategy takes market liquidity immediately by crossing the bid-ask spread. The
other benchmark trade execution strategy is a pure limit order strategy. Traders
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submit each child order as a limit order placed at the best price, and amend its
price to best price at a fixed frequency until this order is fully executed or until
the trading period expires. At the end of trading day, any unexecuted orders are
traded by crossing the bid-ask spread in order to ensure order completion. For
instance, a buy order sn may be submitted to the market as a limit order placed
at the best bid price with an amendment frequency of ∆t minutes. If ∆t minutes
after submission, this limit order is not fully executed, it will be amended to the
new best bid price. This amendment process continues in ∆t intervals up to the
end of trading day, at which time the uncompleted order(s) are traded as market
orders by crossing the bid-ask spread.

In the market order strategy, order aggression (crossing the bid-ask spread)
happens immediately after order submission which guarantees execution, at the
cost of market impact. In the limit order strategy, order aggression happens at the
end of trading period aiming to reduce market impact, at the risk of opportunity
cost. A more sophisticated limit order strategy would allow for order aggression
between these two extreme cases. A general limit order strategy is to cross the
uncompleted limit order over the spread after submission but before the end of
trading day.

5.2 Experiment Two

In the second set of experiments we again consider a large order of 10% of ADV of
the artificial market, which is to be traded over one day (5 hours in the artificial
market). This order is equally divided into ten child orders which are submitted to
the market at intervals of thirty minutes over the trading day. Each child order is
submitted as a limit order with an amendment frequency of ten minutes. We adopt
two different order lifetimes, short (half an hour) and long (up to the end of the
trading day). In all trade execution strategies, any uncompleted orders are crossed
over the spread at the end of trading day in order to ensure order completion.
GE is used to evolve efficient trade execution strategies which determine the
aggressiveness level of each limit order at submission time and at amendment time.
The grammar adopted in our second set of experiments is defined in Figure 5.

In this grammar (Figure 5), we include two additional variables
PercOfTradedV olume and PercOfPastT ime (used in experiment two) which
represent the percentage of the traded volume accounting for the total volume
V shares and the percentage of the past time accounting for the whole trading
period at the observed time respectively.

As for experiment one, GE outputs a rule which produces a ‘decision’
depending on the current real-time state of the market. This determines the
degree of aggressiveness of the re-pricing of currently unfilled limit orders. If the
output is class = “AggressiveLimitPrice”, the limit orders to buy (sell) will be
placed at one tick size above (below) the best bid (ask) price; if the output is
class = “PassiveLimitPrice”, the limit orders to buy (sell) will be placed at
one tick size below (above) the best bid (ask) price; if the output is class =
“ModestLimitPrice”, the limit orders to buy (sell) will be placed at the best bid
(ask) price.

As for experiment one, we benchmark the results from the GE strategies. Here
we employ three benchmark limit order strategies based on benchmark limit order
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Figure 5 Grammars in Experiment Two

<lc> ::= if (<stamt>)

class = "AggressiveLimitPrice"

else {

if (<stamt>)

class = "PassiveLimitPrice"

else

class = "ModestLimitPrice"

}

<stamt> ::= (<stamt><op><stamt>)|<cond1>|<cond2>|

<cond3>|<cond4>|<cond5>|<cond6>|<cond7>|<cond8>

<op> ::= and

<cond1> ::= (BidDepth<comp>AvgBidDepth)

<cond2> ::= (AskDepth<comp>AvgAskDepth)

<cond3> ::= (RelativeDepth<comp>AvgRelativeDepth)

<cond4> ::= (Spread<comp>AvgSpread)

<cond5> ::= (Volatility<comp>AvgVolatility)

<cond6> ::= (PriceChange<comp>AvgPriceChange)

<cond7> ::= (PercOfTradedVolume<comp><threshold>)

<cond8> ::= (PercOfPastTime<comp><threshold>)

<comp> ::= <less>|<more>|<lessE>|<moreE>

<less> ::= "<"

<more> ::= ">"

<lessE> ::= "<="

<moreE> ::= ">="

<threshold> ::= 0.1|0.2|0.3|0.4|0.5|0.6|0.7|0.8|0.9

strategy in previous work (Lim & Coggins, 2005b), which are simple aggressive
limit order strategy (SA), simple modest limit order strategy (SM) and simple
passive limit order strategy (SP), where the aggressiveness levels of limit orders
are aggressive level (one tick size above/below the best bid/ask price for buy/sell
limit orders), modest level (at best available price) and passive level (one tick
size below/above the best bid/ask price for buy/sel limit orders). These strategies
adopt the same amendment frequency and the same lifetimes as the GE strategies.

For both sets of experiments, we employ two periods (training and test
periods). In the training period, GE is used to evolve trade execution strategies.
Each individual is exposed to 20 continuous trading days in the artificial market
and their fitness is calculated as their average VWAP ratio over the 20 trading
days. The strategies are evolved over 40 generations, using GE settings of variable-
length, one-point crossover at a probability of 0.9, mutation at a probability of
0.01, roulette selection, steady-state replacement and a population size of 100. In
the test period, the best evolved strategy in the training period is tested out of
sample over 240 days in the artificial market.
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5.3 Simulating an Artificial Market

The training and evaluation of all trade execution strategies are implemented
in an artificial limit order market, which is simulated using an agent-based
model. Agent-based modelling is a computerised simulation consisting of a number
of agents. The emergent properties of an agent-based model are the result of
“bottom-up” processes, where the decisions of individual and interacting agent
at a microscopic level determines the macroscopic behavior of the system. For
a more detailed description of agent-based modelling in finance, please refer to
LeBaron (2005), Samanidou et al. (2007) and Tesfatsion (2006). In this paper, our
agent-based artificial limit order market is built based on the Zero-Intelligence (ZI)
model (Daniel, 2006) with a continuous double auction price formation mechanism.
The notion of ZI agents was first introduced in Gode and Sunder (1993). These
agents randomly generate buy and sell orders. The orders are then submitted to a
market agent, who manages all incoming orders according to the order matching
mechanism in a real limit order market. The trading process is continuous, where
unmatched orders are stored in an order book.

At each time step, an agent is equally likely to generate a buy order or a
sell order. This order can be a market order, or a limit order, or a cancellation
of a previous order, with probabilities λm, λl, and λc respectively. The sum of
these probabilities is one (λm + λl + λc = 1). For a limit buy (sell) order, it has a
probability of λinSpread falling inside the bid-ask spread, a probability of λatBest

falling at the best bid (ask) price, and a probability of λinBook falling off the best
bid (ask) price in the book, (λinSpread + λatBest + λinBook = 1). The limit price
inside the spread follows a uniform distribution (Toth et al., 2009). The limit price
off the best bid (ask) price follows a power law distribution with the exponent of
(1 + µ1). The log order size of a market order follows a power law distribution with
the exponent of (1 + µ2), while the log order size of a limit order follows a power
law distribution with the exponent of (1 + µ3).

Table 7 Initial Parameters for Artificial Limit Order Market

Explanation Value

Initial Price price0 = 50
Tick Price δ = 0.01

Probability of Order Cancellation λc = 0.34
Probability of Market Order λm = 0.16
Probability of Limit Order λl = 0.50

Probability of Limit Order in Spread λinSpread = 0.32
Probability of Limit Order at Best Quote λatBest = 0.33

Probability of Limit Order off the Best Quote λinBook = 0.35
Limit Price Power Law Exponent 1 + µ1 = 2.5

Market Order Size Power Law Exponent 1 + µ2 = 2.7
Limit Order Size Power Law Exponent 1 + µ3 = 2.1

As each incoming buy (sell) market order arrives, the market agent will match
it with the best ask (bid) limit order stored in the order book. If this market
order is fully filled by the first limit order, the unfilled part will be matched to
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the next best ask (bid) limit order until it is fully filled. As each incoming limit
order arrives, the market agent will store it in the order book according to price
and time priority. As each incoming cancelation order arrives, the market agent
will delete the relevant limit order in the order book.

In order to ensure that the order flows generated by the artificial market are
economically plausible, all the parameters in our model are derived from previous
literature (Chakraborti et al., 2009; Farmer et al., 2005a,b; Mike & Farmer, 2008;
Toth et al., 2009). The parameters used in our simulation are presented in Table
7. Critically, in our experiments the actions of the evolved execution strategies
employed by our simulated trader impact on the state of the order book facing
all the other agents in the stock market and therefore impact on their actions.
In turn, the actions of those agents impact on the order book facing our trader
and therefore on the utility of her execution strategy. In other words, the training
and testing environment is dynamic and allows examination of the issues of
market impact and opportunity cost. on trade execution. The use of an artificial
stock market environment to test the utility of execution strategies is a novel
contribution of this paper, and opens up the door to a wide range of future work
in this domain.

6 Results

In this section we provide the results of our two sets of experiments.

6.1 Experiment One

Table 8 Results of best evolved GE strategies and two benchmark strategies

SM SL GE

Mean (S.D.) Mean (S.D.) Mean (S.D.) H1 H2

Buy Order 69.64 (0.42%) 42.54 (1.45%) -1.42 (0.49%) 0.00 0.01
Sell Order 68.73 (0.36%) 13.81 (1.59%) -23.21 (0.48%) 0.00 0.01

The results (all out of sample) of buy strategies and sell strategies are provided
in Table 8. The “Mean” is the average VWAP ratio of each strategy over the
240 days, and “S.D.” represents the standard deviation of the average (daily)
VWAP ratio. P-values for the null hypothesis H1 : meanSM ≤ meanGE and H2 :
meanSL ≤ meanGE are also shown in the table, to indicate the degree of statistical
significance of the performance improvement of GE strategies over the two simple
strategies. The figures show that the null hypotheses are rejected at the ≤ 0.01
level.

Based on the results, GE evolved strategies notably outperform the two
benchmark strategies, simple market order strategy (SM) and simple limit order
strategy (SL). The negative VWAP ratios of -1.42 and -23.21 show that the GE
evolved strategies achieve better execution price than the average execution price
of the market. The small standard deviations of 0.49 and 0.48 indicate that our
GE evolved strategy is robust over the tested trading days, supporting that the
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applicability of GE for evolving quality dynamic trade execution strategies. The
performance of SL strategies seems more volatile than those of SM strategies and
GE strategies, and the performance of SM strategies is more stable than those of
the other two kinds of strategies. Comparing the performance of the strategies for
buy and sell orders, we observe that the performances of sell strategies are better
than those of buy strategies, which means that trading costs of buys are higher
than those of sells. This asymmetry is consistent with previous empirical findings
as discussed in Section 2.3.

6.2 Experiment Two

Table 9 Results of best evolved GE strategies and three benchmark strategies (Buy
Orders)

SA SM SP GE
Mean (S.D.) Mean (S.D.) Mean (S.D.) Mean (S.D.) H1 H2 H3

S-T 14.7 (1.74%) 66.25 (2.53%) 13.19 (1.76%) -2.35 (1.52%) 0.01 0.00 0.01
L-T 5.14 (1.69%) 60.7 (2.03%) 9.37 (1.48%) -5.86 (1.3%) 0.01 0.00 0.00

Table 10 Results of best evolved GE strategies and three benchmark strategies (Sell
Orders)

SA SM SP GE
Mean (S.D.) Mean (S.D.) Mean (S.D.) Mean (S.D.) H1 H2 H3

S-T 24.7 (1.86%) 43.6 (2.18%) 6.78 (2.03%) -8.15 (1.87%) 0.00 0.00 0.01
L-T 5.28 (1.56%) 37.23 (2.27%) 4.91 (1.39%) -12.07 (1.53%) 0.00 0.00 0.01

The results (all out of sample) of buy strategies and sell strategies are provided in
Tables 9 & 10. The “S-T” represents short-term lifetime and the “L-T” represents
long-term lifetime. The “Mean” is the average VWAP ratio of each strategy
over the 240 days, and “S.D.” represents the standard deviation of the average
(daily) VWAP ratio. P-values for the null hypothesis H1 : meanSA ≤ meanGE ,
H2 : meanSM ≤ meanGE , H3 : meanSP ≤ meanGE are also shown in the table,
to indicate the degree of statistical significance of the performance improvement
of GE strategies over the two simple strategies. The figures show that the null
hypotheses are rejected at the ≤ 0.01 level.

Based on the results, GE evolved strategies notably outperform the three
benchmark strategies, simple aggressive limit order strategy (SA), simple modest
limit order strategy (SM) and simple passive limit order strategy (SP). The
performances of these four kinds of strategies can be described as:

PerformanceGE > PerformanceSP > PerformanceSA > PerformanceSM

GE strategies perform the best, while SM strategies perform the worst. The
negative VWAP ratios show that the GE evolved strategies achieve better
execution prices than the average execution price of the market. The values
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of standard deviation show that the performance of GE is more stable than
most of the other three kinds of strategies over the tested trading days, and
the performance of SM strategies is more volatile than the other three kinds of
strategies. Comparing the performance of the strategies for buy and sell orders,
we observe that the performances of sell strategies are better than those of buy
strategies in most cases, which means that trading costs of buys are higher than
those of sells. This asymmetry is consistent with previous empirical findings as
discussed in Section 2.3. And we also observe that L-T strategies all perform better
than S-T strategies, which indicate that strategies with longer lifetime can achieve
better execution prices than those with short lifetime.

7 Conclusions and Future Work

Trade execution is concerned with the actual mechanics of trading an order.
Traders wishing to trade large orders face a tradeoff between market impact
and opportunity cost. Trade execution strategies are designed to balance out
these costs, thereby minimising total trading cost relative to some benchmark
like VWAP. Despite the importance of optimising trade execution, there has been
relatively little attention paid in the literature to the application of evolutionary
methods for this task. In this paper, GE was novelly applied for the purposes of
evolving dynamic trade execution strategies, and an artificial limit order market
was simulated for testing the evolved trade execution strategies. GE was found
to be able to evolve quality trade execution strategies which proved highly
competitive against two benchmark trade execution strategies. Also the results of
two experiments both demonstrate the phenomenon of trading cost asymmetry
which confirms the findings in previous studies. This consistence implies that our
artificial market successfully mimics the price formation process of real markets.

The methodology developed in this study can contribute to more efficient
investment implementation. This work provides practical evidence that using
information content of limit order book can improve trade execution efficiency.
This work fits into the market microstructure (optimisation of trading costs) which
minimises the market impact.

There is notable scope for further research utilising GE in this problem domain.
One obvious route is to widen the number of market variables which can be
included in the evolved execution strategies. Another route is to evolve the full
structure of the trade execution strategy. In our approach, we focused on one
aspect of trade execution strategy (order aggressiveness), and other components
like the number of orders are determined in advance. Future work will embrace
the evolution of the full structure of trade execution strategy. We also note the
potential for further work in this domain employing an ASM approach. Whilst a
significant literature on ASM has emerged over the past 20 years, little attention
has been paid to using this approach to create a dynamic environment for the
examination of trade execution. Clear potential exists to employ an ASM approach
for this purpose.
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