
Int. J. Innovative Computing and Applications, Vol. x, No. x, xxxx 1

Constant Creation in Grammatical Evolution

Ian Dempsey, Michael O’Neill and

Anthony Brabazon

dept CSI/NCRA

Abstract: We present an investigation into constant creation in Gram-
matical Evolution, a form of grammar-based Genetic Programming. The
methods constant creation evaluated include digit concatenation and a
grammatical version of ephemeral random constants, called persistent
random constants. Experiments conducted on a diverse range of bench-
mark problems uncover clear advantages for a digit concatenation ap-
proach.

Keywords: Grammatical Evolution, Constant Creation, Digit Con-
catenation, Ephemeral Random Constants.

Reference TBD

Biographical Notes: OUR BIO

1 Introduction

Many applications in Genetic Programming Koza et al. (1999, 2003); Brabazon
and O’Neill (2004); O’Neill et al. (2002) require the generation of constants, and
hence the discovery of an efficient means of generating constants is important. Real
world applications often operate in dynamic environments and hence, developed ap-
plications must themselves be adaptive and capable of maintaining a diverse set of
constants within the population. One aspect of this adaptation is the ability to gen-
erate novel constant values as the environment changes. This study introduces and
explores grammatical approaches to constant creation including persistent random
constants and the novel constant-generation scheme of Digit Concatenation through
the extension of earlier studies on concatenation O’Neill and Ryan (1999); Dempsey
et al. (2002); O’Neill et al. (2003); Dempsey et al. (2004) as means of generating
constants in Grammatical Evolution (GE) O’Neill and Ryan (2003); O’Neill (2001);
O’Neill and Ryan (2001); O’Neill et al. (2003); Ryan et al. (1998). This method
allows the creation of constants by concatenating together individual digits.

The next section outlines existing techniques used in Genetic Programming to
create constants. Section 3 examines the performance of the Concatenation method
in comparison with the traditional method for generating constants within GE.
Section 4 compares the Concatenation method with the grammar-based Persistent
Random Constant generation method. Section 5 takes this comparison further by

Copyright c© 200x Inderscience Enterprises Ltd.

2 Ian Dempsey, Michael O’Neill and Anthony Brabazon

providing the Concatenation method with the ability to evolve expressions. Finally
section 6 arrives at conclusions as to which method of constant generation is best.

2 Constant Generation in GP

Ephemeral random constants are the standard approach to constant creation in
Genetic Programming (GP), having values created randomly within a pre-specified
range at a run’s initialisation Koza (1992). These values are fixed on creation, and
beyond the initial generation new constants can only be created through combina-
tions of these values and other items from the function and terminal set. Once a
constant has disappeared from the population it is not possible to retrieve it, except
by recreation through the remaining constants in the population.

A number of variations on the ephemeral random constant concept have been
applied in tree-based GP systems, all of which have the common aim of making
small changes to the initial constant values.

Constant perturbation Spencer (1994) allows GP to fine-tune floating point
constants by rescaling them by a factor between 0.9 and 1.1. This has the effect of
modifying a constant’s value by up to 10% of its original value.

Numerical terminals and numerical terminal mutation were used in An-
geline (1996). The numerical terminal mutation operator selects a real valued
numerical terminal in an individual and adds a Gaussian distributed noise factor,
such that small changes are made to the constant values.

The numeric mutation operator Evett and Fernandez (1998) replaces the
numeric constants in an individual with new ones drawn at random from a uniform
distribution with a pre-specified range. The selection range for each constant is
specified as the old value of that constant plus or minus a temperature factor.

Linear scaling This method Iba and Nikolaev (2000); Nikolaev and Iba (2001);
Keijzer (2003) has been used to optimise values within their local neighbourhood. It
is performed using linear regression on the values expressed where a line is derived
to fit the data and new values explored in the neighbourhood.

A study in Ryan and Keijzer (2003) used two forms of constant mutation, creep
and uniform mutation, where values are altered by a small amount or mutated
to a randomly different number. The study found greater benefits in uniform mu-
tation where the ability to introduce new constants into a population as evolution
progresses and maintain a highly diverse array of constants is generally beneficial
to the fitness of individuals.

With Ephemeral random constants as their base, each of these methods focused
on changing the original random values by small amounts to improve fitness with
the exception of Ryan and Keijzer (2003), which also examined wholesale transfor-
mation of constant values finding this feature to be more beneficial than smaller
changes.

GE can borrow from the experience of GP by extending the established method-
ology and in the spirit of GE introduce new grammatical forms of constant creation
which potentially address the issue of beginning an evolutionary run with a fixed
range of constants and providing the feature of creating new values over the course
of a run. With this in mind we first determine the utility of this novel approach

Constant Creation for Grammatical Evolution 3

by examining it under GE’s capacity to create and adapt constants in isolation to
gather a clear view of its behaviour and relative performance.

3 Evolving Constants using Digit Concatenation

The objective of this section is to determine whether Digit concatenation can
outperform the traditional expression-based approach to constant creation in GE.

3.1 Traditional Constant Creation in GE

The traditional approach to constant generation in GE relies upon the defining
of a handful of constants in the BNF grammar, with the recombination of these
terminals using expressions and function terminals leading to the creation of “new”
values. Below is an example of a grammar which adopts such an approach.

<value> ::= <value> <op> <value>

| (<value>)

| <number>

| <func> (<number>)

<func> ::= sin | cos | tan

<op> ::= + | - | / | *

<number> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Here the grammar is provided with six constants, operators and trigonometric func-
tions as terminals. The grammar may then combine these terminals to form expres-
sions using the first production rule with a sample output looking like the following:

4 + 7 * (sin (8 + 7))

3.2 Concatenation Constant Creation in GE

The Concatenation method for constant creation provides GE with the funda-
mental building blocks for the construction of numerical values. An example of a
grammar using Concatenation is given below.

<int> ::= <int><digit> | <digit>

<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Which could produce a sample output of

2003451

In this grammar the digits zero through nine are used as the fundamental building
blocks to create all other numbers simply by concatenating them together.

4 Ian Dempsey, Michael O’Neill and Anthony Brabazon

3.3 Problem Domain and Experimental Approach

Two grammars were constructed, one using Digit Concatenation and the other
incorporating the Traditional method. With the aim of this study being the exam-
ination of the performance of GE in the creation and adaptation of constants in
isolation the performance of these grammars is measured on three different types
of constant creation problems. The constant creation problems included; finding
a static real constant, finding dynamic constants and finding a coefficient of the
logistic difference equation. A description of each problem follows.

3.3.1 Finding a Static Real Constant

The aim of this problem is to evolve a single real constant. Three target con-
stants of increasing difficulty were selected arbitrarily, 5.67, 24.35 and 20021.11501.
Fitness is defined as the absolute difference between the target and the evolved
values, the goal being to minimise the difference.

3.3.2 Finding Dynamic Real Constants

This test involves a dynamic fitness function that changes its target real constant
value at regular intervals (every 10th generation). Two case are tackled. The first
sets the successive target values to be 24.35, 5.67, 5.68, 28.68 and 24.35, and the
second case oscillates the target value between 24.35 and 5.67. The aim of these
problems is to compare the different constant generation methods in terms of their
ability to adapt to a changing environment, and to investigate that behaviour in
the event of both small and large changes. As in the finding a static real constant
problem, fitness in this case is the absolute difference between the target and evolved
values, with the goal being the minimisation of this difference value.

3.3.3 The Logistic Difference Equation

In systems exhibiting chaos, long-term prediction is problematic as even a small
error in estimating the current state of the system leads to divergent system paths
over time. Short-term prediction however, may be feasible Holland (1998). Be-
cause chaotic systems provide a challenging environment for prediction, they have
regularly been used as a test-bed for comparative studies of different predictive
methodologies Nie (1997); Castillo (1998); Saxen (1996). In this study we use time-
series information drawn from a simple quadratic equation, the logistic difference
equation.a This equation has the form:

xt+1 = αxt(1 − xt) x ∈ (0.0, 1.0)

The behaviour of this equation is crucially driven by the parameter α. The
system has a single, stable fixed point (at x = (α− 1)/α)for α < 3.0 Saxen (1996).
For α ∈ (3.0,≈ 3.57) there is successive period doubling, leading to chaotic be-
haviour for α ∈ (≈ 3.57, 4.0). Within this region, the time-series generated by the
equation displays a variety of periodicities, ranging from short to long May (1976).

aThis is a special case of the general quadratic equation y = ax2 + bx + c where c = 0 and

a = −b.

Constant Creation for Grammatical Evolution 5

In this study, three time-series are generated for differing values of α. The choice
of these values is guided by May (1976), where it was shown that the behaviour
of the logistic difference equation is qualitatively different in three regions of the
range (3.57 to 4.0). To avoid any bias which could otherwise arise, parameter values
drawn from each of these ranges are used to test the constant evolution grammars.
The goal in this problem is to rediscover the original α value. As this equation
exhibits chaotic behaviour, small errors in the predicted values for α will exhibit
increasingly greater errors, from the target behaviour of this equation, with each
subsequent time step. Fitness in this case is the mean squared error, which is to
be minimised. 100 initial values for xt were used in fitness evaluation, and for each
xt iterating 100 times (i.e. xt to xt+100).

3.3.4 Constant Creation Grammars

The grammars adopted are given below. The Concatenation grammar (Cat)
only allows the creation of constants through the concatenation of digits, whereas
the Traditional grammar (Trad) restricts constant creation to the generation of
values from expressions.

Concatenation (Cat) Grammar

<value> ::= <cat>

<cat> ::= <int><dot><int> | <int>

<int> ::= <int><number> | <number>

<number> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

<dot> ::= .

Traditional (Trad) Grammar

<value> ::= <value> <op> <value>

| (<value> <op> <value>)

| <number>

<op> ::= + | - | / | *

<number> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

3.4 Results

For each grammar on every problem instance 30 runs were conducted using pop-
ulation sizes of 500, running for 50 generations on the static and dynamic constant
problems, and 100 generations for the logistic difference equation, adopting one
point crossover at a probability of 0.9 and bit mutation at 0.1, along with roulette
selection and a generational rank replacement strategy of 25% where the weakest
performers were replaced by the newly generated offspring.

3.4.1 Finding a Static Real Constant

On all three instances of this problem, a t-test and bootstrap t-test (5% level)
on the best fitness values reveal that the digit concatenation grammar (Cat) signif-
icantly outperforms the standard expression based approach (Trad). Statistics of
performance for each grammar are given in Table 1, and a plot of the mean best
fitness at each generation for the three targets can be seen in Fig. 1.

6 Ian Dempsey, Michael O’Neill and Anthony Brabazon

Table 1 Statistics for the best fitness values (lower value is better at generation 50 on
the Static Real Constant Problem)

Target Constant Grammar Mean Median Std. Dev.

5.67 Trad 0.33 0.33 0.0
Cat 0.0 0.0 0.0

24.35 Trad 0.36 0.35 0.055
Cat 0.002 0.0 0.009

20021.11501 Trad 7741.35 10000 3828.9
Cat 1005.24 0.91 3049.5

Notably, the Trad grammar did not perform as well as the Cat grammar in
evolving the large number by a large margin. This demonstrates that a grammar
that has a concatenation approach to constant creation is significantly better at
generating larger numbers. It is worth noting that larger numbers could just as
easily be large whole numbers or real numbers with a high degree of precision.

3.4.2 Finding Dynamic Real Constants

For the first instance of this problem where the successive target constant values
are 24.35, 5.67, 28.68 and 24.35 over the course of 50 generations, performance
statistics are given in Table 2, and a plot of mean best fitness values for each
grammar can be seen in Fig. 2.

Performing a t-test and a bootstrap t-test on the best fitness values at gen-
erations 10, 20, 30, 40 and 50, it is shown that there is a significant (5% level)
performance advantage in favour of the Concatenation grammar (Cat) up to gener-
ation 30, beyond this point the advantages of one grammar over the other are not
as clear cut.

In the second instance of this problem, where the target constant values oscil-
lates, every 10 generations, between 24.35 and 5.67 over the 50 generations, again
we see a similar trend. In this case, the concatenation grammar (Cat) is signifi-
cantly better at the 5% level than the Traditional (Trad) grammar at each of the
10, 20, 30, 40 and 50 generations, however, this difference is decreasing over time.
A plot of the mean best fitness can be seen in Fig. 2, and statistics are presented
in Table 3. From the results on both of these dynamic problem instances, there
are clearly adaptive advantages to using the concatenation grammar over the tra-
ditional expression based approach.

3.4.3 The Logistic Difference Equation

The results for all three instances of this problem can be seen in Table 4 and Fig.
3. Statistical analysis using a t-test and bootstrap t-test (5% level) reveal that the
concatenation grammars (Cat & Cat+Trad) significantly outperform the traditional
constant creation approach on each problem instance successfully rediscovering the
target α in each case.

Constant Creation for Grammatical Evolution 7

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 5 10 15 20 25 30 35 40 45 50

B
es

t F
itn

es
s

Generation

Evolution of 5.67

trad
cat

0

0.5

1

1.5

2

2.5

0 5 10 15 20 25 30 35 40 45 50

B
es

t F
itn

es
s

Generation

Evolution of 24.35

trad
cat

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 5 10 15 20 25 30 35 40 45 50

B
es

t F
itn

es
s

Generation

Evolution of 20021.11501

trad
cat

Figure 1 Mean best fitness values (lower values are better) plotted against genera-
tions for each of the four grammars. Target values are 5.67 (left), 24.35 (center), and
20021.11501 (right).

8 Ian Dempsey, Michael O’Neill and Anthony Brabazon

0

1

2

3

4

5

6

0 5 10 15 20 25 30 35 40 45 50

B
es

t F
itn

es
s

Generation

Evolution of 24.35, 5.67, 5.68, 28.68, 24.35

trad
cat

0

0.5

1

1.5

2

2.5

3

3.5

4

0 5 10 15 20 25 30 35 40 45 50

B
es

t F
itn

es
s

Generation

Evolution of 24.35, 5.67, 24.35, 5.67,

trad
cat

Figure 2 Mean best fitness values (lower values are better) plotted against generations
for each of the three grammars. Target values are 24.35, 5.67,5.68,24.35 (left) and 24.35,
5.67,... (right).

Table 2 Statistics for the best fitness values (lower value is better) the Dynamic Real
Constant Problem.

Generation Target Constant Grammar Mean Median Std. Dev.

10 24.35 Trad 0.4 0.35 0.114

Cat 0.061 0.01 0.133

20 5.67 Trad 0.33 0.33 0.0

Cat 0.047 0.0 0.17

30 5.68 Trad 0.32 0.32 1.129e-16

Cat 0.046 0.0 1.724e-01

40 28.68 Trad 2.063 1.5 3.474

Cat 0.046 0.0 1.724e-01

50 24.35 Trad 0.937 0.35 2.755

Cat 0.541 0.002 2.799

Table 3 Statistics for the best fitness values (lower value is better) the Oscillating Dy-
namic Real Constant Problem.

Generation Target Constant Grammar Mean Median Std. Dev.

10 24.35 Trad 0.507 0.35 0.426

Cat 0.089 0.011 0.193

20 5.67 Trad 0.33 0.33 0.0

Cat 0.005 0.0 0.0167

30 24.35 Trad 0.487 0.35 0.426

Cat 0.046 0.022 0.07

40 5.67 Trad 0.33 0.33 0.0

Cat 0.0004 0.0 0.01

50 24.35 Trad 0.487 0.35 0.426

Cat 0.061 0.014 0.131

Constant Creation for Grammatical Evolution 9

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0 20 40 60 80 100

B
es

t F
itn

es
s

Generation

Evolution of alpha=3.59

trad
cat

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0 20 40 60 80 100

B
es

t F
itn

es
s

Generation

Evolution of alpha=3.80

trad
cat

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008

0 20 40 60 80 100

B
es

t F
itn

es
s

Generation

Evolution of alpha=3.84

trad
cat

Figure 3 Mean best fitness values (lower values are better) plotted against generations
for each of the three grammars. Target values of α are 3.59 (left), 3.80 (center), and 3.84
(right).

10 Ian Dempsey, Michael O’Neill and Anthony Brabazon

Table 4 Statistics for the best fitness values (lower value is better) the Logistic Equation
Problem.

Target Constant Grammar Mean Median Std. Dev.

3.59 Trad 6.074e-03 6.074e-03 2.647e-18
Cat 4.818e-07 3.902e-19 1.249e-06

3.80 Trad 1.310e-03 1.310e-03 6.616e-19
Cat 4.724e-19 4.724e-19 0.0

3.84 Trad 7.113e-04 7.113e-04 2.206e-19
Cat 6.065e-19 6.065e-19 9.794e-35

3.4.4 Discussion

An interesting feature to note in the logistic experiment results is the presence
of flat line averages for the traditional grammar in each of the problem instances.
What this demonstrates is a difficulty on the part of the traditional approach in
evolving real numbers within its range. When the grammar produced a reasonably
good fitness at the first generation it settled upon this local minima. New expres-
sions brought about through crossover and mutation failed to alter in small amounts
the fitness of the best individual by bringing its value closer to that of the target
through different expressions. Take for example the average fitness attained for α
= 3.59 which was about 0.006, to reduce an expression which already yielded about
3.596 by 0.006 using integers zero through nine and the operators provided would
be a relatively complex task. To confirm this problem the presence of a flat line av-
erage in evolving 5.67 for the Traditional grammar is also demonstrated where the
same conditions again exist: the target is a real number within the terminal set of
digits provided to the grammar. Considering this we can say that while it is good
at attaining a reasonable fitness for real targets within its range, the forming of
expressions using integers to get real values proves too complex for the Traditional
approach. These results would also suggest that the provision of a larger set of real
values in the grammar might enhance the performance of the Trad approach in its
own right. To this end we investigate a version of ephemeral random constants for
GE in the following section.

4 Analysis of Digit Concatenation & Persistent Random Constants

In section 3 the Concatenation method displayed superior performance over the
traditional technique for evolving constants in GE. In this section the Concatena-
tion method is analysed further by examining the preferences of evolutionary search
when a number of different grammar-based constant generation methods are pro-
vided to GE. Along with Concatenation, a grammar defined Persistent Random
Constants technique is explored as well as the Traditional technique described in
the previous section. All three methods are included in a grammar which only
allows the use of one method exclusively. The preference of the evolutionary search
is then examined across a range of constant generation problems.

Constant Creation for Grammatical Evolution 11

4.1 Persistent Random Constant Creation in GE

In section 2 a description of Ephemeral Random Constants in GP was given.
Here we introduce a grammatical form of this known as Persistent Random Con-
stants. Like the GP approach to Ephemeral random constants, the grammatical
approach also generates a number of real values within a pre-specified range. Where
it differs is that these numbers are then added to the grammar to be used by GE.
This has the added effect that the random numbers become available to the evolu-
tionary process throughout the lifetime of the experiment as they are part of the
grammar itself. In GP Ephemeral random constants these numbers, once evolved
out of the population, cannot be re-introduced into the population which can lead
to a potential loss in the diversity of numbers available. Indeed this approach does
have similarities to the Traditional method for GE, where instead of a small fixed
set of constants, Persistent Random Constants uses a larger number of randomly
generated constants which are persistent for the lifetime of the run (as they are
stored within the grammar) with the implication of better coverage of the constant
search space.

4.2 Experimental Approach

A comparison is performed on the utility of three different constant creation
methods for evolving constants by performance analysis on three different types
of constant creation problems. The problems tackled are, finding a static integer,
finding dynamic real constants, and the finding a paramater to the logistic difference
equation. The problems used in this section though similar to those in section 3 use
different targets. The reason behind this is to get a spread of targets both inside
and outside the range of the Persistent Random Constants range as most of the
targets in section 3 resided within this range. This is done to examine further the
issue discussed in section 3.4.4, where the Traditional approach was observed settle
on local minima and also to examine the Persistent Random Constants ability to
evolve targets outside its range. Comparative benchmarks can be drawn from the
previous section by examining the performance of the grammars which use each
method exclusively.

4.2.1 Finding a Static Constant

The aim of this problem is to evolve a single integer constant. For these exper-
iments two constants were selected; a simple integer value within the range of the
Ephemeral random constants, 50, and a complex floating point real number out-
side the range of the Ephemeral random constants, 20021.11501. Fitness in these
experiments is the absolute difference between the target and evolved values, the
goal being to minimise the difference value.

4.2.2 Finding Dynamic Real Constants

This instance of finding dynamic real constants involves a dynamic fitness func-
tion that changes its target real constant values at regular intervals (every 10th
generation). Two instances of this problem are tackled, the first sets the successive

12 Ian Dempsey, Michael O’Neill and Anthony Brabazon

target values to be 192.47, 71.84, 173.59 and 192.47, the second instance oscillates
between the two values 192.47 and 71.84. The aim here as in the previous section is
to analyse the different constant representations in terms of their ability to adapt
to a changing environment, and to investigate that behaviour in the event of both
small and large changes. As in the static constant problem, fitness in this case is
the absolute difference between the target and the evolved values, with the goal
being the minimisation of this difference value.

4.2.3 The Logistic Difference Equation

This problem is used in the same manner with the same parameters as in section
3.

4.2.4 Constant Creation Grammar

Three constant generation techniques are employed within the same grammar
for this study, with the grammar adopted provided below.

<exp> ::= <value>

<value> ::= <trad> | <catR> | <presistent>

<op> ::= + | - | / | *

<trad> ::= <trad> <op> <trad> | <tradT>

<tradT> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

<catR> ::= <cat> <dot> <cat> | <cat>

<cat> ::= <cat> <catT> | <catT>

<catT> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

<dot> ::= .

<persistent> ::= <persistent> <op> <persistent> | <persistentT>

<persistentT> ::= ‘‘150 randomly generated real constants’’

The concatenation part of the grammar (<cat>) only allows the creation of con-
stants through the concatenation of digits. This is in contrast to the Traditional
part of the grammar (<trad>) that restricts constant creation to the generation of
values from expressions using a fixed set of constants specified by the non-terminal
<tradT>. The third part of the grammar concerns persistent random constants. In
this method, a set of 150 real-valued constants are generated randomly in the range
0 to 100 inclusive at the outset of a run and these are then directly incorporated
as choices for the nonterminal <persistentT>. In a standard GP manner, these
constants can then be utilised in arithmetic expressions to generate new constant
values. The <value> production then is essentially the rule which permits the
exclusive choice of one of these methods for each individual.

4.3 Results

For every problem instance the parameters used, and the number of runs con-
ducted were the same as in section 3.4.

Constant Creation for Grammatical Evolution 13

4.3.1 Finding a Static Constant

The results presented in Fig. 4, indicate a preference by GE for the Persistent
Random Constant technique in this problem. By the final generation, on average,
across thirty runs GE evolved 221 individuals using the Persistent method against
117 and 59 for the Concatenation and the Traditional methods respectively. Of the
best performing individuals in the final generation 60% had evolved a Concatenation
individual and 40% a Persistent Random Constant individual.

 0.26

 0.28

 0.3

 0.32

 0.34

 0.36

 0.38

 0.4

 0.42

 0.44

 0.46

 0 5 10 15 20 25 30 35 40 45 50

M
ea

n
B

es
t F

itn
es

s
(3

0
R

un
s)

Generation

Grammatical Evolution - 50

Avg Mean Best

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 0 5 10 15 20 25 30 35 40 45 50

N
o.

 O
f I

nd
iv

id
ua

ls

Generation

Grammatical Evolution - 50

Tradasdf
Cat

ERC

 0

 1

 2

 3

 4

 5

 6

 7

 0 10 20 30 40 50 60 70 80 90 100

M
ea

n
B

es
t F

itn
es

s
(3

0
R

un
s)

Generation

Grammatical Evolution - 50

Trad
Cat

ERC

Figure 4 Mean best fitness values (lower values are better) plotted against generations
(left), the number of individuals that use each of the three constant generation methods
(center) and a comparison of the performance of the exclusive component grammars (right)

14 Ian Dempsey, Michael O’Neill and Anthony Brabazon

Among the experiments incorporating each constant creation method exclu-
sively as presented in Fig. 4 the benefits of the Concatenation method are high-
lighted for this problem. Over the course of 30 runs Concatenation produced best
performers with an average fitness of 0.50024 compared against 1.7931 and 2.27586
for the Traditional and Persistent Random Constant methods respectively.

Fig. 5 presents the results for evolving 20021.11501. Here Persistent Random
Constants are again seen to grow to dominate the population 226 members against
136 and 23 for the Concatenation and Traditional methods. However in this in-
stance Concatenation is the method used for 100% of the best individuals yielding
an average best performance of 547.217.

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 0 5 10 15 20 25 30 35 40 45 50

M
ea

n
B

es
t F

itn
es

s
(3

0
R

un
s)

Generation

Grammatical Evolution - 20021.11501

Avg Mean Best

 0

 50

 100

 150

 200

 250

 0 5 10 15 20 25 30 35 40 45 50

N
o.

 O
f I

nd
iv

id
ua

ls

Generation

Grammatical Evolution - 20021.11501

Trad
Cat

ERC

Figure 5 Mean best fitness values (lower values are better) plotted against generations
(left), the number of individuals that use each of the three constant generation methods
(right).

In the experiments with exclusive grammars the concatenation method was seen
to provide the best average fitness at 3140.84 with the Persistent Random Constant
method providing an average best fitness of 10070.5.

4.3.2 Finding Dynamic Real Constants.

In Fig. 6, graphs are presented for the experiments where the set of numbers to
be evolved over the course of a run are: 192.47, 71.84, 71.83, 173.59 and 192.47. This
time the Persistent Random Constants gain a stronger foothold in the population
over the course of the run, overtaking Concatenation before generation 20 at the
same time presenting good fitness. However at generation 30, where the target
changes to 173.59, this fitness deteriorates significantly. This suggests that while
the target was within the range of the Persistent Random Constants it was able to
quickly attain a high fitness and a strong position in the population but was unable
to successfully evolve from this position once the target left its range.

In the single method grammars however, the Persistent Random Constant method
does express a stronger ability to evolve to the targets outside its range taking large

Constant Creation for Grammatical Evolution 15

evolutionary steps towards the target after its initial change. The Concatenation
and Traditional methods present performances similar to the combination gram-
mar’s performance.

Results for the oscillating non-stationary problem instance are presented in Fig
7. In the second instance of this problem where the target oscillates from 192..47
to 71.84 every 10 generations we notice a similar trend. Again by generation 20
Persistent Random Constants have reached a strong position within the population
after a period with 71.84 as the target. The fitness drops drastically when the
target changes to 192.47. When the target reaches the higher number for the third
time the fitness is worse again due perhaps to a further loss of diversity in the
population.

As with the single grammars in the dynamic problem the results for the os-
cillation experiments provide similar performances with the Persistent Random
Constant method being able to take the larger evolutionary steps once the target
changes.

4.3.3 The Logistic Equation.

Fig. 8, presents a sample of the results for the logistic equation with α values
of 3.59, 3.8 and 3.84, which were very similar across each of the values. Here the
Concatenation method gains the dominant position within the population as evolu-
tion progresses. The proportion of Persistent Random constants in the population
is seen to approach the level of Concatenation constants initially, as in the dynamic
experiments, however this time as evolution progresses, the Concatenation method
gains the dominant position within the population. Among the best performing
individuals for 3.59, 60% used Persistent Random Constants and 40% Concate-
nation; for 3.8, 73% used Concatenation, 20% Persistent Random Constants. No
Traditional individuals were the best performer in any test.

16 Ian Dempsey, Michael O’Neill and Anthony Brabazon

 0

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50

M
ea

n
B

es
t F

itn
es

s
(3

0
R

un
s)

Generation

Grammatical Evolution - Dynamic

Avg Mean Best

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 0 10 20 30 40 50

N
o.

 O
f I

nd
iv

id
ua

ls

Generation

Grammatical Evolution - Dynamic

Trad
Cat

ERC

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25 30 35 40 45 50

M
ea

n
B

es
t F

itn
es

s
(3

0
R

un
s)

Generation

Grammatical Evolution - Dynamic

Trad
Cat

ERC

Figure 6 Mean best fitness values (lower values are better) plotted against generations
(left), the number of individuals that use each of the three constant generation methods
(center) and a comparison of the performance of the exclusive component grammars (right)

Constant Creation for Grammatical Evolution 17

 0

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50

M
ea

n
B

es
t F

itn
es

s
(3

0
R

un
s)

Generation

Grammatical Evolution - Oscillating

Avg Mean Best

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 0 5 10 15 20 25 30 35 40 45 50

N
o.

 O
f I

nd
iv

id
ua

ls

Generation

Grammatical Evolution - Oscillating

Trad
Cat

ERC

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25 30 35 40 45 50

M
ea

n
B

es
t F

itn
es

s
(3

0
R

un
s)

Generation

Grammatical Evolution - Oscillating

Trad
Cat

ERC

Figure 7 Mean best fitness values (lower values are better) plotted against gener-
ations (left), the number of individuals that use each of the three constant generation
methods (center) and a comparison of the performance of the exclusive component gram-
mars (right).

18 Ian Dempsey, Michael O’Neill and Anthony Brabazon

 0.00044

 0.00046

 0.00048

 0.0005

 0.00052

 0.00054

 0.00056

 0.00058

 0.0006

 0.00062

 0.00064

 0.00066

 0 10 20 30 40 50 60 70 80 90 100

M
ea

n
B

es
t F

itn
es

s
(3

0
R

un
s)

Generation

Grammatical Evolution - alpha = 3.8

Avg Mean Best

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 10 20 30 40 50 60 70 80 90 100

N
o.

 O
f I

nd
iv

id
ua

ls

Generation

Grammatical Evolution - alpha = 3.8

Trad
Cat

ERC

Figure 8 Mean best fitness values (lower values are better) plotted against generations
(left), the number of individuals that use each of the three constant generation methods
(right).

4.3.4 Discussion

A common feature seen in almost all the results across the problems exam-
ined in this section, with the exception of the logistic equation problem, shows the
Persistent Random Constants method consistently gaining larger portions within
the population while not seeing this population dominance reflected in the number
of best performing solutions. For the problems of evolving the static integer 50,
and the dynamic targets, numbers are presented which are within the range of the
Persistent Random Constants. Considering this the reason why the Persistent Ran-
dom Constants method gains such a large portion is likely to be that this method
would contain a relatively large number of terminals within the neighbourhood of
the target, reflecting a similar advantage to the Traditional method in section 3.4.
Thus presenting the evolutionary process with again a relatively large number of
simple solutions, i.e. terminals, with good fitnesses in proportion to the other two
methods in the grammar. In the dynamic problems once the target moves outside
its range the Persistent Random Constants method had already attained a strong
postion in the population over the other two methods gaining a certain reproduc-
tive momentum to the detriment of the Concatenation and Traditional methods.
The Persistent Random Constant method would also be able to attain reasonable
fitnesses simply by summing up two of its number terminals at the higher end of
its range, requiring the exploitation of just three terminals.

This reason can then be related directly to the good performance seen by the
Traditional method in attaining a larger proportion of the population in the logistics
equation problems and entirely contrasting its performance in the other problems.
In the logistic equation problem the target was within the range of the Traditional

Constant Creation for Grammatical Evolution 19

grammar and also within the range of the Persistent Random Constants. The differ-
ence however is that while it was within both their ranges, the Traditional method
presented the evolutionary process with a much smaller selection of terminals (the
ten digits), all of which would have had reasonable fitness on their own, compared
to the Persistent Random Constant method which had 150 terminals many of which
could have been potentially as high as 100. What held the Traditional method back
in this case is its difficulty in evolving fitter solutions that require small changes
in the resultant value of a best performers expression, a problem already discussed
in section 3.4.3. The Concatenation method on the otherhand proved to be better
at evolving fitter solutions in section 3.4.3 for this problem explaining how it could
hold onto a majority position within the population on average for this problem.

In examining the static problem with target 20021.11501, a different situation
is presented. In this problem the target is well outside the range of the Persistent
Random Constants yet it still grew to dominate the population. The behaviour of
the Concatenation trend line in this instance however differs to the other problems.
Here Concatenation ends up with a proportion of the population which is just 12
less than what it began with on average. Considering that it provided 100% of the
best performing solutions, selective pressure allowed it to maintain its population
share. The Persistent Random Constant method then, it seems, grew its population
share to the detriment of the Traditional method which struggled to cope with the
ease at which the Persistent Random Constant method could create much larger
values with expressions involving its larger terminal values.

In summary, the presence of greater diversity of constants as presented by Per-
sistent Random Constants approach and the ability to generate smaller numbers
more rapidly with the Concatenation approach suggests that these are both desir-
able constant generation mechanisms to adopt within our GE grammars.

5 Further Study in Digit Concatenation & Persistent Random Con-
stants

Section 4 demonstrates the superiority of both the Concatenation and Persistent
Random Constant methods over the Traditional approach. In order to gain a more
accurate understanding of the relative advantages of these two methods, and the
merits of a combination of these approaches, a further series of experiments was
undertaken. This section compares the two methods using a grammars similar to
the previous section along with grammars which use each approach exclusively.
However in these experiments the Concatenation method is additionally provided
with the ability to form expressions.

Below are the combination grammars derived from experiments in the previous
section. The first is most similar to the previous section except it only uses the
Concatenation method and Persistent Random Constants. The second grammar
presents GE with a method to ascertain whether the two approaches may mutu-
ally complement each other as this (cooperative) grammar allows the formation of
expressions using constants derived from both paradigms.

20 Ian Dempsey, Michael O’Neill and Anthony Brabazon

Competitive Grammar

<exp> ::= <number>

<number> ::= <catE> | <persistent>

<op> ::= + | - | / | *

<catE> ::= <catE> <op> <catE> | <catR>

<catR> ::= <cat> <dot> <cat> | <cat>

<cat> ::= <cat> <catT> | <catT>

<catT> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

<dot> ::= .

<persistent> ::= <persistent> <op> <persistent> | <persistentT>

<persistentT> ::= ‘‘150 randomly generated real constants’’

Cooperative Grammar

<exp> ::= <number>

<number> ::= <value> <op> <value> | <value>

<value> ::= <catE> | <persistent>

<op> ::= + | - | / | *

<catE> ::= <catE> <op> <catE> | <catR>

<catR> ::= <cat> <dot> <cat> | <cat>

<cat> ::= <cat> <catT> | <catT>

<catT> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

<dot> ::= .

<persistent> ::= <persistent> <op> <persistent> | <persistentT>

<persistentT> ::= ‘‘150 randomly generated real constants’’

The following grammars incorporate each method for constant creation exclu-
sively and are designed for symbolic regression problem to evolve the area of a
circle.

Exclusive Cat

<exp> ::= <catE>

<op> ::= + | - | / | *

<catE> ::= <catE> <op> <catE> | (<catE><op><catE>) | <catR>

<catR> ::= <cat> <dot> <cat> | <cat>

<cat> ::= <cat> <catT> | <catT>

<catT> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

<dot> ::= .

Exclusive Persistent

<exp> ::= <prc>

<op> ::= + | - | / | *

<prc> ::= <prc> <op> <prc> | (<prc><op><prc>) | <prcT>

<prcT> ::= ‘‘150 randomly generated real constants’’

Constant Creation for Grammatical Evolution 21

5.1 Experimental Approach

The experiments performed focus on three areas; the creation of a large complex
number outside the range of the Persistent Random Constants, on the flexibility
of the methods in a dynamic environment and on evolving the form and constant,
Pi, in the equation for calculating the area of a circle. This final experiment differs
from previous experiments as having examined GEs ability to create and adapt
constants we now also examine its ability to evolve an equations form.

5.1.1 Finding a Static Constant.

The target of 20021.11501 was again chosen for these experiments to enable
direct comparisons with previous sections and also because of its difficulty, as it
represents a high precision floating point number outside the range of the Persistent
Random constants.

5.1.2 Finding Dynamic Real Constants

Here again we consider the same series of dynamic real constants as used in
section 4 , successive targets of 192.47, 71.84, 173.59 and 192.47 changing at the
tenth generation for fifty generations. Once more the ability to compare results
with the previous section is provided.

5.1.3 Finding the Equation for the Area of a Circle

For this section a final new experiment is introduced. In this case two grammars
are used which incorporate each method exclusively with the aim of evolving the
equation of a circle, πr2. The setups are tested against 100 radii each generation
with the range 2-102 where the objective is to mimimise the cumulative difference
to the correct area across the 100 radii.

5.2 Results

For every problem instance the parameters used and number of runs conducted
were the same as in section 3.4.

5.2.1 Finding a Static Constant.

In this case Fig. 9, demonstrates that the Concatenation method began to gain
an upper hand on average within the populations at generation 13. Finishing at
the final generation with the lions share of the population at 318 versus 94 for the
Persistent Random Constants method. Of the best performers only 1 of the 30 runs
provided a solution using the Persistent Random Constants method with the best
Concatenation solution producing an expression which came to within 18.3872 of
the solution, this solution is provided below.

20002 + 0.727829

22 Ian Dempsey, Michael O’Neill and Anthony Brabazon

By the final generation the best performer on average produced a fitness of 607.968.
Among the experiments with the complementary grammar the average best fitness
by the final generation was a comparable 688.798, with a t-test and bootstrap t-test
demonstrating no statistical difference between the results.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 5 10 15 20 25 30 35 40 45 50

M
ea

n
B

es
t F

itn
es

s
(3

0
R

un
s)

Generation

Grammatical Evolution - 20021.11501

Competitive
Co-operative

 50

 100

 150

 200

 250

 300

 350

 0 5 10 15 20 25 30 35 40 45 50

N
o.

 O
f I

nd
iv

id
ua

ls

Generation

Grammatical Evolution - 20021.11501

Cat
ERC

Figure 9 Mean best fitness values (lower values are better) plotted against generations
(left), the number of individuals that use each the constant generation methods (right)
for the competitive grammar.

5.2.2 Finding Dynamic Real Constants

Fig. 10, displays the results for the dynamic experiments. Here we can see a
similar trend to that seen in section 4.3.2. Again the Persistent Random Constants
method gains a stronger position within the population while the target is within
its range. The difference here is that once the target leaves this range the the
Concatenation method begins to gain a bigger share of the population and ends
up with a slight majority at 218 to 203. It can also be noted that a higher rate of
evolution occurs in these experiments when the target goes outside the Persistent
Random Constants range. This combined with the higher frequency of Concate-
nation individuals would suggest that the ability for the Concatenation method to
create expressions is directly responsible for the improvement in the rate of evolu-
tion across both grammars.

Comparative analysis of the grammars at generations 10, 20, 30, 40 and 50
using a t-test and bootstrap t-test reveal a statistical significance in the difference
in results at generations 10 and 40. No other transition generations showed a
statistically significant difference.

5.2.3 Finding the Equation for the Area of a Circle

In Fig 11, it can be seen that the Digit Concatenation produces superior fitness
over Persistent Random Constants. By the final generation Digit Concatenation

Constant Creation for Grammatical Evolution 23

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 5 10 15 20 25 30 35 40 45 50

M
ea

n
B

es
t F

itn
es

s
(3

0
R

un
s)

Generation

Grammatical Evolution - Dynamic

Competitive
Co-operative

 120

 140

 160

 180

 200

 220

 240

 0 5 10 15 20 25 30 35 40 45 50

N
o.

 O
f I

nd
iv

id
ua

ls

Generation

Grammatical Evolution - Dynamic

Cat
ERC

Figure 10 Mean best fitness values (lower values are better) plotted against gener-
ations (left), the number of individuals that use each the constant generation methods
(right).

produces an average fitness of 12489 compared to 439226 for Persistant Random
Constants.

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 0 10 20 30 40 50 60 70 80 90 100

M
ea

n
B

es
t F

itn
es

s
(3

0
R

un
s)

Generation

Area of a Circle - Digit Concatenation

Cat
Eph

Figure 11 Mean best fitness values (lower values are better) plotted against gener-
ations, where fitness is the cumulative difference of each individual for 100 radii to the
correct area.

24 Ian Dempsey, Michael O’Neill and Anthony Brabazon

5.2.4 Discussion

These experiments have focused on the direct comparison of the Concatenation
and Persistent Random Constants methods while introducing an extra feature to
Concatenation, the ability to create and evolve expressions in conjunction with the
numbers. This added feature is beneficial to Concatenation. As this is the essential
difference between the experiments here and in section 4, the results suggest that
allowing Concatenation to produce expressions enables it to not only achieve a
higher degree of accuracy in reaching the target but also allows it to be more
flexible in a dynamic environment with the results for the dynamic experiment
clearly outperforming those in section 4 and the results for finding the equation for
the area of a circle reinforce this message. In order to gain direct perspective of
the improvement in Concatenation when it is provided with the ability to create
expressions Fig. 12 provides graphs which compare Concatenation using expressions
with pure Concatenation. In these graphs we see an improvement in performance
over the pure Concatenation results in both the static problem and the dynamic
problem.

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 5 10 15 20 25 30 35 40 45 50

M
ea

n
B

es
t F

itn
es

s
(3

0
R

un
s)

Generation

Grammatical Evolution - 20021.11501

Cat+Expr
Cat

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 5 10 15 20 25 30 35 40 45 50

M
ea

n
B

es
t F

itn
es

s
(3

0
R

un
s)

Generation

Grammatical Evolution - Dynamic

Cat
Cat+Expr

Figure 12 Mean best fitness values (lower values are better) plotted against genera-
tions for 20021.11501 (left) and the dynamic experiment (right).

6 Conclusions

The objective of this study was to identify the best method for constant creation
and adaptation. To this end three methods in particular; Traditional, Digit Con-
catenatin and Persistant Random Constants, were examined on a series of bench-
mark problems. Through out these experiments the Concatenation method was
seen to produce the best results with more regularity than all other methods inves-
tigated. In section 3 a pure Concatenation grammar exhibited better performance
across most of the problems.

Constant Creation for Grammatical Evolution 25

Section 4 presented a combination grammar where the choice of the different
methods was left up to the evolutionary process. Here Persistent Random Con-
stants were seen to grow and occupy the majority of populations on average in
all experiments. However this majority did not translate to it producing the best
individuals as Concatenation produced the most best fit individuals for the static
problems and the logistic equation problems. Among experiments with the exclu-
sive grammars the Concatenation method provided superior fitness for the static
problems again with Persistent Random Constants giving better fitnesses for the
dynamic problems.

In section 5 the Concatenation method is extended to give it the ability to
evolve expressions. This proved to significantly improve fitnesses in the dynamic
problem and in contrast to section 4 saw the Concatenation method grow to take
up a majority position within the population for the static problem from an early
stage. An interesting story is told by the population graph for the dynamic problem
where we see the Persistent Random Constants method consume a majority of the
population while the target was within its range but the trend peaks and reverses
at generation 30 when the target moves outside its range. The result by the final
generation gives a slight majority to the Concatenation method.

These experiments have examined different problems where static constants
both complex and simple were targeted, dynamic problems with large and small
variations in targets as well as oscillating targets, a co-efficient to a chaotic equation
and symbolic regression. Considering the results, it would appear that a constant
creation grammar which provides the Concatenation method with the ability to
create expressions is the most advantageous method explored. Its ability to con-
stantly introduce new constants to the system, take consistent evolutionary steps
towards targets and produce a higher proportion of best performing individuals in
comparative tests mark it apart from the other methods explored.

In the future we wish to extend this study to include an investigation of meta-
grammars for constant creation, particularly as the meta-grammar approach adopted
in Grammatical Evolution by Grammatical Evolution O’Neill and Ryan (2004) has
shown promising results in dynamic environments. Additionally, we would like to
investigate the use of the syntax of scientific notation as a grammatical method
of generating very large or very small numbers quickly, and also to investigate the
use of dynamic modifications to the persistent random constants using a dynamic
grammar. In this way we could define a set of insertion and deletion operators
that can add or delete constants, and also some mutation operators that could
manipulate the stored values in the spirit of the perturbation methods described
earlier.

References

O’Neill, M., Ryan, C. (1999). Automatic Generation of Caching Algorithms, In
K. Miettinen and M.M. Mäkelä and J. Toivanen (Eds.) Proceedings of EURO-
GEN99, Jyväskylä, Finland, pp.127-134, University of Jyväskylä.

Dempsey, I., O’Neill, M. and Brabazon, T. (2002). Investigations into Market Index
Trading Models Using Evolutionary Automatic Programming, In Lecture Notes

in Artificial Intelligence, 2464,Proceedings of the 13th Irish Conference in Arti-

26 Ian Dempsey, Michael O’Neill and Anthony Brabazon

ficial Intelligence and Cognitive Science, pp. 165-170, edited by M. O’Neill, R.
Sutcliffe, C. Ryan, M. Eaton and N. Griffith, Berlin: Springer-Verlag.

O’Neill, M., Dempsey, I., Brabazon, A., Ryan, C. (2003). Analysis of a Digit Con-
catenation Approach to Constant Creation. In LNCS 2610 Proceedings of the
6th European Conference on Genetic Programming, EuroGP 2003, pp.173-182.
Springer-Verlag.

Koza, J.R. (1992). Genetic Programming: On the Programming of Computers by
Means of Natural Selection. MIT Press.

Spencer, G. (1994). Automatic Generation of Programs for Crawling and Walking.
In Kenneth E. Kinnear, Jr. (Ed), Advances in Genetic Programming, Chapter
15, pp. 335-353, MIT Press.

Angeline, P., Peter, J. (1996). Two Self-Adaptive Crossover Operators for Genetic
Programming. In Peter J. Angeline and K. E. Kinnear, Jr. (Eds.), Advances in
Genetic Programming 2, Chapter 5, pp.89-110, MIT Press.

Evett, M. and Fernandez, T. (1998). Numeric Mutation Improves the Discovery of
Numeric Constants in Genetic Programming, Genetic Programming 1998: Pro-
ceedings of the Third Annual Conference, University of Wisconsin, Madison,
Wisconsin, USA, pp.66-71, Morgan Kaufmann.

O’Neill, M., Ryan, C. (2003). Grammatical Evolution: Evolutionary Automatic
Programming in an Arbitrary Language. Kluwer Academic Publishers.

O’Neill, M. (2001). Automatic Programming in an Arbitrary Language: Evolving
Programs in Grammatical Evolution. PhD thesis, University of Limerick, 2001.

O’Neill, M., Ryan, C. (2001) Grammatical Evolution, IEEE Trans. Evolutionary

Computation, 5(4):349-358, 2001.

Ryan C., Collins J.J., O’Neill M. (1998). Grammatical Evolution: Evolving Pro-
grams for an Arbitrary Language. Lecture Notes in Computer Science 1391,

Proceedings of the First European Workshop on Genetic Programming, 83-95,
Springer-Verlag.

O’Neill, M., Ryan, C., Keijzer M., Cattolico M. (2003). Crossover in Grammatical
Evolution. Genetic Programming and Evolvable Machines, Vol. 4 No. 1. Kluwer
Academic Publishers, 2003.

O’Neill, M., Ryan, C. 2004. Grammatical Evolution by Grammatical Evolution: The

Evolution of Grammar and Genetic Code. In Proceedings of EuroGP 2004, LNCS
3003, pp.138-149, Coimbra, Portugal, Springer 2004.

Dempsey, I., O’Neill, M., Brabazon, T. (2004). Grammatical Constant Creation.

Proceedings of the Genetic and Evolutionary Computation Conference Part II,
447-458, Springer-Verlag.

Koza, J.R., Andre, D., Bennett III, F.H., Keane, M. (1999). Genetic Programming
3: Darwinian Invention and Problem Solving. Morgan Kaufmann.

Constant Creation for Grammatical Evolution 27

Koza, J.R., Keane, M., Streeter, M.J., Mydlowec, W., Yu, J., Lanza, G. (2003).
Genetic Programming IV: Routine Human-Competitive Machine Intelligence.
Kluwer Academic Publishers.

Holland, J. (1998). Emergence from Chaos to Order,Oxford: Oxford University
Press.

Nie, J. (1997). Nonlinear time-series forecasting: A fuzzy-neural approach, Neuro-

computing, 16:63-76.

Castillo, E. and Gutierrez, J. (1998). Nonlinear time series modeling and predic-
tion using functional networks. Extracting information masked by chaos, Physics

Letters A, 244:71-84.

Saxen, H. (1996). On the approximation of a quadratic map by a small neural
network, Neurocomputing, 12:313-326.

May, R. (1976). Simple mathematical models with very complicated dynamics,
Nature, 261:459-467.

O’Neill, M., Brabazon, A., and Ryan, C. (2002). Forecasting market indices using
evolutionary automatic programming: A case study. In Chen, S.-H., editor, Ge-

netic Algorithms and Genetic Programming in Economics and Finance. Kluwer
Academic Publishers.

Brabazon, A. and O’Neill, M. (2004). Evolving Technical Trading Rules for Spot
Foreign-Exchange Markets Using Grammatical Evolution. Computational Man-

agement Science. Springer, 2004.

Iba, H and Nikolaev, N. Genetic programming polynomial models of financial data

series, Proceedings of the 2000 Congress on Evolutionary Computation CEC
2000, IEEE Press, pp. 1459–1466.

Nikoaev, N. and Iba, H. Regularization Approach to Inductive Genetic Program-

ming, IEEETransactions on Evolutionary Computing 54 (2001), no. 4, pp. 359–
375.

Keijzer, M. Improving Symbolic Regression with Interval Arithmetic and Linear

Scaling. In LNCS 2610 Proceedings of the 6th European Conference on Genetic
Programming, EuroGP 2003, pp. 70–82.

Ryan, C. and Keijzer, M. An Analysis of Diversity of Constants of Genetic Pro-

gramming. In LNCS 2610 Proceedings of the 6th European Conference on Genetic
Programming, EuroGP 2003, pp. 404–413

