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ABSTRACT

This study examines the utility of meta-grammar constant
generation on a series of benchmark problems. The per-
formance of the meta-grammar approach is compared to a
grammar which incorporates grammatical ephemeral ran-
dom constants, digit concatenation, and an expression based
approach. It is found that the meta-grammar approach
to constant creation is particularly beneficial on the dy-
namic problem instances in terms of the best fitness values
achieved.

1. INTRODUCTION

Many applications of Genetic Programming require the gen-
eration of constants, hence the discovery of efficient means of
generating diverse constants is important. The current stan-
dard approach to constant generation is to use ephemeral
random constants, whose values are created randomly within
a pre-specified range at the initialisation of a run [4]. These
values are then fixed throughout a run, and new constants
can only be created through combinations of these values
and other items from the function and terminal set, such as
+,-, ¥ and /.

In earlier studies, a digit concatenation approach to con-
stant creation in Grammatical Evolution has been adopted
and some investigations into its utility have been conducted
[1, 2, 3]. The findings of these studies provide evidence to
support the superiority of the digit concatenation approach
across a range of constant creation problems, when com-
pared to an expression-based method in which arithmetic
operators are required to generate new constants. More re-
cent work has established that the introduction of grammati-
cal ephemeral random constants can improve the expression
based approach in some instances [11]. We extend these
studies with the introduction of a meta-Grammar approach
to constant creation based on Grammatical Evolution by
Grammatical Evolution ((GE)?) [10]. A meta-Grammar is
employed in a diploid chromsomal structure where one chro-
mosome describes the solution as usual, the second chromo-
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some is the individuals own grammar which maps the the
solution chromosome and the meta-Grammar is used to map
the grammar chromosome for each individual.

This contribution is organised as follows. Section 2 pro-
vides a short introduction to Grammatical Evolution and
the meta-Grammar approach adopted in Grammatical Evo-
lution by Grammatical Evolution. Section 3 describes the
problem domains examined, and the experimental approach
adopted in this study. Section 4 provides the results, and fi-
nally, conclusions and an outline of future work are provided
in Section 5.

2. GRAMMATICAL EVOLUTION

Grammatical Evolution (GE) is an evolutionary algorithm
that can evolve computer programs in any language [5, 6, 7,
8, 9], and can be considered a form of grammar-based ge-
netic programming. Rather than representing the programs
as parse trees, as in GP [4, 12, 13, 14, 15|, a linear genome
representation is used. A genotype-phenotype mapping is
employed such that each individual’s variable length binary
string, contains in its codons (groups of 8 bits) the infor-
mation to select production rules from a Backus Naur Form
(BNF) grammar. The grammar allows the generation of
programs in an arbitrary language that are guaranteed to
be syntactically correct, and as such it is used as a genera-
tive grammar, as opposed to the classical use of grammars
in compilers to check syntactic correctness of sentences. The
user can tailor the grammar to produce solutions that are
purely syntactically constrained, or they may incorporate
domain knowledge by biasing the grammar to produce very
specific forms of sentences.

BNF is a notation that represents a language in the form of
production rules. It is comprised of a set of non-terminals
that can be mapped to elements of the set of terminals
(the primitive symbols that can be used to construct the
output program or sentence(s)), according to the produc-
tion rules. A simple example BNF grammar is given below,
where <expr> is the start symbol from which all programs
are generated. The grammar states that <expr> can be re-
placed with either one of <expr><op><expr> or <var>. An
<op> can become either +, -, or *, and a <var> can become
either x, or y.

<expr> ::
<op> ::
<var> ::=x | y

<expr><op><expr> | <var>
+ | - | *



The grammar is used in a developmental process to con-
struct a program by applying production rules, selected by
the genome, beginning from the start symbol of the gram-
mar. In order to select a production rule in GE, the next
codon value on the genome is read, interpreted, and placed
in the following formula:

Rule = Codon Value % Num. Rules
where % represents the modulus operator.

Beginning from the left hand side of the genome codon in-
teger values are generated and used to select appropriate
rules for the left-most non-terminal in the developing pro-
gram from the BNF grammar, until one of the following
situations arise: (a) A complete program is generated. This
occurs when all the non-terminals in the expression being
mapped are transformed into elements from the terminal set
of the BNF grammar. (b) The end of the genome is reached,
in which case the wrapping operator is invoked. This results
in the return of the genome reading frame to the left hand
side of the genome once again. The reading of codons will
then continue unless an upper threshold representing the
maximum number of wrapping events has occurred during
the mapping process of this individual. (c) In the event
that a threshold on the number of wrapping events has oc-
curred and the individual is still incompletely mapped, the
mapping process is halted, and the individual assigned the
lowest possible fitness value. A full description of GE can
be found in [5].

2.1 Grammatical Evolution by Grammatical
Evolution

In order to allow evolution of a grammar, grammatical evo-
lution by grammatical evolution (GE)?, we must provide a
grammar (meta-Grammar) to specify the form a grammar
can take. This is an example of the richness of the expres-
siveness of grammars that make the GE approach so power-
ful. See [5, 21] for further examples of what can be achieved
with grammars. By allowing an evolutionary algorithm to
adapt its representation (in this case through evolution a
grammar) it provides the population with a mechanism to
survive in dynamic environments, in particular, and also to
automatically incorporate biases into the search process.

In this approach we therefore have two distinct grammars,
the wniversal grammar (or grammars’ grammar) and the
solution grammar. The notion of a universal grammar is
adopted from linguistics and refers to a universal set of syn-
tactic rules that hold for spoken languages [22]. It is pro-
posed that during a child’s development the universal gram-
mar undergoes modifications through learning that allows
the development of communication in their parents native
language(s) [23].

In the meta-grammar method, the universal grammar dic-
tates the construction of the solution grammar. Given below
are the examples of these grammars for solutions that gener-
ate expressions, which could be used for symbolic regression
type problems.

Universal Grammar (Grammars’ Grammar)

<g>::="<expr>::=<op><expr><expr> | <var>"
"<op>: :="<ops>
"<var>::="<vars>
<ops>::=<opt> "|" <ops> | <opt>
<opt>::=+ | = | x| /
<vars>::= <vart> "|" <vars> | <vart>
<vart>::=m | v | q | a

Solution Grammar

<expr>::=<opt><expr><expr> | <var>
<op>::= 7
<var>::= 7

In the universal grammar above, a grammar <g>, is speci-
fied such that it is possible for the non-terminals <var> and
<op> to have one or more rules, with the potential of rule
duplication. These are the rules that will be made available
to an individual during mapping, and this effectively allows
bias for symbols to be subjected to the processes of evolu-
tion. The productions <vars> and <ops> in the universal
grammar are strictly non-terminals, and do not appear in
the solution grammar. Instead they are interim values used
when producing the solution grammar for an individual.

The hard-coded aspect of the solution grammar can be seen
in the example above with the rules for <op> and <var> as
yet unspecified. In this case we have restricted evolution
to occur only on the number of productions for <var> and
<op>, although it would be possible to evolve the rules for
<expr> and even for the entire grammar itself.

In this study two separate, variable-length, genotypic chro-
mosomes were used, the first chromosome to generate the so-
lution grammar from the universal grammar and the second
chromosome to generate the solution itself. Crossover oper-
ates between homologous chromosomes, that is, the solution
grammar chromosome from the first parent recombines with
the solution grammar chromosome from the second parent,
with the same occurring for the solution chromosomes. In
order for evolution to be successful it must co-evolve both
the genetic code and the structure of solutions based on the
evolved genetic code.

2.2 Constant Creation Grammars

Two grammars are examined in this study. The first is a
combination grammar which includes three constant genera-
tion techniques, with the grammar adopted provided below.

<exp>::= <trad> | <catR> | <ephemeral>

<trad> ::= <trad> <op> <trad> | <tradT>

<tradT> ::=0 | 1| 2| 3|4|5[16171819
<op> =+ | = | /| %

<catR> ::= <cat> <dot> <cat> | <cat>

<cat> ::= <cat> <catT> | <catT>

<catT> ::=0 ] 112131415161 71819
<dot> ::= .



<ephemeral> ::= <ephemeral> <op> <ephemeral>

| <ephemeralT>
<ephemeralT> ::= ‘100 random real constants’’
<op> =+ | = | /| *

The concatenation section (<cat>) only allows the creation
of constants through the concatenation of digits. This is in
contrast to the Traditional section (<trad>) that restricts
constant creation to the generation of values from expres-
sions using a fixed set of constants specified by the non-
terminal <tradT>. The third section concerns grammat-
ical ephemeral random constants. In this method, a set
of 100 real-valued constants are generated randomly in the
range 0 to 100 inclusive at the outset of a run and these are
then directly incorporated as choices for the nonterminal
<ephemeralT>. In a standard GP manner, these constants
can then be utilised in arithmetic expressions to generate
new constant values, however, unlike in GP these ephemeral
random constants can be switched on or off by simply se-
lecting their corresponding production rule thus overcoming
potential deletion from the population.

The meta-Grammar for constant generation is provided be-
low.

<g> ::= "<SlnCatR> ::=" <catRs> "<SlnCat> ::="
<cats> "<SlnDigit> ::=" <digit>
<catRs> ::= <catRt> "|" <catRs> | <catRt>
<catRt> ::= "<SlnCat>" | "<SlnCat>"."<SlnCat>"
<cats> ::= <catT> "|" <cats> | <catT>
<catT> ::= "<S1lnDigit>"<catT> | "<SIlnDigit>"
| <digit>
<digit> ::= <digitT> "|" <digit> | <digitT>
<digitT> ::= 0]112|3141516171819

A simple example of this meta-Grammar in action is seen
where we aim to evolve the target 50. In one such exper-
iment the meta-Grammar produced the solution grammar
displayed below.

<SlnCatR> ::= <SlnCat>
<S1nCat> ::= <S1lnDigit>0
<S1lnDigit> ::= 5

This solution grammar then makes it very easy to produce
the target as the only mapping available produces 50. This
underlines the strength of the diploid structure and use of
a meta-Grammar as it allows the grammar itself specialise
towards the solution.

3. PROBLEMDOMAIN & EXPERIMENTAL
APPROACH

In this study, we compare the utility of two different con-
stant creation grammars (one which combines 3 methods)
on a series of benchmark constant creation problems. The
constant generation problems tackled are; Finding a Static
Constant, Finding Dynamic Real Constants, and the Logis-
tic Equation. A description of each problem follows.

3.1 Finding a Static Constant

The aim of this problem is to evolve a single integer con-
stant. For these experiments a simple integer value within
the range of the Ephemeral random constants was selected,
50. Fitness in these experiments is the absolute difference
between the target and evolved values, the goal being to
minimise this value.

3.2 Finding Dynamic Real Constants

This problem involves a dynamic fitness function that changes
its target real constant value every 10th generation. Two in-
stances of this problem are tackled, the first sets the succes-
sive target values to be 192.47, 71.84, 71.83, 173.59, 192.47,
i.e. generation for 0 to 9 192.47 is the target 10 to 19 71.84,
etc., and the second instance oscillates between the two val-
ues 192.47 and 71.84. The aim with these problems is to
analyse the different constant representations in terms of
their ability to adapt to a changing environment, and to
investigate that behaviour in the event of both small and
large changes. As in the static constant problem, fitness in
this case is the absolute difference between the target and
evolved values, with the goal being the minimisation of this
€erTor.

3.3 The Logistic Equation

In systems exhibiting chaos, long-term prediction is prob-
lematic as even a small error in estimating the current state
of the system leads to divergent system paths over time.
Short-term prediction however, may be feasible [16]. Be-
cause chaotic systems provide a challenging environment
for prediction, they have regularly been used as a test-bed
for comparative studies of different predictive methodolo-
gies [17, 18, 19]. In this study we use time-series informa-
tion drawn from a simple quadratic equation, the logistic
difference equation.’ This equation has the form:

Tir1 = aze(l — x4) x € (0.0,1.0)

The behaviour of this equation is crucially driven by the pa-
rameter . The system has a single, stable fixed point (at
z = (a—1)/a)for a < 3.0 [19]. For a € (3.0, 3.57) there
is successive period doubling, leading to chaotic behaviour
for € (= 3.57,4.0). Within this region, the time-series
generated by the equation displays a variety of periodicities,
ranging from short to long [20]. In this study, three time-
series are generated for differing values of a. The choice
of these values is guided by [20], where it was shown that
the behaviour of the logistic difference equation is qualita-
tively different in three regions of the range (3.57 to 4.0).
To avoid any bias which could otherwise arise, parameter
values drawn from each of these ranges are used to test the
constant evolution grammars. The goal in this problem is
to rediscover the original a value. As this equation exhibits
chaotic behaviour, small errors in the predicted values for
a will exhibit increasingly greater errors, from the target
behaviour of this equation, with each subsequent time step.
Fitness in this case is the mean squared error, which is to
be minimised. 100 initial values for z; were used in fitness

IThis is a special case of the general quadratic equation
y = ax? + bz + ¢ where ¢ = 0 and a = —b.



evaluation, and for each z: iterating 100 times (i.e. x: to
$t+100)~

4. RESULTS

For every problem instance, 30 runs were conducted using
population sizes of 500, running for 50 generations, adopting
one-point crossover at a probability of 0.9, and bit muta-
tion at 0.1, along with roulette selection and a replacement
strategy where the worst performing 25% of the population
is replaced each generation with newly generated individu-
als from crossover and mutation. In the case of the meta-
Grammar runs population sizes of 250 were adopted due to
the increased computational time required to process these
runs introduced by the maintenance of diploid chromosomes.
As such we would consider these results to reflect an under-
stated performance of the meta-Grammar approach.

4.1 Finding a Static Constant

The results presented in Fig. 1 display a comparison of the
average best fitness of each of the grammars over the 30
runs.

As can be seen in Fig. 1 the meta-grammar begins with a
poorer fitness in comparison to the Combination grammar
but quickly evolves a comparable fitness over the 50 genera-
tions. A t-test and a bootstrap t-test [25] reveal that there is
no significant difference in the results by the final generation.
The average best performance of the Combination grammar
by the final generation was a difference of 0.373499 with
6 runs evolving the exact target. In comparison the meta-
grammar produced an average best performance of 0.391333
and reached the target exactly in 14 of the 30 runs.

4.2 Finding Dynamic Real Constants

In Fig. 2 graphs are presented for the experiments where the
set of numbers to be evolved over the course of a run are:
192.47, 71.84, 71.83, 173.59 and 192.47. Here the combina-
tion again begins with a good fitness and once generation 10
is reached and the target changes to 71.84, it quickly attains
a very good fitness. This is due to the target being within
the range of the Ephemeral random constants, however at
generation 30, where the target changes to 173.59, this fit-
ness deteriorates significantly. Analysis at this point, where
the target is 173.59, shows that the Ephemeral random con-
stants method has grown to occupy 45% of the population
versus 36% and 17% for the Concatenation and Traditional
methods respectively. This suggests that while the target
was with in the range of the Ephemeral constants it was
able to quickly attain a high fitness and a strong position in
the population but following from this was unable to suc-
cessfully evolve from this position once the target left its
range as demonstrated by the lack of significant evolution
towards a better fitness for the last two targets. In these ex-
periments the meta-grammar method again starts off with
a poorer fitness but attains a fitness similar to the Combi-
nation grammar by generation 10. When the target changes
to 173.59 it too experiences a strong deterioration in fitness
but unlike the combination grammar it takes large leaps in
fitness as the generations progress on this target. It then
goes on to continue improving fitness when the target again
shifts at generation 40 to 192.47.

Results for the oscillating non-stationary problem instance
are presented in Fig. 3. In the second instance of this prob-
lem where the target oscillates from 192.47 to 71.84 every
10 generations we notice a similar trend. In the combina-
tion grammar by generation 20 Ephemeral constants have
reached a strong position within the population after a pe-
riod with 71.84 as the target. The fitness drops drastically
when the target changes to 192.47. When the target reaches
the higher number for the third time the fitness is worse
again due perhaps to a further loss of diversity in the pop-
ulation between the different methods in the Combination
grammar. For the meta-grammar method it again begins
with a poorer fitness but quickly catches up with the Combi-
nation grammar by generation 10. Once the target changes
to 192.47 we see a similar story to the dynamic experiments
where meta-grammar begins the target with a poor fitness
but quickly evolves more fit individuals over the 10 genera-
tions. Interestingly this trend is emphasised when the target
hits 192.74 for the second time where meta-grammar begins
with a fitness that is worse than at the start the last time
but ends on a fitness that is better than at generation 30.

An interesting aside at this point is to examine the changes
in the best performing solution grammar over the course of
an oscillation experiment. In one such experiment the meta-
Grammar was able to produce a solution grammar which
helped in closely approximating the 71.84 target. This gram-
mar is described below. A solution yielded by this grammar
produced a phenotype of 72.32.

<S1nCatR> ::= <SlnCat> | <SlnCat>.<SlnCat>
<S1nCat> ::= <S1lnDigit>2
<SlnDigit> ::=3 | 7

The system was then able to maintain this individual in the
population when the target swung to 192.47 and recall it
again when the target returned to 71.84, providing a level of
memory. For the target of 192.47 (GE)2 consistently evolved
improving solution grammars right down to the final gener-
ation when one best performing grammar transitioned from

<S1nCatR> ::= <SlnCat>
<SlnCat> ::= <S1lnDigit>0

| <S1nDigit><SlnDigit><SlnDigit>
<SlnDigit> ::=0 | 1 | O

and a solution of 101 to

<S1lnCatR> ::= <SlnCat>.<S1lnCat>
<SlnCat> ::= <S1lnDigit><S1nDigit><S1lnDigit>
<SlnDigit> ::=0 | 2 | 9 | 1

and a solution of 190.021 achieving a good approximation of
the target. This is in contrast to the Combination grammar
method which generally saw little or no evolution towards
the target when it swung to the largest number outside the
range of the grammatical ephmeral constants range.
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Figure 1: Plot of the mean best fitness values for each constant generation method (left) and the mean
symbol usage at each generation (right) on the static constant problem instance.
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Figure 2: Plot of the mean best fitness values for each constant generation method (left) and the mean
symbol usage at each generation (right) on the first dynamic problem instance.

4.3 The Logistic Equation
Here both methods present good fitnesses. Table 1 shows
average best fitnesses for the different values of a.

Table 1: Average best fitness for different values of
a for each grammar.

a Combo (GE)?
3.59 0.000061  0.00032
3.80 0.00045 0.00041
3.84 0.00024 0.0002468

As can be seen in the table meta-grammar performs well in
comparison to the Combination grammar with close results
in all but o = 3.59. Fig 1 presents a sample of the results
for a = 3.84. It once more follows trends seen in the previ-
ous experiments where meta-grammar begins with a poorer
fitness but rapidly takes the evolutionary steps to reach a
fitness similar to the Combination grammar.

5. CONCLUSIONS & FUTURE WORK

This study demonstrates the utility of Grammatical Evolu-
tion by Grammatical Evolution in evolving constants. In
[11] the benefits of the Combination grammar were high-
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Figure 4: Plot of the mean best fitness on the logistic equation problem instance where a«=3.84.

lighted. Here we compare the Combination grammar with
the meta-grammar method and see that the meta-grammar

method has advantages over the combination grammar. These

advantages are largely seen in the dynamic experiments where
(GE)? is able to quickly evolve a new target with large evo-
lutionary steps. This is due to its diploid structure where
both the grammar and solution are evolved simultaneously
and favourable biases in a grammar are quickly built upon

Among the static experiments the meta-grammar method is
able to hold its own with t-tests highlighting that there was
no significant difference between the methods for evolving
50 but at the same time evoleved over twice the number

of exact solutions for the target. In the logistical equation
meta-grammar achieved a better fitness in one out of three
values for «, and only marginally loosing at one setting.
When considering these results it must also be borne in mind
that the meta-grammar method had half the population size
used by the Combination grammar and so potentially better
results may be expected. Future work should explore this
possibility.

One of the interesting features in this study is the high rate
of evolution produced by the meta-grammar method. In
all problem instances meta-grammar began the early gen-
erations with a far inferior fitness due to the larger search



space presented by the diploid chromosome structure. How-
ever over a small number of generations this disadvantage is
quickly over come and fitnesses are attained which are com-
parable to the Combination grammar and its smaller search
space. This strength makes meta-grammar and (GE)? an
ideal candidate in dynamic problems as in the results of Sec-
tion 4.2 where the diploid structure begins each new target
behind the haploid structure employed by the Combination
grammar but over the course of 10 generations surpasses the
fitness of the Combination method. Considering this further
analysis of the meta-grammar should be conducted in dy-
namic environments where the ability to quickly navigate a
larger search space is beneficial.
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