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Abstract. This study examines the utility of grammatical ephemeral
random constants, and conducts an analysis of the preferences of evolu-
tionary search when a number of different grammar based constant gener-
ation methods are provided with Grammatical Evolution. Three constant
generation techniques are supplied, namely, grammatical ephemeral ran-
dom constants, digit concatenation, and an expression based approach.
A number of constant generation problems are tackled to analyse this
approach, with results indicating a preference for both the digit concate-
nation and grammatical ephemeral random constants. The provision of
different constant generation strategies allowing the evolutionary process
to automatically determine which technique to adopt would, therefore,
appear to be advantageous.

1 Introduction

In earlier studies, a digit concatenation approach to constant creation in Gram-
matical Evolution has been adopted and some investigations into its utility have
been conducted [1–3]. The findings of these studies provide evidence to support
the superiority of the digit concatenation approach across a range of constant
creation problems, when compared to an expression based method in which arith-
metic operators are required to generate new constants. We now extend these
studies with the introduction of a third constant creation technique based on
ephemeral random constants called grammatical ephemeral random constants.
Within a grammar, we study the benefits of defining all three constant generation
methods simultaneously, and allowing evolution to select the most appropriate
strategy.
Many applications of Genetic Programming require the generation of constants,
hence the discovery of efficient means of generating diverse constants is impor-
tant. The current standard approach to constant generation is to use ephemeral
random constants, whose values are created randomly within a prespecified range
at runs’ initialisation [4]. These values are then fixed throughout a run, and new
constants can only be created through combinations of these values and other
items from the function and terminal set, such as +,-, * and /.
There have been a number of variations on the ephemeral random constant
idea in tree-based GP systems, all of which have the common aim of making



small changes to the initial constant values created in an individual. Constant
perturbation [5] allows GP to fine-tune floating point constants by multiplying
every constant within an individual proto-solution by a random number between
0.9 and 1.1, having the effect of modifying a constants value by up to 10% of
their original value. Numerical terminals and a numerical terminal mutation
were used in [6] instead of ephemeral random constants, the difference being
that the numerical terminal mutation operator selects a real valued numerical
terminal in an individual and adds a noise parameter, drawn from a Gaussian
distribution, such that small changes are made to the constant values.
A numeric mutation operator, that replaces all of the numeric constants in an
individual with new ones drawn at random from a uniform distribution within a
specified selection range, was introduced in [7]. The selection range for each con-
stant is specified as the old value of that constant plus or minus a temperature
factor. This method was shown to produce a statistically significant improve-
ment in performance on a number of symbolic regression problems ranging in
difficulty. More recently Ryan and Keijzer [8] have found that it is important
to maintain a diverse set of constants within a population, therefore suggesting
that the continual introduction of new constants into the population is critical.
In fact, their results suggest that the more disruptive the perturbations are to
the constants present the more of them that are adopted in successful solutions.
In addition, there have been a number of attempts to fine tune constants us-
ing statistical and mathematical methods such as Linear Scaling, Least Mean
Squares and Gradient Descent, for example see [9, 10].
This contribution is organised as follows. Section 2 provides a short introduction
to Grammatical Evolution. Section 3 describes the problem domains examined,
and the experimental approach adopted in this study. Section 4 provides the
results, and finally, conclusions and an outline of future work are provided in
Section 5.

2 Grammatical Evolution

Grammatical Evolution (GE) is an evolutionary algorithm that can evolve com-
puter programs in any language [11–15], and can be considered a form of grammar-
based genetic programming. Rather than representing the programs as parse
trees, as in GP [4, 16–19], a linear genome representation is used. A genotype-
phenotype mapping is employed such that each individual’s variable length bi-
nary string, contains in its codons (groups of 8 bits) the information to select
production rules from a Backus Naur Form (BNF) grammar. The grammar al-
lows the generation of programs in an arbitrary language that are guaranteed
to be syntactically correct, and as such it is used as a generative grammar, as
opposed to the classical use of grammars in compilers to check syntactic correct-
ness of sentences. The user can tailor the grammar to produce solutions that are
purely syntactically constrained, or they may incorporate domain knowledge by
biasing the grammar to produce very specific forms of sentences.



BNF is a notation that represents a language in the form of production rules.
It is comprised of a set of non-terminals that can be mapped to elements of the
set of terminals (the primitive symbols that can be used to construct the output
program or sentence(s)), according to the production rules. A simple example
BNF grammar is given below, where <expr> is the start symbol from which all
programs are generated. The grammar states that <expr> can be replaced with
either one of <expr><op><expr> or <var>. An <op> can become either +, -, or
*, and a <var> can become either x, or y.

<expr> ::= <expr><op><expr> | <var>
<op> ::= + | - | *

<var> ::= x | y

The grammar is used in a developmental process to construct a program by
applying production rules, selected by the genome, beginning from the start
symbol of the grammar. In order to select a production rule in GE, the next
codon value on the genome is read, interpreted, and placed in the following
formula:

Rule = Codon V alue % Num. Rules

where % represents the modulus operator. Beginning from the left hand side of
the genome codon integer values are generated and used to select appropriate
rules for the left-most non-terminal in the developing program from the BNF
grammar, until one of the following situations arise: (a) A complete program
is generated. This occurs when all the non-terminals in the expression being
mapped are transformed into elements from the terminal set of the BNF gram-
mar. (b) The end of the genome is reached, in which case the wrapping operator
is invoked. This results in the return of the genome reading frame to the left
hand side of the genome once again. The reading of codons will then continue
unless an upper threshold representing the maximum number of wrapping events
has occurred during the mapping process of this individual. (c) In the event that
a threshold on the number of wrapping events has occurred and the individual
is still incompletely mapped, the mapping process is halted, and the individual
assigned the lowest possible fitness value. A full description of GE can be found
in [11].

3 Problem Domain & Experimental Approach

In this study, we compare the utility of three different constant creation methods
for evolving constants by defining all three methods within the same grammar,
and allowing evolution to select the most appropriate approach. The constant
generation problems tackled are; Finding a Static Constant, Finding Dynamic
Real Constants, and the Logistic Equation. A description of each problem fol-
lows.

Finding a Static Constant The aim of this problem is to evolve a single real
constant, namely 50. Fitness in this case is the absolute difference between the
target and evolved values, the goal being to minimise the error.



Finding Dynamic Real Constants This problem involves a dynamic fitness
function that changes its target real constant value at regular intervals (every
10th generation). Two instances of this problem are tackled, the first sets the
successive target values to be 192.47, 71.84, 71.83, 173.59, 192.47, and the second
instance oscillates between the two values 192.47 and 71.84. The aim with these
problems is to analyse the different constant representations in terms of their
ability to adapt to a changing environment, and to investigate that behaviour
in the event of both small and large changes. As in the static constant problem,
fitness in this case is the absolute difference between the target and evolved
values, with the goal being the minimisation of this error.

The Logistic Equation In systems exhibiting chaos, long-term prediction is
problematic as even a small error in estimating the current state of the system
leads to divergent system paths over time. Short-term prediction however, may
be feasible [20]. Because chaotic systems provide a challenging environment for
prediction, they have regularly been used as a test-bed for comparative studies of
different predictive methodologies [21–23]. In this study we use time-series infor-
mation drawn from a simple quadratic equation, the logistic difference equation.1

This equation has the form:

xt+1 = αxt(1− xt) x ∈ (0.0, 1.0)

The behaviour of this equation is crucially driven by the parameter α. The
system has a single, stable fixed point (at x = (α − 1)/α)for α < 3.0 [23].
For α ∈ (3.0,≈ 3.57) there is successive period doubling, leading to chaotic
behaviour for α ∈ (≈ 3.57, 4.0). Within this region, the time-series generated
by the equation displays a variety of periodicities, ranging from short to long
[24]. In this study, three time-series are generated for differing values of α. The
choice of these values is guided by [24], where it was shown that the behaviour
of the logistic difference equation is qualitatively different in three regions of the
range (3.57 to 4.0). To avoid any bias which could otherwise arise, parameter
values drawn from each of these ranges are used to test the constant evolution
grammars. The goal in this problem is to rediscover the original α value. As this
equation exhibits chaotic behaviour, small errors in the predicted values for α will
exhibit increasingly greater errors, from the target behaviour of this equation,
with each subsequent time step. Fitness in this case is the mean squared error,
which is to be minimised. 100 initial values for xt were used in fitness evaluation,
and for each xt iterating 100 times (i.e. xt to xt+100).

Constant Creation Grammar Three constant generation techniques are pro-
vided within the same grammar for this study, with the grammar adopted pro-
vided below.

<exp> ::= <value>

1 This is a special case of the general quadratic equation y = ax2 + bx+ c where c = 0
and a = −b.



<value> ::= <trad> | <catR> | <ephemeral>
<op> ::= + | - | / | *
<trad> ::= <trad> <op> <trad> | <tradT>
<tradT> ::= 0.0 | 1.0 | 2.0 | 3.0 | 4.0 | 5.0

| 6.0 | 7.0 | 8.0 | 9.0
<catR> ::= <cat> <dot> <cat> | <cat>
<cat> ::= <cat> <catT> | <catT>
<catT> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<dot> ::= .
<ephemeral> ::= <ephemeral> <op> <ephemeral> | <ephemeralT>
<ephemeralT> ::= ‘‘100 randomly generated real constants’’

The concatenation part of the grammar (<cat>) only allows the creation of
constants through the concatenation of digits. This is in contrast to the Tra-
ditional part of the grammar (<trad>) that restricts constant creation to the
generation of values from expressions using a fixed set of constants specified
by the non-terminal <tradT>. The third part of the grammar concerns gram-
matical ephemeral random constants. In this method, a set of 100 real-valued
constants are generated randomly in the range 0 to 100 inclusive at the outset
of a run and these are then directly incorporated as choices for the nonterminal
<ephemeralT>. In a standard GP manner, these constants can then be utilised
in arithmetic expressions to generate new constant values, however, unlike in GP
these ephemeral random constants can be switched on or off by simply selecting
their corresponding production rule thus overcoming potential deletion from the
population.

4 Results

For every problem instance, 30 runs were conducted using population sizes of
500, running for 50 generations on the dynamic constant problems, and 100
generations for the static and logistic equation instances, adopting one-point
crossover at a probability of 0.9, and bit mutation at 0.1, along with roulette
selection and a replacement strategy where the worst performing 25% of the
population is replaced each generation.

Finding a Static Constant The results presented in Fig. 1 indicate a strong
preference by GE for the Concatenation method in this problem.
By the final generation, on average, across thirty runs GE evolved 309 individuals
using the concatenation method against 126 and 13 for the Ephemeral random
constants and the Traditional methods respectively. Of the best performing indi-
viduals in the final generation 75% had evolved a Concatenated individual, 14%
an Ephemeral random constant individual and 10% a Traditional. It was also
worth noting from this set of experiments that after generation four GE con-
sistently mapped each individual of type Concatenation while Ephemeral and
Traditional produced a fluctuating number of un-mappable individuals within
the range of 20 to 30 individuals after the early generations.
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Fig. 1. Plot of the number of individuals that use each of the three constant generation
methods (top left), the mean best fitness (top right), and the number of population
members using each of the constant creation techniques that fail to map (bottom left),
on the static constant problem instance. A comparison of the combination grammar
with the performance of the individual component grammars on their own is given
(bottom right).
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Fig. 2. Plot of the number of individuals that use each of the three constant generation
methods (top left), the mean best fitness (top right), and the number of population
members using each of the constant creation techniques that fail to map (bottom left),
on the first dynamic constant problem instance. A comparison of the combination
grammar with the performance of the individual component grammars on their own is
given (bottom right).



Among the experiments incorporating each constant creation method exclusively
as presented in Fig. 1 the benefits of the Concatenation method are clearly
confirmed for this problem. Over the course of 30 runs Concatenation produced
best performers with an average fitness of 0.50024 compared against 1.7931 and
2.27586 for the Traditional and Ephemeral methods respectively.

Finding Dynamic Real Constants In Fig. 2 graphs are presented for the
experiments where the set of numbers to be evolved over the course of a run
are: 192.47, 71.84, 71.83, 173.59 and 192.47. This time the Ephemeral constants
gain a stronger foothold in the population over the course of the run, overtaking
Concatenation before generation 20 at the same time presenting good fitness.
However at generation 30, where the target changes to 173.59, this fitness dete-
riorates significantly. This suggests that while the target was with in the range
of the Ephemeral constants it was able to quickly attain a high fitness and a
strong position in the population but was unable to successfully evolve from this
position once the target left its range.
In the single method grammars however, the Ephemeral method does express
a stronger ability to evolve to the targets outside its range taking large evolu-
tionary steps towards the target after its initial change. The Concatenation and
Traditional methods present performances similar to the combination grammar’s
performance.
Results for the oscillating non-stationary problem instance are presented in Fig.
3. In the second instance of this problem where the target oscillates from 192.47
to 71.84 every 10 generations we notice a similar trend. Again by generation
20 Ephemeral constants have reached a strong position within the population
after a period with 71.84 as the target. The fitness drops drastically when the
target changes to 192.47. When the target reaches the higher number for the
third time the fitness is worse again due perhaps to a further loss of diversity in
the population.
With the single grammars in the dynamic problem the results for the oscillation
experiments provide similar performances with the Ephemeral method being
able to take the larger evolutionary steps once the target changes.

The Logistic Equation Fig. 4 presents a sample of the results for the logis-
tic equation with α values of 3.59, 3.8 and 3.84, which were very similar across
the three α values. Here the Concatenation method gains the dominant position
within the population as evolution progresses. The proportion of Ephemeral
constants in the population is seen to approach the level of Concatenation con-
stants initially, as in the dynamic experiments, however this time as evolution
progresses, the Concatenation method gains the dominant position within the
population. Among the best performing individuals for 3.59 60% were Ephemeral
and 40% Concatenation, for 3.8 73% were Concatenation and with the remain-
ing 27% being Ephemeral and for 3.84 80% Concatenation, 20% Ephemeral. No
Traditional individuals achieved best performer in any test.
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Fig. 3. Plot of the number of individuals that use each of the three constant generation
methods (top left), the mean best fitness (top right), and the number of population
members using each of the constant creation techniques that fail to map (bottom left),
on the second dynamic constant problem instance. A comparison of the combination
grammar with the performance of the individual component grammars on their own is
given (bottom right).
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Fig. 4. Plot of the number of individuals that use each of the three constant generation
methods (top left), the mean best fitness (top right), and the number of population
members using each of the constant creation techniques that fail to map (bottom), on
the logistic equation problem instance where α=3.80.

5 Conclusions & Future Work

Benefits of both the concatenation and newly introduced grammatical ephemeral
random constants methods for constant creation are described in this paper with



the traditional method performing consistently poorer than the competition for
the problems analysed.
Given the dominance of the concatenation and grammatical ephemeral random
constants techniques on the problem instances tackled here and the fact that
there is an unclear winner between these two methods, further analysis is re-
quired on additional domains to ascertain the generality of these findings. It is
not clear from this study as to why either of these approaches is superior, just
that they are used in preference to the traditional method. Further investigations
in this direction are therefore required.
Additionally, future work in this area will focus on the two stronger methodolo-
gies in examining their performance in evolving complex numbers outside the
grammatical ephemeral random constant range, and where the concatenation
method is also allowed to form expressions. A grammar that combines grammat-
ical ephemeral random constants and concatenated constants in expressions will
be examined in contrast to the grammar described here, which only allowed the
exclusive use of one method for each individual. On the dynamic problem front,
a more in-depth analysis of the role diversity plays within such populations is
required, and into the number of generations required to improve accuracy when
a target is changed.
From the results presented it is recommended that a grammar similar in form
to the one in this study is adopted, which provides a facility to switch between
the newly introduced grammatical ephemeral random constants and digit con-
catenation.
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