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Abstract—Model complexity of Genetic Programming (GP) as
a learning machine is currently attracting considerable interest
from the research community. Here we provide an up-to-date
overview of the research concerning complexity measure tech-
niques in GP learning. The scope of this review includes methods
based on information theory techniques, such as the Akaike
Information Criterion (AIC), Bayesian Information Criterion
(BIC); plus those based on statistical machine learning theory on
generalization error bound, namely, Vapnik-Chervonenkis (VC)
theory; and some based on structural complexity. The research
contributions from each of these are systematically summarized
and compared, allowing us to clearly define existing research
challenges, and to highlight promising new research directions.
The findings of this review provides valuable insights into the
current GP literature and is a good source for anyone who is
interested in the research on model complexity and applying
statistical learning theory to GP.
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I. INTRODUCTION

Genetic Programming (GP), first officially developed by
John Koza [1] has recently been extensively applied to various
machine learning (ML) problems with promising results (see
Poli et al. [2]). Therefore, GP has gradually been deeply
investigated and adopted as a machine learning method, which
learns models from data.

It is not surprising that generalization has long been re-
garded as one of the most important and desirable properties
of learning machines. This property implicitly looks at the
phenomenon of overfitting; a phenomenon, which occurs when
a learning system selects a model that fits a particular, set of
training data but generalizes poorly on out-of-sample data. In
addition, it is widely known that the generalization - overfitting
paradox relates directly to the model selection task in machine
learning and statistics [14]. That is to say, model selection
based merely on the fit to observed data will tend to lead to
the choice of an unnecessarily complex model that overfits
the training data and generalizes poorly. To combat these
problems, regularization [9] is often used in machine learning,
to reduce overfitting by adding a complexity (penalty) term to
the loss function. That term is used to control the complexity

of a learning model to guarantee that model selection should
be based not only on the goodness-of-fit to the observed data.

To perform regularization (model selection) in GP learning,
it is necessary to define the ”complexity” of a GP learning
model. Since the GP evolutionary learning process always
maintains a population of learning models called individuals, it
is individual complexity that needs to be measured. However,
for the purpose of regularization, it is nontrivial to define and
calculate the complexity of GP individuals for several reasons
as follows: First, each GP individual, even though initialized
in various ways (standard tree-based GP [1], linear GP [23],
graph-based GP [24], and grammar-based GP [25]), always has
a variable size. Second, GP conforms to theory of evolution
to evolve computer programs as individuals. GP individual
chromosomes must progress through several evolutionary steps
of mutation and recombination and thus, they often increase in
size. Thus, it follows that each GP individual chromosome is
likely to have non-effective code (introns) [26] and suffer from
bloat [2]. Recently, model selection and model complexity has
drawn much attention from GP community in particular [52],
[59]. The aim of this paper is to overview recent researches
on model complexity in GP learning, showing the advantages
and disadvantages of various approaches, and outlining some
possible future research directions in this area

The rest of the paper is organized as follows: Section 2
introduces some background on statistical learning theory,
model selection, GP, and the generalization problem. Section
3 provides a literature review. In section 4, a discussion of the
literature is provided. Section 5 provides some conclusions.

II. BACKGROUND

In this section, we first briefly review some important
concepts of statistical learning theory. Then, a list of common
model selection criteria is given. Finally, we discuss the issue
of GP learning generalization.

A. Statistical learning theory

In [4], Vapnik and Chervonenkis proposed a remarkable
family of upper bounds on the generalization error of a



learning machine, in which the Vapnik-Chervonenkis dimen-
sion (VC-dimension) is a central concept for measuring the
capacity of a family of functions (or learning machines) f ∈H
as classifiers. The VC-dimension of a class of (bounded)
functions H is defined as the maximum number of points that
can be shattered by H. For instance, the VC dimension of
hyperplanes in Rn is n + 1 [4].

Generally, the error, ε(f), of a learning machine f is defined
as:

ε(f) =

∫
Q(x, f ; y)dµ (1)

where Q measures a loss between f(x) and y, and µ is the
(unknown) distribution from which sample (x, y) are drawn,
usually x is called the instance and y the label. For instance,
for classification problems, Q(x, f ; y) = |y − f(x)|, and the
error is the misclassification rate. For regression problems,
commonly Q(x, f ; y) = (y − f(x))2 (mean square error).
Many of the classic applications of learning machines can be
explained within this formalism.

Since µ is usually unknown, in practice the theoretical error
ε(f) is replaced by the empirical error which is estimated from
a finite sample {xi, yi}ni=1 as:

ε(f) =
1

n

n∑
i=1

Q(xi, f ; yi) (2)

The main results in [4] state that the error ε(f) can be
bounded and independent of the distribution of µ(x, y) as in
the following formula:

ε(f) ≤ εn(f) +
√
h(log(2n/h) + 1− log(η/4)

n
(3)

where η is the probability that bound is violated and h is
the VC dimension of H from which function f is selected. The
second term of the right hand side is called the VC confidence
as it depends only the VC dimension given h, η, and n. (as
example, for h = 200, n = 100000, and η = 0.95 the VC
confidence is 0.12)

Statistical learning theory plays a major role in model
selection in that one should select a model with lower bound
on generalization error that conforms to one of machine
learning theory mechanisms.

B. Model Selection and Model Complexity

Model selection is the task of selecting a statistical model
from a set of candidate models given data drawn from an
unknown distribution. Once the set of candidate models has
been chosen, the statistical analysis allows us to select the
best of these models. The terms ”best” here can be inter-
preted in two ways: generalization error and training error.
Generalization error is a model’s error rate on unseen data,
and training error is the error on the dataset used to generate
the model. Overfitting the training set is a serious problem
in machine learning that usually leads to low generalization
capabilities. Thus, generalization and overfitting are two sides

of the same coin. When comparing two models, the model
with the lower training error is generally considered superior.
When comparing models with similar training error, however,
the model with lower complexity is usually preferred in the
hope that it will have good prediction ability on future data.
This is often described as Occam’s razor in machine learning
[10]. Roughly speaking, when applied to machine learning,
Occam’s razor can be stated in two forms:

i) Given two models with the same generalization error,
the simpler one should be preferred because simplicity
is desirable in itself.

ii) Given two models with the same training error, the simple
one should be preferred because it is likely to have lower
generalization error.

So, a central theme of model selection is that to avoid
choosing unnecessarily complex models, a model should be
selected based on its generalizability, rather than its goodness
of fit. This goal is realized by defining a selection criterion
that makes an appropriate adjustment to its goodness of fit by
taking into account the contribution from model complexity.
Further, model complexity is closely related to the bound on
generalization error of learning model [10]. Thus, there are
several different selection methods that are currently in use.
They differ from one another in terms of how such adjustments
are inserted to estimate a model’s generalizability and com-
plexity. The list of these methods include the Akaike Informa-
tion Criterion (AIC) [11], the Bayesian Information Criterion
(BIC) [12], the Root mean squared deviation (RMSD) [15], the
Minimum Description Length (MDL) [19], Cross-Validation
[21], Bayesian Model Selection (BMS) [22], Information-
theoretic Measure of Complexity (ICOMP) [20]. In addition,
regularization [9] should also be counted as a method used
to prevent the model from overfitting the training sample by
inserting a parameter (called regularization parameter) that is
used to control the model complexity.

It is obvious that for any learning technique, how to de-
fine and control the complexity of the learning model is an
important question.

C. GP and Generalization

Genetic programming recently has been considered a learn-
ing machine with some promising applications and results
[27], [28], [29], [30]. As a learning technique, GP has to
confront the generalization/overfitting even though this was not
thoroughly considered in the early history of the field of GP.
The initial work on GP mainly focused on solving problems
just on the training data set, without considering the overfitting
phenomenon. Before Kushchu published his seminal paper
on the generalization capability of GP [5], there was rather
little work in the literature to deal with the GP generalization
aspect. Recently, this issue has attracted more attention from
GP research community, with methods such as Sampling based
approaches [32], Ensemble learning: Bagging and Boosting
[33], Regularization/Early Stopping [31] being used.

Moreover, there has been a number of works on applying
traditional machine learning techniques and practices to the



learning process of GP to improve its generalization ability
such as those presented in [15], [16], [17], [18]. However,
if considered to be a machine learning technique, each GP
individual is a model and the correlation between model
complexity and generalization holds in the case of GP learning.
This relationship has been widely studied by the machine
learning community, and a strong theoretical understanding
[4] has been obtained. However, defining and calculating
model/individual complexity in GP is a nontrivial task. It has
been seen in the literature that there has been some attempt to
define and measure the model complexity in GP learning and
the objective of the next section is to give an overview of this
literature.

III. MODEL COMPLEXITY IN GP LEARNING

In this section, we review a number of approaches proposed
in the literature to measure the model/individual complexity
for GP learning. It is noted that in GP, one could distinguish
between the individual (model) genotype and its phenotype.
While the genotype of an individual is its contents (typically
compositions of functions and terminals from predefined sets),
its phenotype is how it behaves (often on a set of inputs
and outputs). Therefore, we will first classify the approaches
to defining model/individual complexity in GP according to
whether it is on genotype or phenotype, which we shall
call (i) Structural complexity of model and (ii) Functional
or Behavioral complexity. More recent approaches rely on
complexity measures from statistical model selection, which
give us the third group of model complexity in GP learning.

A. Structural Complexity

Different methods have been proposed to measure the struc-
tural complexity of a GP individual: (i) Number of nodes in a
tree (ii) Number of levels in a tree (iii) Minimum description
length (iv) Expressional complexity of a model determined by
sum of number of nodes in all sub-trees of a given model.

The first approach in this type of complexity was proposed
by Iba et al. in [16], which used MDL-based fitness functions
to control the size of evolved GP trees. The authors reported
that this method has desirable generalization ability not only
for pattern recognition tasks but for other applications as well.
But the disadvantages of this method were also noted. It only
works with the initialization by decision tree structure along
with two predefined conditions holds. The first one is ”Size-
based Performance”, stating that ”the more the tree grows, the
better its performance”. And the other is ”Decomposition”,
expressing that ”the fitness of a substructure is well-defined
itself”; that means if the tree has good substructures, its fitness
is necessarily high. Thus, extending MDL-based method to
general applications may face considerable challenges. More-
over, this method is lack of flexibility in balancing accuracy
with parsimony in unknown environments. Moreover, it is
likely to converge prematurely if network size is penalized
too much, despite using other diversity promoting mechanism
such as having a large crossover rate.

To overcome this problem, Zhang and Heinz [35] continued
Iba’s idea and added Occam factor α(g) such that:

Fi(g) = Ei(g) + α(g)Ci(g), (4)

where Fi(g), Ei(g) and Ci(g) are the fitness, the error and
complexity values, respectively. In this MDL-based approach,
the complexity has impacts on the selection process only when
the candidates for selection have comparable performance. In
other words, a tree (model) will be selected over others if
and only if its error is smaller than those of other trees, or it
has the same error but smaller size than others. This follows
Occam’s razor theory in machine learning, thus improving the
generalizability of GP.

Vladislavleva et al. [39] defined genotypic measure that is
related to counting number of nodes of a tree and its subtrees
along with the number of layers. This method favors the flatter
trees (i.e., trees with fewer layers and, hence, with fewer nested
functions) over deep unbalanced trees (in the case of an equal
number of nodes). We can clearly see an example of such a
case in Fig. 1. The complexity can be interpreted as a size of
the model obtained by substituting all inner functions of the
model by their function bodies.

Figure 1: Complexity of a tree model is the total number of
nodes in all subtree models

Another similar work should be mentioned is of M. Schmidt
and Hod Lipson [63] in which they used Parato optimization
to select individuals based on two dimensions: the age (how
long the solution has been present in the population) and
the fit to the data (overfitting). To measure complexity and
control the fit to the data, they also used the number of
nodes in the final expression tree for the target function in
hopes of proving that the more the complexity, the more the
chances of coupled nonlinear features, making it to be more
likely overfitted to the given data. One different point of this
method is that the authors generate a random equation using
inputs and simplify the symbolic equation before measuring
its complexity. Their experimental results showed that Age-
fitness Pareto outperforms other available techniques in some
regression problems.

The apparent shortcomings of node counting have motivated
GP researchers to consider other complexity measures. A



noticeable study is the one of Conte et al. [36], which proposed
the use of Kolmogorov Complexity [37] as a complexity
measure of GP individuals. The Occam’s razor principle also
held because it is closely related to Kolmogorov Complexity
definition, as clearly stated in [37]. Shortly later, it was De
Falco [38], who extended Conte’s study to evolve a population
of LISP programs. Their experimental results showed the ef-
fectiveness in obtaining a good approximation for complicated
string compression, which then turn to for help in calculating
edit distance between GP individuals and comparing their
complexities.

In summary, methods based on size of GP program, es-
pecially focusing on counting number of nodes, might be
deceptive. There are several reasons for this. First, the case
when many nodes are introns is ubiquitous in GP. Moreover,
even a large program tree in GP could also be compressed and
simplified as a small expression [47]. The size of individual
affects the dynamics of the evolutionary process, but bring
us little in terms of the output of each program. Second, the
genotype-phenotype discrepancy is not obvious in GP, where
an explicit phenotype is normally not defined [48]. So, it is
easier to concentrate on the functional output of a program
to show its behavior. And thus, GP researchers have proposed
the use of functional complexity measures for GP learning.

B. Functional Complexity (Behavioral Complexity)

A number of GP researchers believe that overfitting phe-
nomenon in GP learning is associated with the functional
complexity of the solution. Functional complexity of a model
should be measured by computing model’s behavior (output)
over possible input space, thus called behavioral complexity.

In [39], Vladislavleva et al. introduced a new complex-
ity measure called ”order of nonlinearity” to overcome the
shortage of node counting based measures mentioned in the
previous subsection. The order of nonlinearity of a model is
computed by the order of the Chebyshev polynomial used to
approximate the model. We refer to Fig. 2 to demonstrate
how to compute the order of nonlinearity for a given tree
(model/individual).

The concept behind the proposed measure is that over-fitted
models are approximated by polynomial of high degree due
to high oscillation in their behavior [40]. Parsimony pressure
approach is suggested in [41] to reduce the complexity of
models and thus to improve the generalization ability of the
evolved models.

It should be noted that, the authors have not directly solved
the model selection problem in GP learning but converted
it into a model selection problem on the set of polynomial
fits given an accuracy (the epsilon in their definition). For
functions of more than two variables, however, it is hard to
construct Chebyshev polynomial approximation of a given
accuracy, thus making the comparison of the order of non-
linearity become almost impossible.

To overcome these issues, Vanneschi et al. [43] proposed a
new way to measure the nonlinearity based on the summation
of partial complexity of each dimension inspired by the theory

of generalized curvatures [44]. A noteworthy discovery in
[43] is that, contrary to popular belief, bloat is independent
from the overfitting phenomenon in GP learning. This refuted
other research that had regarded bloat control as method of
overfitting avoidance. However, as the authors used protected
division in their GP formulation, it is not clear how the
second-order derivative could be defined for this discontinuous
function [45].

Figure 2: Example of nonlinearity calculation for a simple
two-variable model. If x1 ∈ [0, 1] and x2 ∈ [2, 4], then ”x1 ×
x2” takes values from the interval [0, 4]. Nonlinearities of the
terminal nodes are one. The nonlinearity of the ”Times” node
is 1 + 1 = 2. Therefore, the nonlinearity of the Sin node is two
times the degree of the Chebyshev approximation of function
sin(x) on the interval [0, 4]. If the chosen approximation
accuracy is 10−6, then the order of nonlinearity of the root
node is 2 × 9 = 18.

Following the concept of curvature, Vanneschi et al. [39]
proposed a complexity measure called Slope-based Functional
Complexity (SFC). This measure was computed by taking
sum of differences of slope of consecutive line segments.
This measure seems to be a pretty good approximation of
a complexity measure to predict GP overfitting. However,
the definition of SFC made it complicated for practice as
noted by the authors. To conquer this limitation of SFC,
the authors simultaneously proposed a new method called
Regularity-based Functional Complexity (RFC). This measure
based on the concept of Holderian regularity [49] not only
captures the underlying advantage and notion of SFC, but
also could be resistant to its practical difficulties. Experimental
results of both methods showed almost no correlation between
both complexity measures and program overfitting. And the
RFC method only works well as overfitting indicator when
considering highly overfitted solutions. On the other hand,
the SFC measure could not achieve any useful correlation
with program overfitting, and even resulting in unexpected
outcomes. They also suggested that future research should
focus more on comprehensive evaluation of these measures



of complexity as indicators of GP overfitting.
To sum up, complexity measures in this section are mainly

based on the non-linearity and/or curvature of the function
defined by a GP individual. They are computed either directly
(as in the approaches proposed by Vanneschi et al) or indirectly
(as in the work by Vladislavleva et al.). It is unclear, however,
the nonlinearity and/or curvature of the function is always
related to overfitting/generalization of the model. It could be
thought that more complex and nonlinear function should have
more capacity to overfit the training data, however, as shown in
[4], it is not necessary the case. In [4], Vapnik gave a counter-
example for a class of functions that have arbitrary high
degree of nonlinearity (curvature) but possesses very limited
learning (overfitting) capacity (with small VC dimension). In
the following section, we will cover some important researches
on complexity measures using Statistical Learning Theory
(SLT) for model selection in GP.

C. Statistical Machine Learning Complexity Measurement

In modern machine learning research, it is recommended
that people should investigate the effects of machine learning
theory anytime they want to research into the model selection
problem as well as model complexity. This is due to the fact
that model complexity has a close relationship with gener-
alization error bound. This research trend has also affected
GP research community and thus, several recent works on
using statistical learning theory have been conducted with
some promising results.

Perhaps, L. Alonso et al. [50] were among the first re-
searchers in this research direction. First, they formulated a
new encoding scheme using a data structure called straight-line
program [51] (slp) to encode linear GP programs [50]. SLP
have often been used as a parameter for complexity analysis
in algebraic complexity theory because of its flexible repre-
sentation for expressions (please see [51] for more details).
Employing SLP data structure facilitates representing complex
expressions with fewer amounts of instructions than the tree
data structure. Another thing, experimental results showed that
SLP-based GP has better performance than standard tree-based
GP on some symbolic regressions in terms of convergence rate
and solution quality. Moreover, this representation makes it
easier to define Vapnik-Chervonenkis (VC) dimension [4] for
GP individual than for complex tree expressions in standard
tree-based GP. Therefore, it facilitates investigating machine
learning techniques based on VC dimension for GP. Later,
they conducted the first research on model selection along with
a new complexity criterion for SLP-based GP trees [52]. In
that research, the authors used three different model selection
methods as follows:

- Akaike Information Criterion (AIC):

ε(f) = εn(f) +
2h

n
σ2 (5)

- Bayesian Information Criterion (BIC):

ε(f) = εn(f) + (lnn)
h

n
σ2 (6)

As described in [53], the noise variance from the training
data (xi, yi) is estimated as:

σ2 =
n

n− h
1

n

∑
1≤i≤n

(yi − ŷi)2 (7)

ŷi is the estimation of value yi by model f, i.e, ŷi = f(xi).
We can use the equation (7) in conjunction with AIC or BIC
for each model complexity. The estimation of the model com-
plexity h for both methods is the number of free parameters
of the model f (for more details please see [55] on equation
3).

The third model selection method used in [52] is based on
the Structural Risk Minimization (SRM) (see [4]).

ε(f) = εn(f).

(
1−

√
p− p ln p+ lnn

2n

)
, (8)

where p = h
n , and h stands for the VC-dimension as a

measure of model complexity. This complexity is measured by
the number of non-scalar nodes of the tree for SRM method
(please refer to [52] on Theorem 1 for more details about how
to compute VC-dimension for SLP-based GP genotype). Note
that under SRM approach, we are not required to compute
noise variance but the VC dimension instead.

Experimental results indicated that SRM model selection
performed clearly better than AIC and BIC in almost all cases,
even though affected by noise. AIC and BIC are of the same
quality in general training.

After that, these authors extended their previous research
ideas in [55] by adding Pfaffian operators [56] to the initial-
ization function sets. They concluded that their approach using
VC dimension (VCD) regularization is clearly the best. And
also, they have found a theoretical upper bound of families
of SLPs over Pfaffian operators, which is polynomial in the
number of the non-scalar instructions of the family of the
SLPs. This bound was stated to be distribution independent,
thus improving generalization ability of GP for any data
distribution. Finally, they also suggested a new research idea
for future work that may compare with other non-statistical
methods such as Tikhonov regularization.

Nevertheless, this method has a drawback that extending
VC-based SRM approach for standard tree-based GP is not
straightforward as noted in [62].

Another remarkable study undertaken by Ji Ni and Peter
Rockett [57] employed Vicinal-Risk Minimization [58] for
training GP classifiers. This approach expressed an advantage
over SRM-based approach of Alonso et al. in that VRM can
be applied to GP more easily than SRM and it is readily
tractable. Therefore, it can be used to stabilize the training
process of GP. Experimental results also pointed out that this
approach obtained high probability of yielding better results
than empirical risk minimization (ERM) which have usually
been used as error estimate in GP, even though in a single run.

In summary, methods based on statistical learning theory
described in this section showed promising results when



applied to GP. Although still at a preliminary stage, they are
potential indicators for future research into this field.

IV. DISCUSSION

Over the past decade, model selection and complexity
measures have been widely studied topics. All of methods
surveyed in this paper show strengths and weaknesses. In
our opinion, these approaches contribute to the literature in
different ways.

Early approaches used to measure and control the complex-
ity of GP models by size, node count, number of layers - or
structural complexity for short, make it easier to control the
code growth of GP individuals, facilitating the bloat control.
These techniques be extended for other purposes, and are not
just restricted to the complexity measure scenario, for example
in tree compression technique used in several studies like [47].
However, these methods have the same drawback that the
size of GP individual might be variable, making it difficult to
control structure of GP model. Furthermore, if the tree size is
significantly restricted, it will produce premature convergence.

Approaches based on functional or behavioral complexity
seem to combat the problem of variable size. These methods
share the same idea of using algebraic structures and polyno-
mials in complexity analysis of GP learning models. In our
opinion, the research of Vanneschi et al. [43] has contributed
considerably. First, it not only indicated the use of curvature
theory to overcome the obstacle of approximating Chebyshev
polynomials, but also resulted in the significant discovery that
bloat is independent from the overfitting issue. This will help
GP researchers carefully and separately considering bloat issue
and overfitting if they want to improve the generalization
capability of GP learners. Another advantage that should be
mentioned is that these methods can be applied to standard
tree-based GP more easily than others. However, these ap-
proaches are still lack a strong theoretical base, making it hard
to provide reliable model selection advice for GP systems. In
fact, the theoretical results in [4] cast a doubt on whether the
functional complexity is related to overfitting/generalization
in statistical learning. This gap has increased the activity of
the GP community into researching computational machine
learning theory for GP model selection and complexity control.

Several model selection methods with model complexity
measures based on statistical machine learning have also
been studied. Preliminary research results from Alonso et
al. suggest a potential future research interest and a novel
data structure for GP with more a flexible representation
and more suitable to statistical measurements. Despite the
hopefulness, it was a big problem of computing VC dimension
as well as using traditional model selection technique (AIC,
BIC, for example) in standard tree-based GP. But it would
be considered a prospective challenge for future research.
From studying the complexity measure and model selection
of Genetic Programming is very important, and statistical
methods deserve further research because there might be a
few new techniques have not yet been applied. We suggest

that, based on the initial success of VC-dimension for SLP-
GP, possibly Rademacher and Gaussian Complexity [60] might
be of effectiveness for GP model selection. The reason is
that Rademacher (for classification tasks), or Gaussian (for
regression tasks) are distribution (data) dependent measure,
which have been shown to yield a lower bound on gener-
alization error than the distribution independent VC based
approaches. Furthermore, the Probably Approximately Correct
(PAC) approach of [54] could also be used as a learning
framework that GP can conform to (as in [61], for example).

V. CONCLUSION

Model complexity measures and model selection for GP is
currently attracting considerable interest from research com-
munity. The purpose of this review was to view the trends in
model selection and model complexity measures for GP over
the past decade and to help the reader understand different
aspects posed by the research on Genetic Programming as
learning machine. This is essential because model selection
play an key role in improving the generalization ability and
reducing the overfitting of any machine learning model. And
furthermore, there are many GP researchers and practitioners,
often not realizing the importance of model complexity control
or ignoring this issue.

The scope of this review was on core techniques in com-
plexity measures and control, including structural complexity,
behavioral complexity, and statistical model selection based
complexity measures. However, the practical application of
these methods shows that each has their own advantages and
disadvantages.

Our first conclusion is that considering the structure of
GP tree could be a helpful method to control the GP model
complexity, boosting it to be better generalizable. For sim-
plicity, node counting gives satisfactory results on average but
could be unreliable when the tree grows up and varies from
generation to generation. For better generalization ability and
reliability, Kolmogorov complexity that is related to Occam’s
razor theory is introduced and shows a good estimation for
complicated functions along with other side-effects. In general,
the choice should lie in how to control the shape and variation
of GP tree (model) to make it better.

We must concede to surprise at how well the algebra help
measure and control the model complexity of GP model.
The simulation study has been based on non-linearity or
curvature of a function expressed by a GP individual. By
using some algebraic concepts such as Chebyshev polynomial,
Slope-based Functional Complexity (SFC) [39] or Holderian
regularity [49], authors tried to compute the non-linearity order
and used the criteria to approximate the GP individual and
link to GP model complexity, although just produced limited
outcomes. And one important discovery from their works is
that bloat control makes little sense in overfitting reduction.
The idea, nevertheless, could be somewhat suspected when
Vapnik (in [4]) showed a counter-example for the correlation
between the high order of nonlinearity and the high level
of overfitting (with small VC dimension). Despite this, these



works opened a new prospect for further researches that could
use advanced algebraic techniques to help control GP function
(model).

The performance of statistical learning theory based com-
plexity measure is most promising. Clearly this idea is worthy
for future investigation. One obvious drawback of this method
is that the parameter for model complexity requires complex
computation. Most of the works mainly focused on one special
data structure representing GP individuals called Straight Line
Program and their results did not completely indicate that
which statistical method may be quite robust. However, the
great advantage of this technique is that it injected Statistical
learning theory into controlling GP learning models like other
machine learning algorithms, anyway. Moreover, it motivated
a new trend for further research on other model selection
techniques from machine learning with respect to GP, making
it increasingly dependable.

The contributions of research works on each method are sys-
tematically encapsulated and compared above, which allows
us to clearly define existing research challenges, and highlight
promising new research directions. It is hoped that this survey
can serve as a useful guide through the maze of the literature
on these topics. In general, the expectation of the preliminary
results on different model selection and complexity control
techniques for GP could be a leverage. Also, we hope that,
one day, GP could be completely understandable with respect
to theoretical machine learning.
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