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Abstract. We outline the Grammatical Evolution

algorithm before an exposition of some of the

more recent research and developments in this

form of grammar-based Genetic Programming.

Some potential avenues for further exploration

are suggested.

1. Introduction Grammatical Evolution (GE)

[32, 26, 34, 38] is an evolutionary algorithm

which can be used to evolve computer programs,

rule-sets, or more generally sentences in any lan-

guage. Rather than representing the programs as

syntax trees (as in GP), a linear genome repre-

sentation is used in conjunction with a grammar.

Each individual (genome), a variable-length bi-

nary string, contains in its codons (groups of bits)

the information to select production rules from a

Backus Naur Form (BNF) grammar. BNF is a

notation that represents the language in the form

of production rules. It is comprised of a set of

non-terminals that can be mapped to elements of

a set of terminals, according to the production

rules.

The GE system is inspired by the biological

process of generating a protein from the genetic

material of an organism. Proteins are fundamen-

tal in the proper development and operation of

living organisms and are responsible for traits

such as eye colour and height. The genetic mate-

rial (usually DNA) contains the information re-

quired to produce specific proteins at different

points along the molecule. For simplicity, consid-

er DNA to be a string of building blocks called

nucleotides, of which there are four, named A, T,

G and C, for adenine, tyrosine, guanine, and cy-

tosine respectively. Groups of three nucleotides,

called codons, are used to specify the building

blocks of proteins. These protein building blocks

are known as amino acids, and the sequence of

these amino acids in a protein is determined by

the sequence of codons on the DNA strand. The

sequence of amino acids is very important as it

plays a large part in determining a protein’s func-

tional properties. In order to generate a protein

from the sequence of nucleotides in the DNA,

the nucleotide sequence is first transcribed into a

slightly different format, a sequence of elements

on a molecule known as RNA (ribonucleic acid).

Codons within the RNA molecule are then trans-

lated to determine the sequence of amino acids

that are contained within the protein molecule.

The application of production rules to the non-

terminals of the incomplete code being in GE is

analogous to the role amino acids play when be-

ing combined together to transform the growing

protein molecule into its final functional three-

dimensional form.

The paper provides an introduction to the GE

methodology, an overview of research to date in

GE, and provides suggestions for future research

avenues.

2. Grammatical Evolution When tackling a

problem with GE, a suitable BNF (Backus Naur

Form) grammar definition must initially be de-

fined. The BNF can be either the specification of

an entire language or, perhaps more usefully, a

subset of a language geared towards the problem

at hand.

In GE, a BNF definition is used to describe

the output language to be produced by the sys-

tem. BNF is a notation for expressing the gram-

mar of a language in the form of production rules.

BNF grammars consist of terminals, which are

items that can appear in the language, e.g. binary

boolean operators and, or, xor, and nand, unary

boolean operators not, constants, true and false



etc. and non-terminals, which can be expanded

into one or more terminals and non-terminals.

For example the grammar below can be used

to generate boolean expressions, and <expr>

can be transformed into one of three rules. It

can become either ( <expr> <biop> <expr> ),

<uop> <expr>, or <bool>. A grammar can be rep-

resented by the tuple {N,T, P, S}, where N is

the set of non-terminals, T the set of terminals,

P a set of production rules that maps the ele-

ments of N to T , and S is a start symbol which

is a member of N . When there are a number of

productions that can be applied to one element

of N the choice is delimited with the ‘|’ symbol.

For example

N = { <expr>, <biop>, <uop>, <bool> }
T = { and, or, xor, nand, not,

true, false, (, ) }
S = { <expr> }

And P can be represented as:
(A) <expr> ::= ( <expr> <biop> <expr> )

| <uop> <expr>
| <bool>

(B) <biop> ::= and
| or
| xor
| nand

(C) <uop> ::= not

(D) <bool> ::= true
| false

The code produced will consist of elements

of the terminal set T . The grammar is used in a

developmental approach whereby the evolution-

ary process evolves the production rules to be ap-

plied at each stage of a mapping process, starting

from the start symbol, until a complete program

is formed. A complete program is one that is

comprised solely from elements of T .

As the BNF definition is a plug-in compo-

nent of the system, it means that GE can produce

code in any language thereby giving the system a

unique flexibility. For the above BNF grammar,

Table 1 summarises the production rules and the

number of choices associated with each.

Table 1. The number of choices available from each

production rule.

Rule
Number Choices

A 3
B 4
C 1
D 2

The genotype is used to map the start symbol on-

to terminals by reading codons of 8 bits to gener-

ate a corresponding integer value, from which an

appropriate production rule is selected by using

the following mapping function:

Rule = c mod r

where c is the codon integer value, and r is

the number of rule choices for the current non-

terminal symbol.

Consider the following rule from the given

grammar, i.e., given the non-terminal <biop>,

which describes the set of binary operators that

can be used, there are four production rules to

select from. As can be seen, the choices are ef-

fectively labelled with integers counting from ze-

ro.

(B) <biop> ::= and (0)
| or (1)
| xor (2)
| nand (3)

If we assume the codon being read produces the

integer 6, then

6 mod 4 = 2

would select rule (2) xor. That is, <biop> is re-

placed with xor. Each time a production rule has

to be selected to transform a non-terminal, anoth-

er codon is read. In this way the system traverses

the genome.

During the genotype-to-phenotype mapping

process, it is possible for individuals to run out



of codons, and in this case the wrap operator

is applied which results in returning the codon

reading head back to the first codon in the indi-

vidual. As such codons are reused when wrap-

ping occurs. This is quite an unusual approach

in Evolutionary Algorithms as it is entirely pos-

sible for certain codons to be used two or more

times. This technique of wrapping the individ-

ual draws inspiration from the gene-overlapping

phenomenon that has been observed in many or-

ganisms [22].

In GE each time the same codon is expressed

it will always generate the same integer value, but

depending on the current non-terminal to which

it is being applied, it may result in the selec-

tion of a different production rule. This feature

is referred to as intrinsic polymorphism. What

is crucial however, is that each time a particu-

lar individual is mapped from its genotype to its

phenotype, the same output is generated. This is

the case because the same choices are made each

time. It is possible that an incomplete mapping

could occur, even after several wrapping events,

and typically in this case the mapping process is

aborted and the individual in question is given the

lowest possible fitness value. The selection and

replacement mechanisms then operate according-

ly to increase the likelihood that this individual

is removed from the population.

An incomplete mapping could arise if the

integer values expressed by the genotype were

applying the same production rules repeatedly.

For example, consider an individual with three

codons, all of which specify rule 0 from below.

(A) <expr> ::= (<expr> <biop> <expr>) (0)
| <uop> <expr> (1)
| <bool> (2)

Even after wrapping, the mapping process would

be incomplete and would carry on indefinite-

ly unless terminated. This occurs because the

nonterminal <expr> is being mapped recur-

sively by production rule 0, i.e., it becomes

( <expr> <biop> <expr> ). Therefore, the left-

most <expr> after each application of a produc-

tion would itself be mapped to a

( <expr> <biop> <expr> ), resulting in

an expression continually growing as follows:

( ( <expr> <biop> <expr> ) <biop> <expr> )

followed by

( ( ( <expr> <biop> <expr> ) <biop> <expr> )

<biop> <expr> )

and so on.

Such an individual is dubbed invalid as it will

never undergo a complete mapping to a set of

terminals. For this reason an upper limit on the

number of wrapping events that can occur is im-

posed. During the mapping process therefore, be-

ginning from the left hand side of the genome

codon integer values are generated and used to

select rules from the BNF grammar, until one of

the following situations arise:

1. A complete program is generated. This occurs

when all the non-terminals in the expression

being mapped are transformed into elements

from the terminal set of the BNF grammar.

2. The end of the genome is reached, in which

case the wrapping operator is invoked. This

results in the return of the genome reading

frame to the left hand side of the genome

once again. The reading of codons will then

continue, unless an upper threshold represent-

ing the maximum number of wrapping events

has occurred during this individual’s mapping

process.

3. In the event that a threshold on the number

of wrapping events has occurred and the indi-

vidual is still incompletely mapped, the map-

ping process is halted, and the individual is

assigned the lowest possible fitness value.

To reduce the number of invalid individuals

being passed from generation to generation, a

steady state replacement mechanism is common-

ly employed. One consequence of the use of a

steady state method is its tendency to maintain fit

individuals at the expense of less fit, and in par-

ticular, invalid individuals. Alternatively, a repair

strategy can be adopted, which ensures that every

individual results in a valid program. For exam-

ple, in the case that there are non-terminals re-

maining after using all the genetic material of an

individual (with or without the use of wrapping)

default rules for each non-terminal can be pre-



specified that are used to complete the mapping

in a deterministic fashion. Another strategy is to

remove the recursive production rules that cause

an individual’s phenotype to grow, and then to

reuse the genotype to select from the remaining

non-recursive rules.

2.1. Mapping Example Consider the follow-

ing genome, represented as a series of integer-

valued codons.

21 6 104 70 31 13 4 25 9 3 86 44

We will demonstrate the application of this

genome to the grammar presented below, which

could be used to generate a simplified trading

system. The trading system has ten possible input

variables (var0→ var9), and three trading signals

can be generated by the system, buy, sell, or do

nothing. The start symbol (<S>) for the grammar

from which the mapping process commences is

the non-terminal <tradingrule>.

<S> ::= <tradingrule>

<tradingrule> ::= if( <signal> ) {
<trade>;

}
else {

<trade>;
}

<signal> ::= <value> <relop> <var>
| (<signal>) AND (<signal>)
| (<signal>) OR (<signal>)

<value> ::= <int-const> | <real-const>

<relop> ::= <= | >=

<trade> ::= buy
| sell
| do-nothing

<int-const> ::= <int-const><int-const>
| 1 | 2 | 3 | 4 | 5
| 6 | 7 | 8 | 9

<real-const> ::= 0.<int-const>

<var> ::= var0 | var1 | var2 | var3 | var4
| var5 | var6 | var7 | var8 | var9

As there is only one production rule for

<tradingrule> it is automatically replaced with

its right-hand side. Our developing trading rule

becomes:

if( <signal> ) { <trade>; }
else { <trade>; }

Taking the left-most non-terminal <signal> there

are three possible replacements. The codon read-

ing starts at the leftmost codon on the genome.

21 6 104 70 31 13 4 25 9 3 86 44

Reading the next codon value determines that

we use the first production rule (21 mod 3 =

0), which allows <signal> to be replaced with

<value><relop><var>. This results in the follow-

ing:

if( <value> <relop> <var> )
{ <trade>; }
else { <trade>; }

Again, taking the left-most non-terminal

<value> there are two choices. The next codon

value dictates that we replace this non-terminal

with an <int-const> (i.e., 6 mod 2 = 0) giving:

if( <int-const> <relop> <var> )
{ <trade>; }
else { <trade>; }

According to the next codon value

(104 mod 10 = 4) the non-terminal

<int-const> is replaced with an integer

(4).

if( 4 <relop> <var> )
{ <trade>; }
else { <trade>; }

The development of <relop> proceeds as fol-

lows:

70 mod 2 = 0 results in <relop> being re-

placed with <=. Reading the next codon value

<var> is expanded by 31 mod 10 = 1 leaving:

if( 4 <= var1 )
{ <trade>; }
else { <trade>; }

The first <trade> becomes sell by

13 mod 3 = 1 with the second one being

replaced with buy by 4 mod 4 = 0

The fully expanded trading rule now has the

form:



if( 4 <= var1 )
{ sell; }
else { buy; }

The final position of the codon reading head

is illustrated by the bold character below.

21 6 104 70 31 13 4 25 9 3 86 44

The five leftover codons are unused during

the mapping process and are simply ignored and

consequently are referred to as introns as they do

not impact on the function of the phenotype.

The variables (var0 to var9) could represent a

selection of elements of information drawn from

fundamental analysis of an industry sector, for

example, var5 could be a price/earnings ratio for

a company, and var3 could represent a company’s

sales growth over the past 3 years. Of course, suc-

cessful real-world filter-rules for trading would

not be as simple as this, and would typically con-

tain multiple conditions.

3. Recent Adventures Since the publication of

the first book on GE there has been a great deal

of research conducted both by the authors in Ire-

land and internationally, including three interna-

tional workshops on the subject [35, 36, 37]. In

this section we will briefly outline some of the

research that has taken place.

3.1. Grammar There have been a number of

investigations into the use of different gram-

mars as distinct from a straightforward context-

free grammar. Most recently, the use of meta-

grammars, that is grammars that describe other

grammars, have been developed in the context

of GE. Two initial studies presented the Gram-

matical Evolution by Grammatical Evolution or

(GE)2[33] and the mGGA (meta-Grammar Ge-

netic Algorithm) [27]. The idea behind the use

of a meta-grammar is to allow further abstrac-

tion and enable the creation of hierarchies and

modularity in a convenient grammatical manner

that can be adopted with GE. An example of a

typical grammar adopted in the mGGA is given

below.
<g> ::=

"<bitstring> ::=" <reps>
"<bbk4> ::=" <bbk4>

"<bbk2> ::=" <bbk2>
"<bbk1> ::=" <bbk1>
"<bit> ::=" <val>

<bbk4> ::= <bbk4t>
| <bbk4t> "|" <bbk4>

<bbk2> ::= <bbk2t>
| <bbk2t> "|" <bbk2>

<bbk1> ::= <bbk1t>
| <bbk1t> "|" <bbk1>

<bbk4t> ::= <bit><bit><bit><bit>
<bbk2t> ::= <bit><bit>
<bbk1t> ::= <bit>
<reps> ::= <rept>

| <rept> "|" <reps>
<rept> ::= "<bbk4><bbk4>"

| "<bbk2><bbk2><bbk2><bbk2>"
| "<bbk1><bbk1><bbk1><bbk1>
<bbk1><bbk1><bbk1><bbk1>"

<bit> ::= "<bit>"
| 1
| 0

<val> ::= <valt>
| <valt> "|" <val>

<valt> ::= 1
| 0

Building blocks of size 1, 2, 4 and 8 bits are

specified to be components of the solution gram-

mar output as the result of mapping the above

meta-grammar. For each building block size there

can be many different building block instances

represented as choices for that building block size

in the solution grammar. An example bitstring

solution grammar that could be produced by the

above meta-grammar is provided below.

<bitstring> ::= <bit>11<bit>00<bit><bit>
| <bbk2><bbk2><bbk2><bbk2>
| 11011101
| <bbk4><bbk4>
| <bbk4><bbk4>

<bbk4> ::= <bit>11<bit>
| 000<bit>

<bbk2> ::= 11
| 00
| <bit>1

<bbk1> ::= 0
| 0

<bit> ::= 1 | 0 | 0 | 1

We can see in the above solution grammar

that there are five possible building blocks of size

eight (<bitstring>), two possible building block

types of size four (<bbk4>) and three possible



building blocks of size two (<bbk2>). Modularity

exists above in the ability to specify the size and

content (or partial content) of a building block

through its incorporation into the solution gram-

mar. This building block can then be repeatedly

reused in the generation of the phenotype.

In addition to meta-Grammars there have al-

so been studies on the use of context-sensitive

grammars such as Attribute Grammars (indeed

the ALP system was noted in the GE book, which

adopts Logic Grammars), which have been ex-

plored in the context of formulating solutions to

Knapsack problems [12, 13, 30]. Recently gram-

mars have been used as a mechanism to represent

constants in a Genetic Programming environment

through Digit Concatenation and an alternative to

Ephemeral Random Constants with Grammatical

Persistent Random Constants [15, 16, 17].

3.2. Search Engine The authors of this paper

have proposed and developed the use of a Parti-

cle Swarm Algorithm (PSA) in place of the stan-

dard Genetic Algorithm search engine for GE.

The new algorithm represents a form of Social

or Swarm Programming and is called Grammat-

ical Swarm [28, 29]. Traditionally, PSAs have an

underlying representation that is fixed in length.

In the spirit of the variable-length structures that

can be generated through Genetic Programming

a variable-length PSA has been developed for the

GS algorithm [21].

3.3. Genotype-Phenotype Map An alternative

genotype-phenotype mapping algorithm has been

proposed [31], which replaces the deterministic

depth-first, left-right order of the mapping dur-

ing the translation step. Instead the genome is

consulted in order to decide the order in which

the non-terminals will be expanded, the resulting

system is called πGE (for position independent

GE or piGE). It has been demonstrated that this

alternative mapping clearly outperforms the stan-

dard GE genotype-phenotype map on a number

of benchmark problem domains.

Using an XML implementation of GE there

has been a study on exploiting the genotype-

phenotype map to enable the identification and

exploitation of derivation sequence building

blocks to improve the efficiency of the evolu-

tionary search [1].

3.4. Applications There have been a consider-

able number of applications of GE with some of

the most notable being in the Financial Modelling

domain [5], including the development of Trad-

ing Systems (on Index [14], Intra-day [4] and For-

eign Exchange [6, 8] markets), Corporate Failure

[7, 9, 10] and the Credit Rating of Bonds [11].

Other notable examples include solving Knap-

sack problems [12, 13], Complex Systems [3],

Surface Generation [18, 19], digital circuit de-

sign with Verilog [20], Image Processing [25]

Systems Biology and Bioinformatics [23, 24, 29].

4. Conclusions & Future Work In conclusion,

Grammatical Evolution is a powerful grammar-

based form of Genetic Programming that is in-

creasing in popularity through its application to

a large variety of problem domains and through

continuous development of the underlying com-

ponents of the algorithm. For further and more

up-to-date information including code releas-

es the reader is referred to the personal web-

sites of the authors and http://www.grammatical-

evolution.org.
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