
Abstract: The world of finance is an exciting and challenging environment.
Recent years have seen an explosion in the application of Computational
Intelligence methodologies in finance. In this article we provide an
overview of some of these applications concentrating on those employing an
evolutionary computation approach.

Anthony Brabazon, Michael O’Neill,
University College Dublin, IRELAND

Ian Dempsey, Pipeline Financial Group, Inc., USA

42 IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | NOVEMBER 2008 1556-603X/08/$25.00©2008IEEE

I. Introduction

pplications of Computational Intelligence are expanding
rapidly in the financial world. In the area of algorithmic
trading alone, industry estimates by the Aite Group pre-
dict that by 2010, 50% of U.S., 28% of European and

16% of Asian order flow will be executed automatically via trad-
ing algorithms [1]. With about 8.5 billion shares currently being
traded daily in the US this would equate to the automatic trading
of $120 billion of stock in current money terms.

The modeling and trading of financial markets is challeng-
ing for several reasons. Many factors plausibly impact on mar-
kets including interest rates, exchange rates, the rate of
economic growth, and notably in recent times, liquidity. We
lack a hard theory as to how all these (and other) factors effect
the prices of financial assets, partly because the effects can be
non-linear, time-lagged, and non-stationary. Other aspects of
financial markets which make them challenging for modelers
include: the lack of multiple market histories with which to
test our theoretical models; the emergent nature of markets;
and the inherently unpredictability of some factors that can
impact on markets such as natural disasters. Despite these diffi-
culties there is an extensive appetite amongst market partici-
pants for new computational approaches. One family of
computational algorithms that have attracted significant interest
in recent years are Natural Computing algorithms.

A. Natural Computing
Natural computing can be broadly defined as the development
of computer programs and computational algorithms using
metaphorical inspiration from systems and phenomena that
occur in the natural world. The inspiration for natural comput-
ing methodologies typically stem from real-world phenomena
which exist in high-dimensional, dynamic environments, char-
acteristics which fit well with the nature of financial markets.
Prima facie, this makes natural computing methods interesting
for financial applications.

Natural Computing algorithms can be clustered into differ-
ent groups depending on the aspects of the natural world upon
which they are based. The main clusters are Neurocomputing,
Evolutionary Computing, Social Computing, Immunocom-
puting, Physical Computing, and Developmental & Grammat-
ical Computing (see Figure 1).

Neurocomputing algorithms typically draw inspiration from
simplified models of the workings of the human brain/nervous
system. The predominant neurocomputing paradigms include
Multi-layer Perceptrons, Self Organising Maps, Radial Basis
Function Networks, and Adaptive Resonance Theory. Artifi-
cial Neural Networks (ANNs) can be used to construct models
for the purposes of prediction, classification and clustering, and
are non-parametric modeling tools as the model is developed
directly from the data.

NOVEMBER 2008 | IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE 43

©
A

R
T

V
IL

LE

Digital Object Identifier 10.1109/MCI.2008.929841

A

Evolutionary Computation is based upon neo-Darwinian
principles of evolution. It is a population-based approach to
problem-solving where multiple candidate solutions are main-
tained in parallel. Genetic search operators are applied to breed
high-quality solutions as subsequent generations are created
using fitness-based selection. The fitness of a candidate solution
is a measure of its quality at solving the problem at hand.

Social Computing Popular variants of these algorithms adopt
a Swarm metaphor, and include algorithms inspired by the
flocking and schooling behavior of birds and fish, and the
behaviors observed in social insects such as ants. These social
systems exhibit a number of characteristics which facilitate
problem-solving including, self-organization, flexibility,
robustness, and direct/indirect communication between mem-
bers of the population. These algorithms are population-based
like their Evolutionary Computation counterparts, and they
operate by allowing the population of problem-solvers to
communicate their relative success in solving the problem to
each other.

Immunocomputing includes a family of algorithms which
turn to the complex and adaptive biological immune system
of vertebrates to inspire their design. The natural immune sys-
tem represents an intricate network of specialized chemicals,
cells, tissues and organs with the ability to recognize, destroy
and remember an almost unlimited number of foreign bodies,
and to protect the organism from misbehaving cells in the
body. These properties are especially useful for tasks such as
classification and optimization. Practical applications of
immunocomputing include financial pattern-recognition such
as the identification of potentially fraudulent credit card trans-
actions, the identification of financially at-risk companies and
the identification of market ‘state’.

Physical Computing draws inspiration from the physical
processes of the natural world to design computational algo-
rithms. These algorithms draw inspiration from phenomena
such as Simulated Annealing and Quantum Mechanics.

Developmental & Grammatical Computing are a family of Nat-
ural Computing algorithms which borrow from both a devel-
opmental and a grammar metaphor. Grammatical Computing
refers to algorithms which adopt concepts from linguistic

grammars and are dominated by the generative form of gram-
mars. Generative grammars are used to construct a sentence(s)
in the language specified by the grammar, and this generative
process is metaphorically similar to the developmental process
in biology which produces a complex, multi-cellular organism
from a single embryonic cell. Generative grammars have been
used in Natural Computing as a convenient representation by
which Developmental systems can be realized in-silico.

Most implementations of Developmental & Grammatical
Computing, including Genetic Programming and its Grammati-
cal variants, have also embedded an Evolutionary Algorithm
(which is typically used to drive the search process). These algo-
rithms have enjoyed notable success on real-world problems,
with the most inspiring examples including John Koza et al’s
[42] use of a developmental form of Genetic Programming to
routinely design analog circuits that outperform those designed
by human experts. Some of these circuits have been patentable
inventions in their own right. Another noteworthy application
of Genetic Programming is Lohn et al’s [46] development of an
Antenna for the NASA Space Technology 5 mission.

A growing community of researchers are engaged in the
application of Natural Computing, and in particular Evolu-
tionary Computation, methodologies in Finance as illustrated
by the number of Conferences, Workshops and Special Ses-
sions in this area. Examples of these include the annual track
on Evolutionary Computation in Finance and Economics at
the IEEE Congress on Evolutionary Computation, the IEEE
Symposium on Computational Intelligence for Financial Engi-
neering (CIFEr), the annual international Conference on
Computational Intelligence in Economics & Finance (CIEF),
and EvoFIN the European Workshop on Evolutionary Com-
putation in Finance held annually as part of Evo*.

II. Evolutionary Computation
Since Charles Darwin popularized the theory of Natural Selec-
tion, the driving force behind evolution, molecular biology has
unraveled some of the mysteries of the components that under-
pin these earlier theories (e.g., most notably the existence and
structure of DNA). Neo-Darwinism, which represents the accu-
mulation of knowledge about the process of evolution at a mol-
ecular level in conjunction with Darwin’s evolutionary theory,
has given rise to a powerful family of problem solving algo-
rithms known collectively as Evolutionary Computation (EC).

The origin of EC can be traced back at least to the begin-
ning of Computer Science [41] with the writings of Turing
[75] where he discusses the possibility of “genetical or evolution-
ary search” as one of the methods that might underpin the “the
intelligence of machinery”. Implementations of EC existed in the
1950s with the Pioneers of EC popularizing their ideas in sub-
sequent decades including Holland [35], Fogel, Owens and
Walsh [26], Rechenberg [64], Schwefel [67], Goldberg [28],
De Jong [19] and Koza [39]. Fogel [25] presents an interesting
collection of some of the pioneering papers in the field.

The natural process of evolution sees species being positively
or negatively selected depending on their relative success inFIGURE 1 An overview of natural computing algorithms.

Developmental and
Grammatical Computing

Natural Computing
Algorithms

Physical
Computing

Social
Systems

Neural
Networks

Evolutionary
Computation

Immune
Systems

44 IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | NOVEMBER 2008

surviving and reproducing in their current environment. Dif-
ferential survival and variety generation during reproduction
provide the engine for evolution [17], [69]. EC implements
this process in a crude fashion as outlined in Figure 2.

In EC, the equivalent of DNA is the representation or
encoding that is adopted by each member of the population
(often referred to as an individual or candidate solution) to solve a
specific problem type. This individual representation can range
from simple fixed-length binary strings or reals to more com-
plex data structures such as graphs and even variable-length
computer code that can be executed. For example, a simple
binary string could be used to encode decisions as to whether
or not to include an input variable in a solution. The selected
inputs might then be passed into a multi-layer perceptron
ANN (MLP) to produce a signal such as to buy or sell a posi-
tion in a market. We will now introduce Genetic Program-
ming which provides a more complex representation that can
allow model structures to be co-evolved with parameters.

A. Genetic Programming
A particularly powerful form of EC, in terms of the flexibility
of its representation and its prowess as a model-induction
method, is Genetic Programming. Genetic Programming (GP)
traditionally distinguishes itself from other EAs in two funda-
mental ways. Instead of evolving fixed-length (e.g., binary)
strings a variable-length representation is adopted by GP. As
GP is a model induction method it is not always known a-
priori what the structure or size of a desired solution might be,
and to this end the number of components that make up a
candidate solution must itself be open to the process of evolu-
tionary search. Secondly, unlike other EAs which represent an
indirect encoding of a potential solution, evolutionary search
can be directly applied to the solution (e.g., computer code in
the form of a Lisp S-expression).

An example of a GP individual in the form of a Lisp
S-expression is given in Figure 3. Here we can also observe
how individuals of this form can be manipulation using the
genetic search operator of sub-tree crossover. Sub-tree muta-
tion operates by randomly deleting a sub-tree and then ran-
domly generating a brand new sub-tree of a random size to
replace the original. Using this representation it is possible to
incorporate various programming constructs such as condi-
tions, iterations, recursion and modules/functions. It is also
common to allow the inclusion and context of use of these
constructs to be evolved over time using what are referred to
as Architecture Altering Operators [41].

During the creation and manipulation of these tree-based
individuals during a GP algorithm requires paying careful
attention to syntactical issues. In other words, valid trees must
be produced after any operation. This property, known as
closure, is ensured through the design of search operators which
respect the tree structure maintaining syntactically legal solu-
tions. A particularly useful extension of the standard approach
to GP is the adoption of explicit grammars to guide the cre-
ation and maintenance of GP individuals. While some of these

grammatical approaches to GP have been in existence from the
early days of GP (e.g., [4], [31]) they are enjoying increased
popularity in recent years partly due to the flexibility that they
afford the practitioner in allowing domain knowledge to be
incorporated to guide the search process through a grammar
specification, and the ease with which this grammar specifica-
tion can be modified to change the structure of the output
solutions (e.g., [27], [29], [30], [32], [37], [38], [60], [63], [65],
[68], [76], [77]). There are many useful resources which can be
used to discover more about Genetic Programming for the
interested reader, including [7], [39]–[42], [61].

B. Grammatical Evolution
Grammatical Evolution (GE) is one of the most popular gram-
matical approaches to GP [20], [54]–[57], [66] and has been
adopted for financial modeling (e.g., [10], [20]).1 In addition to
the notion of explicit grammars, GE borrows additional princi-
ples from molecular biology. The most powerful of these is the
genotype-phenotype map. Earlier research in GP has shown
some of the potential benefits of such a mapping [6], [38] and
GE further exploits this representation to create a highly-mod-
ular and flexible approach to program/model induction. An
example of this is the fact that alternative search engines can be
adopted to explore the model space (e.g., Particle Swarm
Optimization and Differential Evolution have been adopted
[58], [59]). The flexibility of GE is such that even with the
presence of the genotype-phenotype map, traditional tree-
based search operators of crossover and mutation can be adopt-
ed in place of the genotype search operators effectively
transforming GE into a standard form of GP with the grammar
used during the initialization of the population [30]. Of course,
it is also entirely possible to combine search operators that are
focused on both the genotype and phenotype combining the
benefits of each approach.

C. GP and GE in Financial Modeling
One particularly interesting aspect of genetic programming and
grammatical evolution is that both the solution form and asso-
ciated parameters are co-evolved during the evolutionary
process. This offers particular utility in financial modeling, as

FIGURE 2 The process cycle of evolutionary computation.

Population
Selection

Replacement

Variety GenerationInitialization

Offspring

Parents

NOVEMBER 2008 | IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE 45

1Further information on GE and pointers to code can be found at http://www.
grammatical-evolution.org.

the environment is often data rich but theory poor. Typically,
while many plausible explanatory variables exist but the inter-
relationship among the relevant variables is poorly understood,
although some domain knowledge may exist. This suggests
that model induction methodologies will have particular utility.
Unlike black-box methodologies such as neural networks, GP
and GE offer the potential to generate human-readable rules.
This is of particular importance in (for example) financial trad-
ing systems where human decision makers will want to have
insight into the trading rationale. Another advantage of GP
and GE is that they permit the incorporation of domain
knowledge, and the generation of ‘solutions’ of a particular
form. This allows the financial user to (for example) seed the
evolutionary process with their current trading strategies, in
order to see what improvements the evolutionary process can
uncover. More generally, all evolutionary algorithms allow the
incorporation of complex fitness functions, which is of partic-
ular importance in finance as fitness is generally a complex
amalgam of return and risk. Recent years have also seen an
explosion in the quantity and quality of electronic financial

information available, hence, the practicality of applying evo-
lutionary methodologies in finance has increased.

D. Applications of EC in Finance
Applications of EC in Finance can be broadly categorized as
being either Optimization or Model Induction (an extensive
literature on agent-based modeling in finance also exists, but is
not discussed in this paper).

1) Optimization
Optimization applications, such as portfolio selection, abound
in finance. Often, because the underlying financial problem is
high dimensional and complex, the only practical optimization
methodologies are general purpose heuristics such as genetic
algorithms, evolutionary strategies, differential evolution, and
particle swarm optimization.

2) Model Induction
While optimization applications in finance are important, often
the underlying model or data generating process is not known.

46 IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | NOVEMBER 2008

FIGURE 3 Individuals of a genetic programming population are typically represented as Syntax Trees of Lisp S-expressions. The figure illustrates
how subtrees of each individual are exchanged during the process of crossover.

Child 2

sin

+

if

>

x 3.14

x x y +

9.2 x

y

if

>

y x

*

0.176 x

+

*

0.176 x
x y

if

>

x 3.14

Parent 1 Parent 2

(+ (if (> y x) (+ 9.2 x) y) (* 0.176 x))(+ (sin x) (if (> x 3.14) x y))

Crossover

*

0.176 x

sin

+

x
+

9.2 x

y

if

>

y x

x y

if

>

x 3.14

+

Child 1

Hence, the task is often to ‘recover’ or discover an underlying
model from a dataset. This is usually a difficult task as both the
model structure and associated parameters must be uncovered.

Evolutionary approaches have been widely applied in
finance since the late 1980s. Initially, attention was primarily
focused on the application of GAs for model parameter opti-
mization and variable selection [8] but from the mid 1990s
increasing attention has been placed on the use of GP for
financial forecasting and trading system induction. The sophis-
tication of GP applications in these areas has increased
markedly in recent years. GP has also seen increasing applica-
tion to other areas in finance, such as derivatives pricing and
volatility prediction.

In the following sections we briefly introduce a range of
financial applications to which EC methodologies have been
applied, including financial forecasting, credit risk assessment,
portfolio optimization, asset pricing, and algorithmic trading.
An excellent starting point in exploring the range of EC appli-
cations in finance can be found in [11]–[15].

III. Financial Forecasting
Financial markets are affected by a myriad of interacting eco-
nomic, political and social events. The relationship between
these factors and financial asset prices is not well understood
and, moreover, is not stationary over time. Most theoretical
financial asset pricing models are based on strong assumptions
which are often not met in real-world asset markets. This offers
opportunities for the application of model induction method-
ologies in order to ‘recover’ the underlying data generating
models.

The 1980s and early 1990s saw a plethora of studies apply-
ing (initially) neural networks and (later) GA/GP for forecast-
ing of financial time series. Typically, these studies used
measures of goodness of fit drawn from statistics such as Mean
Squared Error (MSE), Sum of Squared Error (SSE), Mean
Absolute Percentage Error (MAPE) etc. as their fitness func-
tion, the object being to uncover or train a model using histor-
ical data, which ‘fit’ that data well. Unsurprisingly, the choice
of fitness function usually has a critical impact on the behavior
of resulting model, hence a model constructed using one fit-
ness metric would not necessarily perform well on another.
While these studies did indicate that models could be con-
structed that fit historic data fairly well, it was less clear as to
whether these models could be used for trading purposes.
Another common finding was that the quality of the forecasts
diminished over time, as the time period since model training
increased. Developments in later papers included the use of
more sophisticated methods for pre-processing the raw time-
series inputs and the use of sliding-window retraining in order
to update the forecasting models.

IV. Credit Risk Assessment
Credit risk assessment is an important component of the lend-
ing process. Examples of decisions where credit scoring could
be useful include, should a loan of $X be extended to a firm,

should a customer be allowed to purchase goods on credit, or
what credit limit should be offered to a customer on their
credit card?

In all of these applications, the object is to develop a model
which will provide a metric of credit-worthiness from a series
of explanatory variables. Typically, in assessing (for example)
corporate credit-worthiness, explanatory variables can include
data drawn from the financial statements of the firm, data
drawn from financial markets (such as share price), general
macro-economic data, and non-financial, firm-specific infor-
mation. In assessing personal consumer credit-worthiness
explanatory variables can include income, age, occupation,
current employment status, past borrowing record etc.

A practical problem in constructing risk-assessment models
is that there is no clear theoretical framework for guiding the
choice of explanatory variables or model form. In the absence
of an underlying theory, most published work on credit rating
employs a data-inductive modeling approach. This produces a
high-dimensional combinatorial problem, as the modeler is
attempting to uncover a good set of explanatory variables and
model form.

An illustration of an early credit risk assessment model is
provided by Altman’s [3] classic study in which five ratios were
selected and then combined to produce a linear discriminant
classification model for corporate bankruptcy. A Z score was
calculated for each company and this value determined
whether the company was classified as likely to go bankrupt or
likely to remain solvent. The original Altman classifier had the
form:

Z = 0.012X 1+0.014X 2+0.033X 3+0.006X 4+0.999X 5,

where:

X 1 = working capital to total assets
X 2 = retained earnings to total assets
X 3 = earnings before interest and taxes to total assets
X 4 = market value of equity to book value of total debt
X 5 = sales to total assets

As the range of computational intelligence techniques for
classification have expanded, each new technique has been
applied in turn to credit scoring and corporate failure predic-
tion. The domain offers particular potential for evolutionary
automatic programming methodologies such as genetic pro-
gramming or grammatical evolution as these methods can pro-
duce human-readable credit decision rules. This can be
important in some countries as lenders may be required to jus-
tify decisions not to grant loans. Another advantage of GP and
GE is that the rule-evolution process can be seeded using
existing domain knowledge.

An interesting feature of the problem is that there are quite
differing costs associated with type 1 and type 2 classification
errors. Failing to grant credit to a good customer costs the
lender the lost interest (or ‘profit’) margin, whereas lending to

NOVEMBER 2008 | IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE 47

a customer who does not repay the loan loses the entire capi-
tal sum. Hence, it is common when developing credit risk
models to recognize that the costs of misclassification are
asymmetric. Another feature of the problem when training
classifiers is that of unbalanced databases. The rate of loan
non-repayment or bankruptcy is usually quite low, hence his-
torical databases of customer characteristics and loan outcome
typically contain relatively few examples of credit failure.

A closely-related application is the prediction of bank failure
[44], with many regulatory authorities using risk models in
order to assess which financial institutions require the closest
scrutiny. Obviously, for these applications it is important that
the regulatory authority can verify the correctness of the under-
lying prediction model, hence methodologies which can incor-
porate expert knowledge and produce interpretable decision
rules, such as fuzzy systems and GP, are of particular interest.

V. Portfolio Optimization
One of the classic (multi-objective) optimization problems in
finance is that of portfolio optimization, where the object is to
invest a fixed amount of money in a diverse set of assets (a
portfolio) in order to maximize return while minimizing a risk
measure. The solution to this is a Pareto front (see Figure 4).
Once the frontier is uncovered, the final choice of portfolio is
determined by the investor’s risk preference.

The classic Markowitz mean-variance model [49], [50],
which underpinned the original formulation of the portfolio
selection problem, assumes that investors wish to maximize
their return (typically measured as the expected return of
their portfolio) and minimize their risk (typically measured
as variance or the standard deviation of their portfolio’s
return). This produces a risk return trade-off between a lin-
ear return measure and a single convex, non-linear, risk
measure. The Pareto efficient frontier is found by varying
the risk target and maximizing on the return measure.

Hence, the goal of the Markowitz model is to find an opti-
mal portfolio p of i = 1, . . . , N assets, each with a weight-
ing wi such that the return μp is maximized while
minimizing the variance of the return σp . This formulation
produces a quadratic programming problem and several
algorithms exist to tackle this.

However, this formulation ignores a host of constraints that
impact on real-world portfolio optimization including, cardinal-
ity constraints (a limit on the number of assets which can be
held in the portfolio), or threshold limits on the amount of
investment in any single asset, wi ≤ mi; i = 1, . . . , N , where
mi is the threshold amount for asset i. Other constraints may
include industry sector (or concentration) constraints, and round
lot constraints. These constraints can lead to non-convex, non-
differential models. In addition, some constraints may be hard
and others may be soft. Hence, real-world portfolio optimiza-
tion can present a difficult, high-dimensional, constrained opti-
mization problem, which is beyond the capabilities of
traditional optimization methods. In this setting, heuristic
methods such as EC are of particular interest. A rich literature
has emerged applying evolutionary algorithms for portfolio
optimization (see [5], [47], [70]).

An approach which is gaining ground for portfolio opti-
mization is stochastic programming. Stochastic programming
(SP) is designed to assist decision-making when there is uncer-
tainty as to future events (such as asset returns). In traditional
portfolio optimization there is a strong assumption that past
asset returns and their variability, are an accurate guide to
future returns and variability. Hence, historical estimates of
these items are used in the optimization process. In contrast,
Stochastic Programming recognizes that future outcomes may
be better approximated using probability distributions. A com-
mon approach in stochastic programming is to reduce uncer-
tainty as to future events to a number of ‘scenarios’ and the
aim is to uncover a solution which performs well under all
these scenarios. Hochreiter [34] introduces an evolutionary
stochastic portfolio optimization methodology and illustrates its
application using a set of structurally different risk measures,
which include, Standard Deviation, Mean-absolute Downside
Semi Deviation, Value-at-Risk, and Expected Shortfall.
Recent work has also seen the application of co-evolutionary
MOEAs for portfolio optimization [21].

VI. Pricing Complex Financial Instruments
The range of assets traded on financial markets has expanded
enormously over the past twenty years, moving far beyond the
trading of shares and debt instruments to encompass financial
derivatives. A financial derivative can be defined as a financial
instrument (for example, a contract), the value of which is
based on the value or values of one or more underlying assets.
Derivatives can be based on the value of equities, debt, market
indices, currencies, commodity prices etc. Two of the best
known forms of derivative are futures and options. A future is a
contract to buy or sell a specific quantity of an asset, at a speci-
fied price, at a specified time in the future, whereas an option

FIGURE 4 Pareto frontier. The points that correspond to the risk-
return of the set of portfolios that are Pareto optimal.

Risk

Return
Pareto Frontier

48 IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | NOVEMBER 2008

gives the buyer the right (but not the obligation) to buy/sell a
financial asset at a specified price, on or between specified
future dates.

The key issue for investors wishing to trade in derivatives is
the determination of the fair price for the derivative. For some
standard derivatives, closed-form pricing equations have been
determined, for example, the Nobel prize-winning Black-
Scholes model [9], [52] for pricing European options (Figure 5
illustrates a tree representation of the Black Scholes model).

In reality, some of the key assumptions in the Black-
Scholes model do not hold in real-world option markets, and
hence the model does not explain observed option prices cor-
rectly. Due to the complexity in developing closed form theo-
retical models for options pricing, the domain is particularly
amenable to model-induction techniques such as GP. The
payoff to the development of high-quality option pricing
models the potential identification of pricing gaps between the
theoretical fair price of an option and its current market price.
Any such gaps would produce trading opportunities.

VII. Trading
Financial trading has seen a large number of applications of
EC. Typically these studies take one of two approaches, using
either fundamental data or price/volume data (technical analysis).

A. Fundamental Investment
Taking the example of investing in a share, fundamental
investment concentrates on the use of accounting information

about the company, as well as industry and macroeconomic
data, in order to identify companies which are mispriced by
the market. In other words, the object is to identify shares
which are good value (underpriced by the market), or shares
which are overpriced by the market (and therefore are candi-
dates for ‘shorting’). In this approach, the investor needs to
develop stock screening rules in order to decide which shares
in which to invest. These rules were formulated manually in
decades before computers. With a natural computing algo-
rithm such as the GA, a large range of stock filter rules can be
searched efficiently in order to find the highest-quality rules. In
this approach, each individual in the population corresponds to
a potential stock filter rule. The utility of these rules are tested
using historical data, with the best rule (or set of rules) then
being used for investment purposes (Figure 6). More generally,
GP methods can be applied to evolve the structure of the filter
rules.

B. Technical Analysis
In contrast to investors using a fundamental investment
approach, technical analysts attempt to identify imbalances in
the supply and demand for a financial asset using information
from the time-series of the asset’s trading price and volume.
Usually, investors who adopt a technical analysis approach look
to combine technical indicators (pre-processed price and vol-
ume time series data about a financial asset), in order to pro-
duce a ‘trading signal’. For example, one ‘technical indicator’
that technical analysts could consider is the moving average

NOVEMBER 2008 | IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE 49

FIGURE 5 A stylized tree representation (some branches are compressed) of the Black Scholes model for pricing a non-dividend paying Euro-
pean call option. There are five factors that affect the price of the option, S0: the underlying asset price, X: the exercise price of the option, T : the
time to maturity (of the option), r: the risk free rate of return and σ : the expected volatility of the asset price.

S0 / X Cumulative Normal

*

–

*

exp Cumulative Normal

*

–r
+

*

sqrt

r − σ2 / 2 T T
S0 / X

log

log
*

/

*

*

+

S0 / X
r + σ2 / 2

sqrt

/

T

σ

T

T

σ

convergence-divergence (MACD) oscillator, calculated by taking the
difference of a short-run and a long-run moving average. If the
difference is positive, it is taken as a signal that the market is
trending upward. For example a buy signal could be generated
when the shorter moving average crosses the longer moving
average in an upward direction. A sell signal could be generat-
ed in a reverse case. Therefore, a sample MACD trading rule
could be:

IF x-day MA of price ≥ y-day MA of price

THEN Go Long ELSE Go Short

where x < y (for example x = 10 and y = 50). The MACD
oscillator is a crude band-pass filter, removing both high-

frequency price movements and certain low-frequency price
movements, depending on the precise moving average lags
selected. In essence, the choice of the two lags produces a filter
which is sensitive to particular price-change frequencies. In a
recursive fashion, more complex combinations of moving
averages of values calculated from a MACD oscillator can
themselves be used to generate trading rules.

In past decades, the search for apparently useful technical
indicators (or combinations of these) was undertaken manually
by investors who back tested various indicators on historical
financial data. GP allows the automation of this process, with
the concurrent vast expansion of the search space which can be
feasibly searched.

Of course, as financial markets comprise a dynamic system,
the utility of any static trading system can be expected to
degrade over time. One basic way of examining the character-
istics of a trading system is to use an equity curve (Figure 7).

While a plentiful literature exists on the application of EC
approaches to design simple trading systems, many of these
applications fall a long way short of presenting the true com-
plexities in trading financial markets, particularly when
attempting to trade large blocks of financial assets. The next
section introduces algorithmic trading and briefly describes some
of these real-world complexities.

VIII. Algorithmic Trading
Algorithmic trading is defined here as the use of computer
programs to assist in the execution of the trading of financial
assets. It can encompass systems which decide on certain
aspects of the order such as the timing, price, or even the final
quantity of the order. Algorithmic trading may be used in any
investment strategy, including market making, inter-market
spreading, arbitrage, or speculation.

Today trading algorithms are executing an ever increasing
number of trades on market centers across the world. In the
U.S. their rise has been brought about through a series of tech-
nological and regulatory changes. Since 2001 with the move to
decimalization of the US equity markets, and the widespread
acceptance of electronic market places, the average trade size
has declined from 1,200 shares per transaction in 2000 to 300
shares today [53]. This in turn has led to an explosion in the
number of trades executed and a narrowing of spreads with

FIGURE 6 String encoding of a number of fundamental indicators. Each indicator can be coded as a 0 (no) or 1 (yes).

High Sales
Growth Relative

to Industry
Average?

High Level of
Cash Flow from

Operations
Relative to

Industry
Average?

High Level of
Liquidity

Relative to
Industry

Average?

High Profit
Level Relative

to Industry
Average?

High Debt Level
Relative to

Industry
Average?

Sentiment Analysis
Traditionally, stock trading models incorporated quantitative
data, drawn from the market, financial statements or macro-
economic data. One source of data which has attracted
increasing attention as an input into trading models in recent
years is text data drawn from either Internet message boards
or the financial press.

One of the early studies that combined text data with evolu-
tionary methodologies was Thomas and Sycara (2002) [71]
which examined whether measures of message volume (as
distinct from message content) on internet message boards
could be used as an effective predictor of stock price move-
ments. The study used a GP methodology to build trading
rules based on the message volume data for a selection of
the largest Russell 1,000 stocks.

While initial studies looked at raw message count informa-
tion, the next step is to consider the content or ‘sentiment’ of
these messages in order to assess whether investors are
(un)favorably disposed towards a stock [43], [62].

Using text data in trading models has been made easier by
the commercial availability of ‘tagged’ databases of financial
news, for example, the Dow Jones Elementized News Feed
which places discrete pieces of news, keywords, timestamps,
symbols and other crucial data, into XML-tagged fields for
easy parsing and direct embedding into trading programs.

50 IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | NOVEMBER 2008

large institutional orders taking longer to execute. As a result,
investors wishing to trade large blocks risk tipping their hand
to the marketplace. Trading algorithms seek to optimally exe-
cute these orders, using the vast amounts of data produced by
the market place and submitting appropriately sized smaller
orders to various destinations with the aim of achieving best
execution. In reaching this goal an entire ecology of different
trading algorithms have been designed to perform under differ-
ent market conditions, with recent innovations (such as
Pipeline Financial’s Algorithm Switching Engine) intelligently
switching between these algorithms depending on current
market conditions.

A. Market Micro-Structure
In designing a trading algorithm attention must be paid to the
structure of the market being traded and the different ways in
which investors can interact with this market.

Whether buying or selling, an order can be placed as either
a market order (the order is executed at the prevailing market
price) or limit order (the order is submitted to the destination at
a specific price). The trade-off here is that a market order will
provide guaranteed execution though there is no control over

the price at which that order will be executed. With the limit
order, there is a guarantee over price but not over execution.
If a limit order is priced away from the prevailing market
price it will enter the destination market’s book and wait until
the orders that were ahead of it are executed in a price/time
priority. Thus a certain probability of execution can be
arrived at.

Today most market places operate an electronic double
auction limit order book. This is a system whereby all the
orders to buy and all the orders to sell are displayed. At the top
of the book are the orders that are best priced to buy or to sell
and the difference between these two best prices is the spread.
Thus humans or algorithms can use this data as inputs in decid-
ing upon the size and price of their orders. In Table 1 an
example of a limit order book is provided. The left-hand side
displays all the orders looking to buy with the best priced
orders at 132.19 with a cumulative 3300 shares and the best
ask or offer priced at 132.20 with 1800 shares. A limit order to
buy submitted to the best bid at 132.19 would reside in this
book until the 3300 shares ahead of it were first executed. A
market order to buy would be executed instantly at 132.20 for
a likely maximum of 1800 shares but would have incurred the

FIGURE 7 Sample equity curves showing cumulative returns on the y axis and time on the x axis. (a) Exhibiting gradual return accumulation. (b)
Suggesting that model needs retraining.

0

0.5

1

 1.5

2

2.5

3

0 20 40 60 80 100 120 140 160 180 200

C
um

ul
at

iv
e

R
et

ur
n

Day

Equity Curve

(a)

0

0.5

1

1.5

2

 2.5

3

 3.5

0 20 40 60 80 100 120 140 160 180 200

C
um

ul
at

iv
e

R
et

ur
n

Day

(b)

Equity Curve

NOVEMBER 2008 | IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE 51

cost of the spread which in this case is 1 penny. Needless to
say, limit order books are highly dynamic with multiple parties
submitting and canceling orders throughout the trading day.

This process becomes more complicated when the
fee/rebate cost structure of the destination market is accounted
for and more sophisticated order types are employed. The
fee/rebate structure is designed to encourage flow to a destina-
tion market by awarding a small rebate to orders that provide
liquidity (orders that are posted on the limit order book) and
charging a fee for orders that take liquidity (market orders).

In an attempt to provide customers with the ability to hide
their order sizes more effectively many market places have

implemented reserve and hidden order types. These order types,
used with a limit price, enable an order to partially or com-
pletely hide the size of their order on the limit book. Such an
order could be submitted to the best bid in Table 1 with a size
of 3000 shares but with instructions to only display 100 shares
and maintain the rest in reserve. This has the effect of not scar-
ing away the offer by hiding from the market that there may
be a large buyer of the stock.

Stemming from this, a new breed of market place has
emerged in the recent past known as dark pools. These destina-
tions do not display limit order book information but may pro-
vide indications of interest in a stock. When an order arrives at
a dark pool, generally no size, price or side information is
leaked to the market sealing in much of the information that
leads to other parties gaining knowledge of the order. If a con-
tra order arrives to the same dark pool in the same stock at a
price that is within the limit of the resident order, the trade can
be executed at the midpoint of the spread of the best displayed
bid and ask of the traditional destinations. This provides an exe-
cution between two natural counter parties where each receives
price improvement and incurs no market impact. Trade sizes at
dark pools can also be much larger than their displayed coun-
terparts as customers can submit large block orders to dark pools
without tipping their hand to the market place. Today over
forty dark pools are available in the U.S. from independent
broker dealers such as Pipeline Trading Systems, Liquidnet and
Posit, to large institutional broker dealers such as Credit-Suisse’
Crossfinder and Goldman Sachs Sigma-X and broker dealer
consortia in BIDS and Level.

B. Trade Execution
The goal of a trade execution algorithm is essentially to mini-
mize market impact when trading large blocks of shares. Market
impact occurs as each trade alters the price of a stock. As the
market learns of the presence of a large buyer (or seller) market
players will begin to game their behavior in order to take
advantage of this information. In order to hide this information
a large order is usually broken up into many smaller orders and
traded over a longer period but in doing so the order is
exposed to a greater degree of risk. For more on market
impact see [23], [36], [78].

A model, inspired by the Capital Asset Pricing Model,
that takes into account value at risk (VAR) for trade execu-
tion was first proposed by Almgren and Chriss [2]. Using
such a schedule an algorithm will initially trade at a greater
speed so as to reduce the VAR of the portfolio position with
the rate of trading slowing down later in the day as the value
of the smaller position poses less risk. Recently work by Al
Janabi [51] has been conducted to include liquidity at risk
into trade scheduling that accounts for the probability of liq-
uidity on the other side of the trade being present. However
these schedules should be viewed more as guides as they can
incur opportunity cost because they do not take into account
favorable price movements or good opportunities where an
algorithm should seek to increase its pace of execution and

52 IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | NOVEMBER 2008

Arbitrage
Arbitrage trades seek to make profits by exploiting price differ-
ences of identical (or similar) financial instruments, on differ-
ent markets or in different forms. For example, suppose a
share traded on one stock exchange for $23.78 and on another
for $23.82, an investor could arbitrage by buying at the lower
price and selling simultaneously at the higher price. As would
be expected, arbitrage opportunities tend to be closed very
quickly and transactions costs of buying and selling can
negate apparent arbitrage possibilities.

A simple example of an arbitrage play based on Put-Call
Parity is illustrated in [74]. In essence, the concept underlying
this trade is that the price of a ‘long’ position on an asset and
an associated put (the right to sell that asset in the future at a
specified price) must be equal to the price of a long call on
the same asset and a long position in a risk-free bond. If
either the put or call option are mispriced the investor can, in
theory, make a risk-free gain by constructing a portfolio of the
four financial instruments. The above example, describes an
arbitrage opportunity between the cash market (for the asset)
and the options market. More generally, arbitrage opportuni-
ties can also exist between cash and futures markets and
between futures and options markets.

An alternative approach to waiting for arbitrage opportuni-
ties to emerge and then trying to trade them, is to anticipate
or forecast opportunities in advance of the actual mispricing
occurring. Markose, Tsang and Er [48] illustrate this approach
using a GP model to predict arbitrage opportunities between
the FTSE-100 index futures and options market up to ten min-
utes in advance of the arbitrage opportunity arising.

BID VOL PRICE PRICE VOL ASK

33 132.19 132.20 18
13 132.18 132.21 21
34 132.17 132.22 24
6 132.16 132.23 14

10 132.14 132.24 9
7 132.13 132.25 1

TABLE 1 Sample order book for a stock with volume
(measured in 100s) and price information for bid and ask.

adopt a more conservative stance when the price moves
away while at the same time maintaining an eye on com-
pleting the entire order. Market conditions are prone to
change at any moment and given such an environment a
trading strategy must be flexible enough to adapt and opti-
mize so as to complete the order at the best prices while
minimizing impact to the price.

Despite the importance of optimizing trade execution,
there has been relatively little attention paid in the literature to
the application of evolutionary methodologies for this task.
One exception is Lim and Coggins [45] who used a GA to
evolve a trading schedule in order to optimize trade execution
performance using order book data from the Australian Stock
Exchange. In this study, the approach taken was to initially
split each trade into a series of N equal sized orders, and the
object was to evolve the timing strategy for the execution of
each of these N orders during a single trading day. Each order
was submitted as a limit order at the best ask or bid prevailing
at the time the order was submitted, depending on whether
the investor was seeking to buy or sell shares. A simple tradi-
tional trading strategy could be to submit one of these orders
every ten minutes. However, there is no guarantee that a ten
minute order spacing would produce good results in terms of
minimizing market impact. Lim and Coggins [45] used a GA
to uncover good quality timings for each order by evolving a
chromosome of N genes, where each gene encoded the maxi-
mum lifetime that the order would remain on the order book
(if it had not already been executed) before it was automatical-
ly ticked over the spread (for example, a limit buy order being
repriced to the current ask) to close out the trade. Any
uncompleted trades at the end of the day were closed out the
same way. Hence, the GA evolved the maximum time that
each order would be exposed to the market before being
crossed over the spread.

C. Algorithm Design
A trading algorithm is made up of a variety of decision making
components each of which may be optimized to take into
account a multitude of quantitative analytics and prevailing
market conditions. When deciding whether or not to submit
an order to the market place an algorithm must decide on an
order’s:
❏ Timing—when should the order be placed and/or what

interval of time should there be between orders (what is the
schedule?)

❏ Type—should the order be a market, limit, reserve, hidden
order?

❏ Sizing—what size order should be sent to the market?
❏ Pricing—at what price should the order be, aggressive or

passive?
❏ Destination—there are many market destinations and types,

which one will provide the best conditions of execution for
the order?

❏ Management—if a limit order has been submitted, how
should this order be managed?

A variety of fitness functions could be designed to drive the
evolution of the trading strategy but a common metric of trade
execution performance is its Volume Weighted Average Price
(VWAP)

VWAP =
∑

(Price · Volume)
∑

(Volume)
(1)

The VWAP of a strategy can be calculated and benchmarked
against (for example) the overall VWAP for that share during
the period of the trading strategy’s execution. The aim is to
evolve a strategy which produces as competitive a VWAP as
possible.

In the example in the previous subsection where a trade
execution rule was evolved, the basic structure of the execu-
tion rule is determined in advance (number of trades etc.) and
the task of GA was to parameterize the rule and optimize a
type of trading schedule. Another approach which could be
applied, is to use GP to evolve the structure of the process for
each of the decisions outlined above. A set of these processes
that perform well together can then be combined to form a
trading algorithm giving rise to the possibility of co-evolving
the various aspects of a trading algorithm.

In the U.S. market a vast array of trading algorithms are
available to traders with many of these designed to cater to
specific needs or tailored for certain markets or market con-
ditions. At Pipeline Financial these algorithms are viewed as
tactics. These tactics are classified under six categories:
1) Hidden—Places hidden or reserve orders to displayed

market places
2) Dark—Interacts with various dark pool market destina-

tions
3) Peg—Maintains a presence on the inside bid or ask as it

moves through different price points
4) Participate—Use market or limit orders on various mar-

kets to participate wherever the stock is being traded.
5) Opportunist—Monitor the market for price or liquidity

opportunities.
6) Stealth—Pings destinations with aggressive limit orders so

stealthily take liquidity or to achieve a greater rate of
participation.

An optimal trading strategy can learn to employ these tactics
under their ideal conditions at the right time. Pipeline Finan-
cial’s Algorithm Switching Engine analyzes over forty variables
to determine the market state and then selects the tactic that
will achieve the lowest market impact while maintaining a
desired execution rate. As can be seen, the design of real-world
trading algorithms is substantially more complex than most
published studies indicate.

D. Benchmarking Algorithmic Trading
A key problem in algorithmic trading is evaluating the perfor-
mance of the algorithm itself. When algorithmic trading began
simple benchmarks were used such as those outlined in Eq. (1)
(a VWAP calculation). Here the average price obtained (or
paid) by the algorithm is compared against the VWAP attained

NOVEMBER 2008 | IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE 53

over the same period of trading or over the whole day. This
metric, while easy to calculate, can break down when the size
of the order represents 10% or more of the daily volume of the
stock, as the order itself will form a large part of the VWAP
calculation and a couple of prints below VWAP will generate a
superior average price for the algorithm. It is also possible to
tailor an algorithm, relatively simply, to match VWAP by hav-
ing the algorithm participate at an equal proportion to the vol-
ume profile of the stock over the course of the day [33].

In recent years as trading algorithms have become more
sophisticated, VWAP has lost some importance as a bench-
mark. Other benchmark metrics include implementation
shortfall and arrival price but like VWAP these metrics can also
be very context sensitive and might not accurately reflect algo-
rithmic performance. For example, if implementation shortfall
was the chosen benchmark, an algorithm to buy stock, in a
tanking market, will look great regardless of whether it has
done a good job or not as the price at the close of the order
will generally be lower than when the algorithm began its
work. Here a more accurate measure would be to analyse the
market impact and the deviation in the trajectory of the stock
from that of the market indices.

Because the nature of market impact and opportunity cost
is so dynamic, accurately predicting performance without

actually committing the capital to testing the algorithm in a
real environment is a very difficult task. Here the develop-
ment of artificial multi-agent markets and practical market
impact models can go a long way towards simulating the
effects and behavior a trading algorithm would have on the
real markets [24].

IX. Conclusion
An excellent review by Chen & Kuo (2002) [16] listed nearly
400 papers that had been published by 2001 on the use of EC
in computational finance and economics. Several hundred
additional papers have been published since then illustrating
the continued growth in this applications area. A number of
reasons for this continued growth can be identified, including:
❏ the increasing availability of data in electronic form,
❏ the increasing power of computers which alters the relative

costs of financial theory vs inductive modeling methodologies,
❏ master’s level courses in computational finance and eco-

nomics are becoming staple offerings in leading colleges
❏ the Red Queen effect.

In considering future directions for research at the nexus of
computational intelligence and finance, the key development
currently taking place is the maturing of research from simplis-
tic ‘proof of concept’ studies to (hard!) real-world finance
problems. This transition requires the deepening of the realism
of the financial problems addressed and the development of
multi-disciplinary research teams with both CI and finance
expertise.

Disclaimer
The opinions and inferences in this article are solely those of
the authors and do not necessarily reflect the view and opinion
of Pipeline Financial Group or Pipeline Trading Systems,
LLC. This article is for informational purposes only and is not
soliciting any action.

References
[1] Algos 3.0, Developments in Algorithmic Trading, Traders Magazine 2007. Special Report.
SourceMedia’s Custom Publishing Group.
[2] R. Almgren and N. Chriss, “Optimal Execution of Portfolio Transactions,” Journal of Risk
3, pp 5–39. Incisive Media. 1999.
[3] E. Altman, “Financial Ratios, Discriminant Analysis and the Prediction of Corporate Bank-
ruptcy,” Journal of Finance, vol. 23, pp. 589–609, 1968.
[4] H.J. Antonisse, “A grammar-based genetic algorithm,” in Foundations of Genetic Algorithms,
G. J. E. Rawlins, Ed. Indiana University, Bloomington, USA: Morgan Kaufmann, 15–18 July,
1990, pp. 193–204.
[5] S. Arone, A. Loraschi, and A. Tettamanzi, “A genetic approach to portfolio selection,
Neural Network World,” International Journal on Neural and Mass-Parallel Computing and Infor-
mation Systems, vol. 3, pp. 597–604, 1993.
[6] W. Banzhaf, “Genotype-phenotype-mapping and neutral variation—A case study in genet-
ic programming,” in Lecture Notes in Computer Science 866, Parallel Problem Solving from Nature
III, Springer, 1994, pp. 322–332.
[7] W. Banzhaf, P. Nordin, R.E. Keller, F.D. Francone, Genetic Programming—An Introduction;
On the Automatic Evolution of Computer Programs and its Applications. Morgan Kaufmann, 1998.
[8] R. Bauer, Genetic Algorithms and Investment Strategies. New York: Wiley, 1994.
[9] F. Black and M. Scholes, “The Pricing of Options and Corporate Liabilities,” Journal of
Political Economy, vol. 81, pp. 637–659, 1973.
[10] A. Brabazon and M. O’Neill, Biologically Inspired Algorithms for Financial Modelling.
Springer: Berlin. 2006.
[11] A. Brabazon and M. O’Neill (eds), Natural Computing in Computational Finance. Springer:
Berlin, 2008.
[12] A. Brabazon, and M. O’Neill, (eds), Computational Intelligence in Finance. Springer: Berlin
(forthcoming). 2009.

Some Financial Terms Explained
Options: A derivative of equities that provide the holder with
the option to buy or sell a stock at a certain price by a certain
date. There are two types of options: calls and puts. A call
gives the holder the right to buy a stock at a certain price and
a put allows the holder to sell at a certain price. Options may
be bought long or sold short.

Futures: Synthetic contracts with cash settlement that repre-
sent the price views of investors on a security for a certain
date.

Derivatives: Synthetic securities that are based on underlying
asset(s). The price will fluctuate as a function of the price of
the underlying asset(s).

Iceberg orders: These can be a reserve order that is display-
ing a certain amount on the national markets but holding the
majority of the order in reserve or it can refer to the size a
trader keeps private while he sends a portion of an order out
to his broker.

Dark Liquidity: Resides in hidden order types or Dark Pools.
Used by traders to hide information on the size/side of their
order from the market place.

Sniffers/Pingers & Snipers: Types of trading algorithms
used to source and target dark liquidity.

54 IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | NOVEMBER 2008

[13] S.-H. Chen, Genetic Algorithms and Genetic Programming in Computational Finance. (ed).,
Kluwer Academic Publishers, 2002.
[14] S.-H. Chen, Evolutionary Computation in Economics and Finance. Physica–Verlag, 2002.
[15] S.-H. Chen, P. Wang, and T.-W. Kuo, (eds) Computational Intelligence in Economics and
Finance (vol. II), Springer: Berlin, 2007.
[16] S.-H. Chen and T.-W. Kuo, “Evolutionary Computation in Economics and Finance: A
Bibliography,” in Evolutionary Computation in Economics and Finance (ed). Physica-Verlag, 2002.
[17] C. Darwin, On the Origin of the Species by Means of Natural Selection, or the Preservation of
Favoured Races in the Struggle for Life (reprinted 1985). London: Penguin Books, 1859.
[18] K. Deb, Multi-objective Optimization using Evolutionary Algorithms. John Wiley & Sons, 2001.
[19] K.A. De Jong, Evolutionary Computation: A Unified Approach. MIT Press, 2006.
[20] I. Dempsey, Grammatical Evolution in Dynamic Environments. PhD Thesis, University
College Dublin, 2007.
[21] R. Drezewski and L. Siwik, “Co-Evolutionary Multi-Agent System for Portfolio Opti-
mization,” in Natural Computing in Computational Finance, A. Brabazon and M. O’Neill (eds),
pp. 271–299, Springer: Berlin, 2008.
[22] J.D. Farmer, A. Gerig, F. Lillo, and H. Waelbroeck, “What Determines Market Impact?
How Efficient Prices Coexist with the Heavy Tails of Supply and Demand,” Presented at the
Haas School of Business Finance Seminar, 2/28/2008.
[23] J.D. Farmer and N. Zamani, “Mechanical vs. Informational Components of Price
Impact,” Eur. Phys. J. vol. B55, pp. 189–200, 2007. Santa Fe Institute Working Paper
06–08–034, Santa Fe, NM, 2006.
[24] J.D. Farmer, P. Patelli, and I.I. Zovko, “The Predictive Power of Zero Intelligence in
Financial Markets,” Supplementaty Information PNAS, USA vol. 102, no. 6, 2005.
[25] D.B. Fogel, (Ed.) Evolutionary Computation: The Fossil Record. IEEE Press, 1998.
[26] L. Fogel A. Owens, and M. Walsh, Artificial Intelligence through Simulated Evolution. New
York: Wiley, 1966.
[27] A. Geyer-Schulz, “Fuzzy Rule-Based Expert Systems and Genetic Machine Learning,”
2nd ed., ser. Studies in Fuzziness and Soft Computing, Heidelberg: Physica-Verlag, 1996, vol. 3,
1996.
[28] D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning. Reading,
MA: Addison-Wesley, 1989.
[29] F. Gruau, “On using syntactic constraints with genetic programming,” in Advances in
Genetic Programming 2, P.J. Angeline and K.E. Kinnear, Jr., Eds. Cambridge, MA, USA: MIT
Press, ch. 19, 1996, pp. 377–394.
[30] R. Harper and A. Blair, “A structure preserving crossover in grammatical evolution,” in
Proceedings of the 2005 IEEE Congress on Evolutionary Computation, D. Corne, Z. Michalewicz,
M. Dorigo, G. Eiben, D. Fogel, C. Fonseca, G. Greenwood, T. K. Chen, G. Raidl, A. Zalza-
la, S. Lucas, B. Paechter, J. Willies, J. J. M. Guervos, E. Eberbach, B. McKay, A. Channon, A.
Tiwari, L. G. Volkert, D. Ashlock, and M. Schoenauer, Eds., vol. 3. Edinburgh, UK: IEEE
Press, 2–5 Sept., 2005, pp. 2537–2544.
[31] J. Hicklin, Application of the genetic algorithm to automatic program generation. Master’s thesis,
University of Idaho, Moscow, ID, 1986.
[32] N.X. Hoai, R.I. McKay, and D. Essam, “Some experimental results with tree adjunct
grammar guided genetic programming,” in Genetic Programming, Proceedings of the 5th European
Conference, EuroGP 2002, ser. LNCS, J. A. Foster, E. Lutton, J. Miller, C. Ryan, and A. G. B.
Tettamanzi, Eds., vol. 2278. Kinsale, Ireland: Springer-Verlag, 3–5 Apr. 2002, pp. 228–237.
[33] D.D. Hobson, “VWAP and Volume Profiles,” Journal of Trading Spring, vol. 1, no. 2,
pp. 38–42, 2006.
[34] H. Hochreiter, “Evolutionary Stochastic Portfolio Optimization,” in Natural Computing in
Computational Finance, A. Brabazon and M. O’Neill (eds), pp. 67–87, Springer: Berlin, 2008.
[35] J. Holland, Adaptation in Natural and Artificial Systems. Ann Arbour: The University of
Michigan Press, 1975.
[36] G. Iori, M.G. Daniels, J.D. Farmer, L. Gillemot, S. Krishnamurty, and E. Smith, “An
Analysis of Price Impact Function in Order-Driven Markets,” Physica A, vol. 324, no. 1–2,
pp. 145–151, 2003.
[37] M. Keijzer and V. Babovic, “Dimensionally aware genetic programming,” in Proceedings of
the Genetic and Evolutionary Computation Conference, W. Banzhaf, J. Daida, A. E. Eiben, M. H.
Garzon, V. Honavar, M. Jakiela, and R. E. Smith, Eds., vol. 2. Orlando, Florida, USA: Mor-
gan Kaufmann, 13–17 July 1999, pp. 1069–1076.
[38] R.E. Keller and W. Banzhaf, “Genetic programming using genotype-phenotype mapping
from linear genomes into linear phenotypes,” in Genetic Programming 1996: Proceedings of the
First Annual Conference, J. R. Koza, D. E. Goldberg, D. B. Fogel, and R. L. Riolo, Eds. Stan-
ford University, CA, USA: MIT Press, 28–31 July 1996, pp. 116–122.
[39] J.R. Koza, Genetic Programming. MIT Press, 1992.
[40] J.R. Koza, Genetic Programming II: Automatic Discovery of Reusable Programs. MIT Press,
1994.
[41] J.R. Koza, D. Andre, F.H. Bennett III, M. Keane, Genetic Programming 3: Darwinian Inven-
tion and Problem Solving. Morgan Kaufmann, 1999.
[42] J.R. Koza, M. Keane, M.J. Streeter, W. Mydlowec, J. Yu, G. Lanza, Genetic Programming
IV: Routine Human-Competitive Machine Intelligence. Kluwer Academic Publishers, 2003.
[43] F. Larkin and C. Ryan, “Good News: Using news feeds with genetic programming to
predict stock prices,” in O’Neill, M. et al (eds), Proceedings of the 11th European Conference on
Genetic Programming (EuroGP 2008), Springer, 2008, pp. 49–60, LNCS 4971.
[44] C. Lee, C. Quek, and D. Maskell, “A brain-inspired fuzzy neuro-predictor for bank fail-
ure analysis,” in Proceedings of the IEEE International Conference on Evolutionary Computation
(CEC 2006), IEEE Press, 2006, pp. 7927–7934.
[45] M. Lim and R. Coggins, “Optimal trade execution: An evolutionary approach,” in Pro-
ceedings of the IEEE International Conference on Evolutionary Computation (CEC 2005), IEEE Press,
2005, pp. 1045–1052.
[46] J.D. Lohn, D.S. Linden, G.S. Hornby, W.F. Kraus, A. Rodriguez, S. Seufert, “Evolution-
ary Design of an X-Band Antenna for NASA’s Space Technology 5 Mission,” Proc. 2004

IEEE Antenna and Propagation Society International Symposium and USNC/URSI National Radio
Science Meeting, 2004, vol. 3, pp. 2313–2316.
[47] A. Loraschi and A. Tettamanzi, M. Tomassini, and P. Verda, “Distributed genetic algo-
rithms with an application to portfolio selection problems,” in D. Pearson, N. Steele and R.
Albrecht (eds), Artificial Neural Networks and Genetic Algorithms, Springer, 1995, pp. 384–387.
[48] S. Markose, E. Tsang, and H. Er, “Evolutionary Decision Trees for Stock Index Options
and Futures Arbitrage,” in Genetic Algorithms and Genetic Programming in Computational Finance,
Shu-Heng Chen (ed)., Kluwer Academic Publishers, 2002, pp. 281–308.
[49] H. Markowitz, “Portfolio Selection,” Journal of Finance, vol. 1, no. 7, pp. 77–91, 1952.
[50] H. Markowitz, Portfolio Selection: Efficient Diversification of Investments. John Wiley & Sons,
1959.
[51] Maxin A. M. Al Janabi, “Integrating Liquidity Risk Factor into a Parametric Value at
Risk Method,” Journal of Trading Summer 2008, pp. 76–87. Institutional Investor. 2008.
[52] R. Merton, “Rational Theory of Option Pricing,” Bell Journal of Economics and Manage-
ment Science, vol. 4, pp. 141-183, 1973.
[53] NYSE Euronext.
[54] M. O’Neill, C. Ryan, Grammatical Evolution: Evolutionary Automatic Programming in an Arbi-
trary Language. Kluwer Academic Publishers, 2003.
[55] M. O’Neill, Automatic Programming in an Arbitrary Language: Evolving Programs in Grammati-
cal Evolution. PhD thesis, University of Limerick, 2001.
[56] M. O’Neill, C. Ryan, “Grammatical Evolution,” IEEE Trans. Evolutionary Computation, 2001.
[57] M. O’Neill, C. Ryan, M. Keijzer, M. Cattolico, “Crossover in Grammatical Evolution,”
Genetic Programming and Evolvable Machines, Kluwer Academic Publishers, vol. 4, no. 1, 2003.
[58] M. O’Neill, “A. Brabazon, Grammatical Swarm: The generation of programs by social
programming,” Natural Computing, vol. 5, no. 4, pp. 443–462, 2006.
[59] M. O’Neill, A. Brabazon, “Grammatical Differential Evolution,” In Proceedings of IC-AI.
CSREA Press, 2006, pp. 231–236.
[60] N. Paterson and M. Livesey, “Evolving caching algorithms in C by genetic program-
ming,” in Genetic Programming 1997: Proceedings of the Second Annual Conference, J.R. Koza, K.
Deb, M. Dorigo, D.B. Fogel, M. Garzon, H. Iba, and R.L. Riolo, Eds. Stanford University,
CA, USA: Morgan Kaufmann, 13–16 July 1997, pp. 262–267.
[61] R. Poli, W.B. Langdon, and N.F. McPhee, A Field Guide to Genetic Programming. Pub-
lished via http://lulu.com and freely available at http://www.gp-field-guide.org.uk. 2008.
[62] G. Pui, C. Fung, C.J. Yu, and W. Lam, “Stock Prediction: Integrating Text Mining
Approach using Real-Time News,” in Proceedings of the 2003 IEEE International Conference on
Computational Intelligence for Financial Engineering, IEEE Press, 2003, pp. 395–402.
[63] A. Ratle and M. Sebag, “Genetic programming and domain knowledge: Beyond the limi-
tations of grammar-guided machine discovery,” in Parallel Problem Solving from Nature—PPSN
VI 6th International Conference, ser. LNCS, M. Schoenauer, K. Deb, G. Rudolph, X. Yao, E.
Lutton, J. J. Merelo, and H.-P. Schwefel, Eds., vol. 1917, Paris, France: Springer Verlag,
16–20 Sept. 2000, pp. 211–220.
[64] I. Rechenberg, Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologis-
chen Evolution. Stuggart: Frommann-Holzboog, 1973.
[65] R. Rothlauf and M. Oetzel, “On the locality of grammatical evolution,” Genetic Program-
ming, Proceedings of the 9th European Conference, EuroGP 2006, ser. LNCS, P. Collet, M.
Tomassini, M. Ebner, S. Gustafson and A. Ekart, Eds., vol. 3905. Budapest, Hungary:
Springer-Verlag, 10–12 Apr., 2006, pp. 320–330.
[66] C. Ryan, J.J. Collins, and M. O’Neill, “Grammatical Evolution: Evolving Programs for an
Arbitrary Language,” Proc. of the First European Workshop on GP, Springer-Verlag, 1998, pp. 83–95.
[67] H.-P. Schwefel, Evolutionstrategie und numerische Optimierung. Dissertation, Technische
University at, Berlin, 1975.
[68] Y. Shan, R.I. McKay, R. Baxter, H. Abbass, D. Essam, and N.X. Hoai, “Grammar
model-based program evolution,” in Proceedings of the 2004 IEEE Congress on Evolutionary Com-
putation, Portland, Oregon: IEEE Press, 20–23 June 2004, pp. 478–485.
[69] H. Spencer, The Principles of Biology. vol. 1, London and Edinburgh: Williams and
Norgate, 1964.
[70] F. Streichert, H. Ulmer, and A. Zell, “Evaluating a Hybrid Encoding and Three
Crossover Operators on the Constrained Portfolio Selection Problem,” in Proceedings of CEC
2004, IEEE Press, 2004a, pp. 932–939.
[71] J. Thomas and K. Sycara, “GP and the Predictive Power of Internet Message Traffic,” in
Genetic Algorithms and Genetic Programming in Computational Finance, Shu-Heng Chen (ed).,
Kluwer Academic Publishers, 2002, pp. 81–102.
[72] E. Tsang and J. Li, “EDDIE for Financial Forecasting,” in Genetic Algorithms and Genetic
Programming in Computational Finance, Shu-Heng Chen (ed)., Kluwer Academic Publishers,
2002, pp. 161–174.
[73] E. Tsang and S. Martinez-Jaramillo, “Computational Finance,” IEEE Computational Intelli-
gence Society Newsletter, pp. 8–13, Aug. 2004.
[74] W. Tung and C. Quek, “GenSoOPATS: A brain-inspired dynamically evolving
option pricing model and arbitrage system,” in Proceedings of CEC 2005, IEEE Press, 2005,
pp. 1722–1729.
[75] A.M. Turing, “Intelligent Machines,” In Ince, D.C. (Ed.), 1992, Mechanical Intelligence:
Collected Works of A.M. Turing, North-Holland, 1948, pp. 107–128.
[76] P.A. Whigham, Context free grammar and genetic programming, tr cs20/94, Dept of
Computer Science, University of New South Wales@ADFA, Tech. Rep.
[77] M.L. Wong and K.S. Leung, “Applying logic grammars to induce sub-functions in genet-
ic programming,” in 1995 IEEE Conference on Evolutionary Computation, vol. 2, Perth, Australia:
IEEE Press, 29 Nov. 1, Dec., 1995, pp. 737–740.
[78] D. Farmer, A. Gerig, F. Lillo, and H. Waelbroeck, “What Determines Market Impact?
How Efficient Prices Coexist with the Heavy Tails of Supply and Demand,” Presented at the
Haas School of Business Finance Seminar, 2/28/2008.

NOVEMBER 2008 | IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE 55

