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Summary. Although there is a plentiful literature on the use of evolutionary
methodologies for the trading of financial assets, little attention has been paid to the
issue of efficient trade execution. Trade execution is concerned with the actual me-
chanics of buying or selling the desired amount of a financial instrument of interest.
This chapter introduces the concept of trade execution and outlines the limited prior
work applying evolutionary computing methods for this task. Furthermore, we build
an Agent-based Artificial Stock Market and apply a Genetic Algorithm to evolve an
efficient trade execution strategy. Finally, we suggest a number of opportunities for
future research.

1 Introduction

Algorithmic trading (AT) can be broadly defined as the use of computers to
automate aspects of the investment process. Hence, AT can encompass the
automation of decisions ranging from stock selection for investment, to the
management of the actual purchase or sale of that stock. A significant pro-
portion of all financial asset trading is now undertaken by AT systems with
this form of trading accounting for approximately 20-25% of total US market
volume in 2005. Boston-based research firm Aite Group predicts that AT will
account for more than half of all shares traded in the U.S. by the end of 2010
[21]. AT is also common in European financial markets with approximately
50% of trading volumes being accounted for by algorithmic trading programs
[15]. Significant volumes in Asian markets are similarly traded [14]. Algorith-
mic trading is seen in multiple financial markets ranging from equities to FX
(foreign exchange), to derivative (futures, options etc.) markets.

In this chapter we restrict attention to one aspect of financial trading to
which AT can be applied, namely efficient trade execution. A practical issue
that arises for investors is how they can buy or sell large quantities of a share
(or some other financial asset) as efficiently as possible in order to minimize
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market impact. Typically, orders to buy or sell a share can be either market
orders (the transaction is undertaken immediately in the market at current
prices) or limit orders (the purchase (sale) must occur at a price which is no
greater than (or less than) a pre-specified price). So for example, if a customer
places a limit order to buy a stock at $125 per share the transaction will only
take place if the market price falls to $125 or less. Hence, when a market order
is placed, the customer does not have control over the final price(s) at which
the order will be filled, and in a limit order, while the customer has some price
control, there is no guarantee that the order will actually be executed.

Most major financial markets now are limit order markets which operate
based on an electronic order book, where participants can see the current
unfilled buy and sell orders. Table 1 illustrates a sample order book, showing
the quantities that investors are willing to buy (bid side) and sell (ask side)
at each price. We can see that 200 shares are currently available for sale at
a price of 133.2 (or higher), and buyers are seeking 300 shares at a price of
132.9 (or lower). The order book also illustrates that there are limits to the
quantity of shares available for purchase / sale at each price point. Of course,
the order book is highly dynamic, with the quantities of shares offered at each
price changing constantly as trades are executed, as investors add new limit
orders on the bid and ask sides, or as investors cancel limit orders they have
previously placed.

Table 1. Sample order book for a share with volume and price information for bid
and ask

Bid Ask
Vol Price Price Vol

300 132.9 133.2 200
200 132.8 133.3 300
400 132.7 133.4 100
500 132.6 133.5 300
300 132.5 133.6 200
100 132.4 133.7 400

When trading financial assets, particularly when an investor is looking to buy
or sell a large quantity of the asset, the problem of market impact arises.
Market impact arises when the actions of an investor start to move the price
adversely against themselves. Hence, market impact is the difference between
a transaction price and what the market price would have been in the absence
of the transaction. For example, if an investor wished to buy 400 shares given
the above order book, he would end up driving up the price paid for some
shares to 133.3. The obvious strategy to minimize market impact is to break
the order up into smaller lots and spread them out over time. While this may
reduce the market impact, it incurs the risk of suffering opportunity cost, that
market prices may start moving against you during the multiple purchases.
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Hence, the design of trade execution strategies when trading large blocks of
financial assets is intended to balance out these factors.

The task in devising an efficient execution strategy is complex as it entails
multiple sub-decisions including how best to split up the large order, what
style to adopt in executing each element of the order (aggressive or passive),
what type of order to use, when to submit the order, and how execution
performance is to be measured. In addition, the electronic order book(s) faced
by the investor are constantly changing.

In the past the task of designing an execution strategy was undertaken by
human experts but it is amenable to automation. In this chapter we apply a
Genetic Algorithm (GA) to evolve an efficient trade execution strategy and
highlight other possible Evolutionary Computation (EC) applications for this
issue.

To test the performance of any trade execution strategy, we need highly
detailed transaction level data. An ordinary way is to obtain the data from
the exchange. However, this only provides us with a single sample path of
order book data over time. Another approach is to consider the output data
from an Artificial Stock Market (ASM), a simulation of the real stock market.
An advantage of a simulation-based approach is that many sample paths can
be generated and utility of a trade execution strategy can be tested over all
of these paths. Most ASM models are built by a computer technique called
Agent-based Modeling (ABM). Novelly, this chapter evaluates the strategy
employing the data from an ASM.

This chapter is organized as follows: Section 2 gives the necessary mi-
crostructure background relevant to the trade execution from two aspects:
trading cost and price formation. Section 3 discusses trade execution strategy
and corresponding performance evaluation. Section 4 provides concise intro-
duction to the EC methodologies, and related work with application in trade
execution. Section 5 explains agent-based modeling and simulates an artificial
stock market. Section 6 demonstrates the use of GA to evolve a quality execu-
tion strategy. Section 7 conclude this chapter by giving a number of avenues
for future work.

2 Background

The finance literature on market microstructure is vast and consequently,
we only discuss a limited subset of concepts from it, trading cost and price
formation, which are most relevant to this chapter.

2.1 Trading Cost

Trading cost can be decomposed into direct cost and indirect cost. Direct
cost are observable directly, such as commissions, fees and taxes. Indirect
costs are more difficult to observe. Indirect costs can be divided into three
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main components: market impact cost, opportunity cost and bid-ask spread
cost. Early studies of indirect costs focused on the bid-ask spread [20]. Lately,
market impact cost and opportunity cost have received more attention.

Execution needs to balance all of these factors [1]. If trading costs are not
properly managed throughout trading it could cause a superior opportunity
to become only marginally profitable and a normally profitable opportunity
to turn into a loss [22].

Factors which influence transaction cost are trade size, market capacita-
tion, time windows, trading time, order imbalance, volume of time horizon
etc.

Market Impact

As investors transact shares in the market they cause market impact (price
impact) in the stock. Buy orders are associated with increasing prices and sell
orders are associated with decreasing prices.

The market impact is typically decomposed into permanent and transitory
components which provide estimates of the information and liquidity costs of
the trade [20].

Due to its importance, there is much research on the causes of market
impact [22]. Empirical evidence showed that block price impacts are a con-
cave function of order size and a decreasing function of market capitalization
(liquidity). Bikker [4] found that average market impact costs equal 20 basis
points for buys and 30 basis points for sells, and market impact costs are
influenced by timing of the trades, such as the day of the week, the period
of the month and the month of the year at which the stock is traded. Stocks
with high capitalization yield lower price impact cost than stocks with low
capitalization [28]. Price impact costs increase as order imbalance increases
[27].

Opportunity Cost

There are two reasons why opportunity cost can arise [20]. One reason is that
an order is only partially filled or is not executed at all. This often happens
using passive trading strategies, such as a limit order strategy which trades
only limit order in the market. For example, a trader who anticipates that
the market price will move down, sets the limit price below the best available
bid price. If the market price actually moves up during that day, he will suffer
a high cost due to unexecuted order. The other reason is that some orders
traded in the market are executed with a delay, in times of adverse price
movement.

2.2 Price Formation

Many modern markets operate using an electronic limit order book as de-
scribed above. In a limit order market, orders arrive randomly in time. The
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price limit of a newly arrived order is compared to those of orders already held
in the system to ascertain if there is a match. If so, the trade occurs at the price
set by the first order. The set of unexecuted limit orders held by the system
constitutes the dynamic order book, where limit orders can be cancelled or
modified at any time or executed in price priority and time priority sequence.
According to the first rule, the buy (or sell) limit order with higher (or lower)
price get executed prior to others with lower (or higher) price. The second
rule means that where two or more limit buy (or sell) orders have the same
limit price, the buy (or sell) limit order which arrives at the market earlier
get executed prior to the others. A simple price formation process is shown in
Figure 1.

Make decisions
Order Matching 

Mechanism

Fig. 1. Price Formation

3 Trade Execution Strategy

A dilemma facing traders is that trading too quickly reduces the risk of suf-
fering high opportunity costs but is associated with high market impact cost.
Trading too slowly minimizes market impact cost but can give rise to oppor-
tunity cost. These costs are balanced out in a trade execution strategy, by
splitting a large trade into lots of small pieces and spreading them over sev-
eral hours using market or limit orders. For example, an algorithmic trading
strategy may equally divide a 100,000-share order into 100 small orders, where
each small order has 1,000 shares. These orders then may be sent to the mar-
ket over the course of the day, in order to minimize market impact. Another
advantage of doing this is that these orders can be disguised in the market
and prevented from being detected by other participants in the market.

This section presents important factors in a trade execution strategy and
discusses how to evaluate performance of trading strategies.

3.1 Factors

Factors of a trading strategy include the number of orders, type of each order,
size per order and submission time per order. Moreover, if a submitted order
is a limit order, the strategy has to specify a limit price and a duration time.

If immediacy is desired, the market order is the appropriate instrument
to use. However, market orders pay an implicit price for immediacy. Limit
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orders avoid impact cost but bear the risks of non-execution. In practice,
traders submit both types of orders, in order to balance the opportunity cost
of delaying execution against the price impact associated with immediate
execution.

Duration time or lifetime is another important factor. The lifetime can
range from zero to entire trading time of the day. However, longer lifetime
is not always the better choice, since transacting on longer period also faces
more risk.

The limit price of a limit order plays a significant role in order execution,
which always floats around the best bid/ask price. When placing a limit order,
it is simpler to just consider the relative limit price, which is the difference
between the limit price of buy/sell order and the current best bid/ask price.
Choosing a relative limit price is a strategic decision that involves a trade-off
between patience and cost. For example, if a trader wants to submit a limit
buy order when the current best ask price is a, an impatient buyer will submit
a limit order with a limit price p well above a, which will immediately result
in a transaction. A buyer of intermediate patience will submit an order with
price p a little smaller than a; this will not result in a immediate transaction,
but will have high priority as new sell orders arrive. A very patient buyer
will submit an order with p much smaller than a; this order is unlikely to be
executed soon, but it will trade a good price if it does. A lower price is clearly
desirable to the buyer, but it comes at the cost of lowering the probability of
trading. Usually, the lower the price to buy or the higher the price to sell, the
lower the probability there will be a trade. However, the choice of limit price
is a complex decision that depends on market environment.

3.2 Types

Algorithmic Trading systems typically aim at achieving or beating a specified
benchmark with their executions and may be distinguished by their underlying
benchmark, their aggressiveness or trading style as well as their adaptation
behavior [23].

In practice the most commonly used algorithms in the market place ac-
cording to their benchmarks are: arrival price, time weighted average price
(TWAP), volume weighted average price (VWAP), market-on-close (MOC),
and implementation shortfall (the difference between the share-weighted aver-
age execution price and decision price for a trade). Arrival price is the midpoint
of the bid-ask spread at order-receipt time. VWAP is calculated as the ratio of
the value traded and the volume traded within a specified time horizon. MOC
measures the last price obtained by a trader at the end of the day against the
last price reported by the exchange. Implementation shortfall is a model that
weighs the urgency of executing a trade against the risk of moving the stock.

In terms of adaptation behavior, any algorithmic trading strategy can also
be categorized into one of the two categories: static strategy and adaptive
strategy. Static strategy pre-determines order trading schedule and will not
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change during the process of trading. This strategy can not adapt to changing
environment. For example, an aggressive strategy that places only market
orders to buy can not change its aggressiveness if the market price keeps
moving up. On the other hand, adaptive strategy adapts to changing market
conditions such as market price movements, volume profiles due to special
events such as new announcements or fed indicators, as well as changes in
volatility, by altering their aggressiveness of trading adequately. Intuitively,
a more aggressive action can be represented either as raising (or lowering)
the buy (or sell) limit order price or as increasing (or decreasing) the order
volume. For example, in times of favorable price movement adaptive strategies
are likely to become more aggressive by submitting more market orders or
raising (or lowering) buy (sell) price or increasing order volume, and in times
of adverse price movement adaptive strategies are more passive in order to
avoid unnecessary market impact cost by submitting more limit orders or
lowering (or raising) buy (sell) price or decreasing order volume.

Several researchers have made contributions to adaptive trading strategy.
Almgren [2] showed evidence that strategies that are adaptive to market de-
velopments, i.e. that can for example vary their aggressiveness, are superior to
static strategies. Nevmyvaka [30] proposed dynamic price adjustment strategy,
where limit order’s price is revised every 30 seconds adapting to the changing
market state. Wang [35] proposed a dynamic focus strategy, which dynami-
cally adjusts volume according to real-time update of state variables such as
inventory and order book imbalance, and showed that dynamic focus strategy
can outperforms a static limit order strategy.

3.3 Performance Evaluation

Execution performance is assessed by comparing execution costs relative to a
benchmark. The execution cost measure is a weighted sum of the difference
between the transaction price and the benchmark price where the weights are
simply the quantities traded [15]. The most used benchmark prices are VWAP,
TWAP, arrival price, implementation shortfall, which have been introduced
above.

The rationale here is that performance is considered good if the average
execution price is more favorable than the benchmark price and bad if the
average execution price is less favorable than the benchmark price. Take the
VWAP as an example, which is an industry standard benchmark.

The VWAP benchmark is calculated across the time horizon during which
the trade was executed and is calculated as∑

(V olume ∗ Price)∑
(V olume)

Hence, if the price of a buy trade is lower than VWAP, it is a good trade.
If the price is higher, it is a bad trade. Although this is a simple metric, it
largely filters out the effects of volatility, which composes market impact and
price momentum during the trading period [1].



8 W. Cui, A. Brabazon and M. O’Neill

4 Evolutionary Computation in Trade Execution

Evolutionary computation is a subfield of artificial intelligence. The basic idea
of an evolutionary algorithm is to mimic the evolutionary process, just as the
name implies. The evolutionary process is operated on the solutions or the
encodings of solutions. In financial markets, EC methodologies have been used
for solving a broad selection of problems, ranging from predicting movements
in current values to optimizing equity portfolio composition. An overview of
EC applications in finance can be seen in [8].

GA is a kind of EC algorithm. The key steps in an GA are [7]:

1. Initialization. Construct an initial population of encodings to potential
solutions to a problem;

2. Calculation. Calculate the fitness of each potential solution in the popu-
lation;

3. Selection. Select a pair of encodings (parents) corresponding to potential
solutions from the existing population according to the fitness;

4. Crossover. Perform a crossover process on the encodings of the selected
parent solutions;

5. Mutation. Apply a mutation process on the encodings of the two child
solutions and then store them in the next population;

6. Repeat. Repeat steps 3-5 until n encodings of potential solutions have been
created in the new population, and the old population are discarded;

7. Repeat Again. Go to step 2 and repeat until the desired fitness level has
been reached or until a predefined number of populations have elapsed.

Another kind of EC is Genetic Programming (GP), an extension of GA. In GP,
the evolutionary operators are applied directly to the solutions, thus the evo-
lutionary search is operated on a space of computer programs. In financial ap-
plication, this space can be a society of option pricing formulas, trading rules,
or forecasting models. GP offers the potential to generate human-readable
rules.

4.1 Related Work

Despite the importance of optimizing trade execution, there has been rela-
tively little attention paid in the literature to the application of evolutionary
methodologies for this task. One notable exception is Lim and Coggins [29]
who applied a genetic algorithm to evolve a dynamic time strategy to optimize
the trade execution performance using order book data from a fully electronic
limit order market, the Australian Stock Exchange (ASX). In their study, the
total volume of the order was divided into 10 slices and was traded within
one day using limit orders. Each evolved chromosome had N genes where
each gene encoded the maximum lifetime that an individual order (1 → N)
would remain on the order book (if it had not already been executed) be-
fore it was automatically ticked over the spread to close out the trade. The
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fitness function was the VWAP performance of that strategy relative to the
benchmark daily VWAP. Each strategy was trained on three months’ worth
of transaction-level data using a market simulator. The results were tested
out of sample on three highly liquid stocks and tested separately for sell side
and buy side. The in sample and out of sample performances were better than
pure limit / market order strategies.

5 Agent-based Artificial Stock Market

In this chapter, the data used to test the execution strategies are derived
from an artificial stock market. This section gives a brief introduction to the
agent-based modeling technique.

5.1 Agent-based Modeling

Agent-based modeling is a simulation technique to model non-linear systems
consisting of heterogeneous interacting agents. The emergent properties of an
agent-based model are the results of “bottom-up” processes, where the deci-
sions of agents at a microscopic level determine the macroscopic behavior of
the system. An ‘agent’ refers to a bundle of data and behavioral methods rep-
resenting an entity constituting part of a computationally constructed world.
The agents can vary from simple random zero-intelligence (ZI) agents as in [18]
to sophisticated inductive learning agents. Even a simple agent-based model
can exhibit complex behavior patterns and provide valuable information about
the dynamics of the real-world system that it emulates [5].

The branch of agent-based modeling that deals with economic envi-
ronments is sometimes referred to as agent-based computational economics
(ACE), which naturally includes agent-based artificial markets [3]. They view
financial markets as interacting groups of learning, boundedly-rational agents,
by incorporating a well-defined price formation mechanism and a representa-
tion of market participants.

5.2 Artificial Market Models

Most artificial markets implement simplified market models, which omit some
institutional details of trading, but serve their research needs sufficiently. One
example is the clearing house model, where a number of agents only trade an
asset at discrete time intervals. At the start of each time period, every agent
forms his expectation for the future price in the next period, according to
the available information, such as current market price and historical prices.
Then, the trader can decide the proportion of the asset he will hold in the
next period in order to maximize his profit. After collecting the accumulated
buy and sell orders of all the agents, the market is cleared at a new market
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price. The renowned Santa Fe artificial stock market [26] is a such market,
based on clearing house model. For general reviews, see for example [10, 24,
26, 25, 32, 34].

Fig. 2. Artificial Model Comparison

However, the clearing house is only an approximate description of the way
stock exchanges operate around the world. Nowadays, most financial markets
are electronic markets, operating on an order book. Several researchers have
made contributions to the models which implement the realistic trading mar-
ket model, e.g. a limit order market, moving from the more stylized earlier
financial market models toward more models incorporating explicit market
microstructure [9, 31, 36].

It is difficult to design a market that perfectly reflects all the details of a
real stock market. Therefore several choices, simplifications and assumptions
are needed in order to make attempts to represent market structures and
traders’ behavior. In Chan’s market [9], a submitted limit order price has to
be better than the current price, for instance, any subsequent bid must be
higher than the current bid to be posted, and subsequent ask is lower than
the current ask to be posted. Yang’s market [36] is similar to Chan’s [9]. In
Chiarella’s markets [11, 12], traders set bids and asks and post market or
limit orders according to exogenously fixed rules. One major drawback of the
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Chiarella’s model comes from the assumption that there exists a constant
fundamental value of the asset that all agents know, which is not realistic
[19]. A comparison of these models can be seen in Table 2.

5.3 Simulation

In this chapter, our model is based on the zero-intelligence (ZI) model [13],
which aims to generate a realistic aggregate order flow using very simple
assumptions. The ZI agents are responsible for generating the order flow, by
placing random orders to buy or sell. In this model, only one stock is traded,
and dividends are ignored. Traders trade orders via a centralized limit order
book, without the intermediacy of a market maker, aiming to focus on the
dynamics of a pure double auction. There are four aspects to design the ZI
model, which are order sign, order type, limit order price and order size.

Current Best Bid Price

Current Best Ask Price

Price range of incoming limit buy orders

Price range of incoming limit sell orders

Price increases

Fig. 3. Place Limit Price

Table 2. Initial Parameters for Order Book based ASM

Explanation Value

Initial Price price0 = 100
Tick Price δ = 0.01

Probability of Cancellation Order λc = 0.07
Probability of Market Order λm = 0.33
Probability of Limit Order λl = 0.60

Probability of Limit Order in Spread λin = 0.35
Probability of Limit Order Out of Spread λout = 0.65

Limit Price Tail Index 1 + α = 1.3
Order Size (µ, σ) ∼ (4.5, 0.8) ∗ 100 shares

Waiting Time τ = 6, 90

There are two order signs, buy or sell. The agents are equally probable to
generate a buy order or a sell order. There are three types of orders in our
model: market order, limit order and cancellation order (to delete an order
from the order book). In London Stock Exchange, about 2/3 of the submitted
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order are limit orders and 1/3 are market orders [16], and roughly 10% of limits
order in the order book are canceled before before being executed [6]. When
an agent is active, she can try to issue a cancelation order with probability λc

(oldest orders are canceled first), a market order with probability λm, a limit
order with probability λl = 1 − λc − λm. Traders do not always place limit
order at best bid/ask prices or inside the bid-ask spread. About 1/3 of limit
orders fall outside the bid-ask spread and the density of placement falls off as
a power law as a function of the distance from the best bid/ask price [17]. In
our model, limit order price will be uniformly distributed in the spread with
probability λin, and power-law distributed outside the spread with probability
1− λin. Limit order price ranges are illustrated in Figure 3. The parameters
used in our simulation are presented in Table 2.

Algorithm 1. Behavior of ZI Agents

Simulator:generate t from EXPONENTIAL(τ);
current time = current time + t. Agent:generate Psign from

BERNOULLI(0.5);
generate independent Ptype from UNIFORM(0,1] if Ptype <= λc then

/* a cancel order to be submitted */
Cancel oldest outstanding order

end
else

if Ptype > (λc + λm) then
/* a limit order to be submitted */
generate OrderSize log(vol) ∼NORMAL(µ,σ);
generate independent Pspread from UNIFORM(0,1];
if Pspread <= λin then

/* limit price to be in the spread */
generate LimitPrice price(t) ∈ UNIFORM(b(t),a(t))

end
else

/* limit price to be out of the spread */
generate LimitPrice pricei(∆) ∼ 1

∆1+α ;
/* power-law distributed*/

end

end
else

/* a market order to be submitted */
generate OrderSize vol(t) = [vol(a(t))|vol(b(t))];
/* same size as best counterpart*/

end

end
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In this model, the order generation is modeled as a poisson process, which
means that the time between orders follows an exponential distribution. In
our simulation, we adopt a Swarm platform in JAVA [33], which is one of
the most popular agent-based modeling platforms. The algorithm used in our
simulation is described in Figure 1.

6 Experiments

This section describes how to use a GA to uncover a quality trade execution
strategy and evaluate it using the data generated from the artificial market
described above.

6.1 Data

This simulated market collects four kinds orders: market buy orders, limit buy
orders, market sell orders and limit sell orders.
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Fig. 4. In-sample Data
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The ASM simulation uses a database to store the details of each incoming
order and best prices at each time point, which are limit buy orders, limit sell
orders, market buy orders, market sell orders and best buy/sell orders.

The limit buy/sell order record contains each limit order’s index number,
arrival time, volume, submitting limit price, time when canceled or traded.
The market buy/sell order record contains each market order’s index number,
arrival time, traded volume, traded price and the index number of correspond-
ing traded limit order. The best price record contains the best bid and ask
orders’ index number, volume, price, and mid-spread price at each time when
new order comes.
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Fig. 5. Out-sample Data

The ASM simulation was run for 30 virtual days. Each record in our dataset
includes the following order-specific variables: size (in number of shares), side
(buy or sell), market or limit, limit price (if a limit order), starting time and
ending time for the entire order.



Evolutionary Computation and Trade Execution 15

6.2 GA Strategies

Commonly, a trader may wish to trade an order over a specified period, if the
order can not be filled at once. For the special characteristic of our artificial
market, we assume that trading period is two and a half hours.

The design of an execution strategy can be considered of consisting of two
step. The first stage is to divide a big block of shares into multiple small
orders, and the second step is to determine the parameters of each order,
including order type (limit/market order), submission time, limit price (limit
order) and lifetime (the time length when a limit order appears in the order
book before it is canceled or changed).

301 301

1 30

1 30

Fig. 6. Representation

How to divide a large trade depends on the order size and trading time. For
simplicity, we divide our large trade into 30 smaller orders equally, and submit
each smaller order into the market every 5 minutes (300 seconds).

Bear in mind that limit orders do not guarantee execution. When we are
trading limit orders, we also need to consider how to deal with the unexecuted
limit orders. They can either be executed as market orders at the end of their
lifetimes to avoid unexecuted risk, or at the end of the whole trading period
for better execution price.

In our experiment, we use both market and limit orders. The orders are
submitted to the market every 5 minutes. As in the real market, divided orders
can always be fully traded if they are small enough. We assume that every
market buy/sell order has the same size as the best limit sell/buy order in
the order book, which is in accordance with the assumption in the ASM sim-
ulation. This means that one market order will cause only one limit order to
be traded. So the parameters left for the 30 limit orders include limit order’s
price, lifetime in the order book before canceled if not executed by other mar-
ket orders, which will be determined by the GA methodology. Figure 6 shows
the representation of each GA individual or chromosome. These parameters
of every GA individual form a GA strategy. The purpose of this experiment is
to evolve an efficient execution strategy which has the best average execution
price.

The objective function we used here is ratio of the difference between the
VWAPs of the 30 orders and the entire executed orders generated from the
ASM simulation to the entire executed orders’ VWAP, which are V WAP 30
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and V WAP global respectively. For both buy and sell orders, the smaller the
VWAP Ratio, the better the strategy is.

V WAPRatio =

{
1000∗(V WAP 30−V WAP global)

V WAP global
Buy Strategy

1000∗(V WAP global−V WAP 30)
V WAP global

Sell Strategy

6.3 Parameter Settings

In each generation of GA computation, several new individuals are produced,
each being a strategy which defines how to send the 30 orders into market.
To test the performance of each strategy, we incorporate the 30 new orders
into the order flow generated from ASM. The new order flow is simulated as
a market, where the new order will be traded.

Fig. 7. Experiment

And we also assume that orders executed do not impact on the orders which
arrive in the order book later. Figure 7 illustrates how the experiment works.
In our experiment, orders can be executed in three different ways. The GA
generates the limit price for each limit order. At the time when limit order is
submitted to the order book, if the limit price crosses the best price in the
opposite side of the order book, it will be executed immediately at the current
best price as a marketable limit order (MLO). For instance, if the limit price
of a buy order generated from GA is higher than the best ask price, this limit
buy order is traded at the best ask price. If an order can not be executed
during its lifetime, it will be automatically traded as a market order (MO) at
the best price at the end of its lifetime. The last possibility is that the limit
order (LO) is traded during its lifetime.

We used a population of 30 individuals, running for 100 generations, to
evolve efficient GA strategies and we tested them with in-sample data and
out-of-sample data separately. The parameters used in GA can be seen from
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Table 3. At the same time, we adopted another strategy to benchmark against
our GA strategy, namely a pure market order strategy (MOS). It trades orders
as market orders immediately on submission to the market.

Table 3. Parameters for Genetic Algorithm

Population size 30

Maximum number of generation 100

Generation gap 0.8

Crossover rate 0.75

Mutation rate 0.05

Selection method Stochastic Universal Sampling

Crossover method Single-Point

6.4 Results and Discussion

Running both simulations for buy orders and sell orders over, we obtain the
results shown in Tables 4 & 5.

Table 4. Results of Buy Order.

MOS GA Strategy

VWAP Ratio VWAP Ratio TradedOrderType
(10−3) (10−3) MLO LO MO

In-sample 4.4474 -2.5899 4 20 6

Out-of-sample 5.9748 0.5146 11 8 11

The VWAP Ratio reveals the difference between the volume weighted execu-
tion price of GA orders and the average traded price of all orders during the
whole simulation time. The better strategies have smaller VWAP ratios. The
VWAP ratio of pure market order strategy, namely MOS, is also shown in
Tables 4 & 5. In order to analyze the GA strategy, the execution types of the
30 orders are also calculated in our experiment. The three types are MLO,
LO and MO.

Table 5. Results of Sell Order.

MOS GA Strategy

VWAP Ratio VWAP Ratio TradedOrderType
(10−3) (10−3) MLO LO MO

In-sample 2.7389 -5.8376 6 23 1

Out-of-sample 3.2378 -1.8244 13 7 10



18 W. Cui, A. Brabazon and M. O’Neill

From Tables 4 & 5, the GA strategy outperforms the MOS strategy signifi-
cantly, both in-sample and out-of-sample, which is consistent with the results
in [29]. The two tables show that the GA strategy, which has more orders
executed in the way of LO, has a smaller VWAP ratio, meaning better per-
formance. All the GA strategies with negative VWAP ratios have more orders
executed in the way of LO than those executed in the two other ways, except
the best out-of-sample strategy in Table 5. Also, GA strategies have achieved
better VWAP than that of the whole simulation time for buy and sell in in-
sample test, which is showed by the negative values of VWAP ratios. This is
more significant for the sell order. These results suggest the applicability and
potential of GA for trade execution.

7 Conclusion and Future Work

In this chapter, we present a problem in trade execution and emphasize an
evolutionary approach to this problem. Initially, we built an order book us-
ing agent-based modeling. Using the order flow produced by the ASM, we
applied a Genetic Algorithm to optimize the parameters of efficient trade
execution strategies, in order to achieve a better execution price than the cur-
rently popular benchmark Volume Weighted Average Price (VWAP). In our
experiments, GA evolved strategies provide satisfactory results for this trade
execution problem, indicating Evolutionary Computation methodologies have
potential applications in the domain of trade execution. The success of ap-
plying order book based ASM for trade execution experiment suggests an
alternative way for testing trade execution strategies, instead of using back-
testing strategies based on historical market data.

In future work, we intend to extend the application of EC to harder, dy-
namic, optimization problems in trade execution. For instance, if the price
in market moves up or moves down, how should the trader change the limit
price of limit order to get a better execution price? Kissell [23] proposed three
adaptation tactics, which are Target Cost, Aggressive in the Money (AIM)
and Passive in the Money (PIM), based on price adjustments to be consistent
with investor’s implementation goal during execution. Genetic Programming
can be applied to this problem. Also, Agent-based Artificial Stock Market can
be combined with GP. An agent with GP evolved strategy can be represented
as an Algorithmic Trader in ASM, whose purpose is to evolve best execution
strategy using GP. We also plan to relax some of the assumptions in our ASM,
such as adding market impact into the current model.
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