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Abstract—Program synthesis is a complex problem domain
tackled by many communities via different methods. In the
last few years, a lot of progress has been made with Genetic
Programming (GP) on solving a variety of general program
synthesis problems for which a benchmark suite has been
introduced. While Genetic Programming is capable of finding
correct solutions for many problems contained in a general
program synthesis problems benchmark suite, the actual success
rate per problem is low in most cases. In this paper, we analyse
certain aspects of the benchmark suite and the computational
effort required to solve its problems. A subset of problems on
which GP performs poorly is identified. This subset is analysed
to find measures to increase success rates for similar problems.
The paper concludes with suggestions to refine performance on
program synthesis problems.

I. INTRODUCTION

Program synthesis is the problem of automatically gen-
erating a program that fulfils a certain task given by a
user [1]]. Applications of program synthesis include helping
people accomplish tasks without programming experience,
supporting programmers in everyday tasks, and discovering
new algorithms. Although program synthesis is not exclusively
a Genetic Programming (GP) problem [1]], [2]], much progress
has been made over the last couple of years [3]-[6]. Benefits
of adopting a GP approach to program synthesis are that it is
very flexible and was shown to be quite successful in tackling
a benchmark suite presented at GECCO in 2015 [3]]. This
benchmark suite consists of 29 problems. At least one correct
solution has been found with GP on 22 of these problems when
the benchmark suite was originally presented. An additional
problem has been solved in a later paper [5].

The benchmark suite consists of problems of varying diffi-
culty and the success rate, i.e. the number of runs that find a
correct solution out of all the runs executed, is still rather low
in many cases. A solution is considered to be correct if it is
able to solve all training and test cases. A solution/program
that is nearly correct is of little use in the program synthesis
domain. If the success rate for a problem is low, can it really be
considered solved? Finding a single correct solution in many
runs could be due to random factors and does not show that the

algorithm is capable to solve it consistently. Even though the
problems vary in difficulty the computational effort specified
in the benchmark suite is nearly identical for all problems.
This shows that the required effort for different problems is not
well understood. Analysing how much computational effort is
required to solve a problem would greatly improve the bench-
mark suite as it helps to perform meaningful comparisons
between different approaches because even new approaches
or operators will not be of any help if too little computational
effort is used.

In this paper, a subset of the problems that either have a
small success rate or have not been solved at all from the
benchmark suite is used. In a first step, the computational
effort is increased compared to the guidelines given by [3]].
The purpose is to see if GP, in general, is not able to solve a
problem (more often), or if there is an underlying problem that
makes it necessary to change the function set available, change
the dataset or use new/smarter operators. Further steps are then
taken depending on how the success rates have changed.

The rest of the paper is structured in the following way.
Section [[] gives some information about the benchmark suite
used in the GP community and what methods have been
used to tackle it. Section explains some approaches to
program synthesis, while it focuses on two approaches in detail
that have been most successful on the benchmark suite. The
description of the experimental setup is given in Section
The analysis of the result is in Section [V] and some hints on
how to increase success rates for similar problems are given in
Section followed by conclusion in Section and future
work in Section

II. GENERAL PROGRAM SYNTHESIS BENCHMARK SUITE
REMARKS

Thomas Helmuth and Lee Spector have presented a bench-
mark suite for general program synthesis [3]. The benchmark
suite consists of 29 problems which have been selected from
iJava [7] and IntroClass [§]]. iJava is an interactive computer
science textbook to learn Java. IntroClass is a benchmark suite
for program repair of introductory course programs written by



students, although in case of the benchmark suite the purpose
is to use these problems to evolve programs. The problems are
of varying difficulty and require different data types (boolean,
integer, float, string) and even containers like vectors/lists. A
detailed documentation is available in the form of a technical
report [9]. It contains a description of the training and test data
used and how to generate it, the fitness function, the function
sets used and suggestions for parameter settings, at least for
PushGP [10]. This benchmark suite provides researchers with
a well-documented set of problems and a way to compare
results of different approaches and methods.

Source code for each problem of the benchmark suite is
available and necessary for replication of the training and test
data as a few details are missing in the technical report [9].
Also, detailed fitness functions, penalty values for missing
results or too short/long vectors are not in the report. Since
the benchmark suite has been introduced, the datasets of two
problems, namely Checksum and Vector Average, have been
changed, which shows that further improvement can be made.

Overall the general program synthesis benchmark suite is a
great contribution to researchers working in this field. Changes
being made to the benchmarks themselves are to be expected
as the suite is rather new and even in other areas discussions
about benchmarks are ongoing [11].

A. Solved Problems

When the benchmark suite was first presented PushGP was
able to solve 22 of all problems at least one out of 100 times,
although success rates vary depending on the problem. Since
then, the datasets of two problems, Checksum and Vector
Average have been adapted with additional data, which made
it possible for PushGP to solve Checksum and increase the
success rate of Vector Average [5]].

Subsequently, the benchmark suite has been tested with
other systems. A Grammar-Guided Genetic Programming
(G3P) [4], which will be explained in more detail in Sec-
tion [[lI-A] whose results were compared to PushGP. Although
PushGP was able to find at least one solution to more
problems, in general, the success rate on problems that G3P
found solutions for was higher on most problems.

A more exhaustive study of different inductive program
synthesis methods was conducted by Pantridge et al. [6]. The
five methods tested are again the two GP systems PushGP
and G3P as well as Flash Fill [12]], MagicHaskeller [13]],
[14] and TerpreT [15]], which have not been tested on the
benchmark suite before. TerpreT is the only one that has not
been used on the benchmark suite, as no implementation of
it is publicly available. As FlashFill and MagicHaskeller are
deterministic, a single run is sufficient to check if a solution
can be found. FlashFill was designed for string manipulation
within spreadsheets, therefore it cannot be applied to all
problems and subsequently fails to find solutions for many
problems in the benchmark suite. MagicHaskeller was applied
on all 29 problems and at least managed to find solutions for
6 of them. The results are not compared on success rates,
but merely on the fact if a solution was found or not. Which

seems reasonable for deterministic algorithms, but bears little
meaning for stochastic algorithms. A stochastic algorithm
like a GP system that is run up to 100 times on a specific
problem and only comes up with a single solution is not
reliable and such a problem can hardly be counted as solved.
The problem with program synthesis is that contrary to e.g.
symbolic regression, a solution close to the (global) optima is
of little or no use.

In this paper, we strive to increase the success rate of GP
on the problems of the benchmark suite with different means
and give general advice when encountering similar difficulties
in other problems in the program synthesis domain.

III. PREVIOUS APPROACHES TO PROGRAM SYNTHESIS

Program synthesis has been of interest even before GP and
many approaches exist nowadays that address that problem,
like Inductive Logic Programming [16] or SMT (Satisfia-
bility Modulo Theories) Solvers. An overview of different
approaches can be found by Kitzelmann [2] and Gulwani
[1]. Also in the GP community, different GP systems have
been created to tackle program synthesis, like Strongly Typed
Genetic Programming [[17]], Grammatical Evolution [18] or
Object Oriented Genetic Programming [19] some of which
predate PushGP and G3P by Forstenlechner et al. [4]. The
reason the focus lies on these last two systems is that they
have been tested on an extensive set of benchmark problems
and can handle a large variety of problems, while previous
systems may have limited application to a certain problem
domain within program synthesis.

A. Grammar-Guided Genetic Programming

Grammar-Guided Genetic Programming (G3P) by Forsten-
lechner et al. [4] is a grammar-based system that uses context-
free grammars (CFGs) and operates on derivation trees like
CFG-GP [20]. Unlike previous systems, it does not require a
bespoken grammar for every problem, but it contains a set of
grammars, one for every data type available in a programming
language, that are automatically combined depending on the
data types required by the problem tackled. Further, a so-called
skeleton which contains the fitness function has to be defined,
which can also be used to add additional libraries from a
language and to write protected methods, to keep exceptions
to a minimum. Grammars and skeletons have to be written
for the programming language that code should be evolved
for. Grammars and protected methods in a skeleton for the
Python language are available, but can easily be created for
most programming languages as described in [4]. As grammars
and skeletons can be reused across the same programming
language, only the fitness function has to be adapted to evolve
code in Python for new problems.

The initial approach has undergone some refinement since it
has been introduced. The G3P system uses multiple grammars
that are combined depending on the datatypes required by the
problem. In the original version, this has been done by hand,
which is an error-prone process, and the grammars contained
unit production rules that had only a single production. Since



then, an automated way of combining grammars has been
established, which also removes unit productions as they add
an extra node in the GP tree and change the probability where
crossover and mutation will occur. Therefore, the success rates
shown in this paper may differ from [4]], as all the experiments
have been run with the automatically combined grammar.

Due to the process of combining the grammars by hand in
(4], an error occurred in the Vector Average grammar so that
it was not possible to assign a value to the variable that was
returned, which made it impossible to solve. After combining
the grammars automatically, G3P was able to successfully find
correct solutions. Another problem was found in generating
the dataset for Super Anagrams. As the description in [9]
is incomplete, the actual Clojure source code [21]] has to be
checked for an exact replication, which lead to a mistake that
not all training and test cases were as complicated as they
should have been. After fixing only the training was solved
but not the test set.

At last, a few clarifications should be made as it seems
that there have been misunderstandings in [6]. All problems
except String Differences from the benchmark suite have been
attempted with G3P in [4], but to save space problems that
have not been solved with either G3P or PushGP have not
been shown in that paper. Also, G3P can evolve programs
in arbitrary languages and not only in Python if provided
with grammars as described in that paper. The comparison
is somewhat flawed as two of the datasets have been adapted
and G3P was not run again on those datasets.

G3P has been used to tackle the benchmark suite and shown
similar success to PushGP [4]. The results sorted by the
number of successes are shown in Table I G3P was run 100
times on every problem.

B. PushGP

PushGP is a GP system that evolves code in the
programming language Push which has been created for use
in evolutionary computation. PushGP is also the system that
was used to tackle the benchmark suite when it was introduced
[3], described in Section [} Its reference implementation is in
Clojure, but many variants in other programming language
are available. Push uses a stacked based model to store
variables. One stack for every datatype exists. Data can only
be taken from the top and put back on top, therefore additional
operations exist to change the order of the elements stored in
a stack. Even the operations that are going to be executed are
stored in its own stack. In contrary to G3P, no variables have
to be defined as data is taken from the stacks. But PushGP
can only generate Push code, which is not used other than in
the research community.

IV. EXPERIMENTAL SETUP

As the goal of this paper is to analyse and better understand
the existing suite of benchmark problems, we first categorized
the problems based on the ease with which they have been
solved to date. Problems have been put into three categories.
Problems with a high, medium and low success rate. Problems

TABLE I
NUMBER OF SOLUTIONS FOUND THAT CORRECTLY SOLVE THE TEST DATA
WITH 100 RUNS ON THE GENERAL PROGRAM SYNTHESIS BENCHMARK
SUITE WITH G3P. THE TABLE ALSO SHOWS IF A PROBLEM IS USED IN THIS
PAPER AND THE NUMBER OF TRAINING AND TEST CASES.

Problem Successes  Used  Training Test
NumberlO 94 25 1000
Smallest 94 100 1000
Vectors Summed 91 150 1500
Median 79 100 1000
String Lengths Backwards 68 100 1000
Negative To Zero 63 200 2000
Grade 31 X 200 2000
Last Index of Zero 22 X 150 1000
Super Anagrams 21 X 200 2000
Count Odds 12 X 200 2000
For Loop Index 8 X 100 1000
Small Or Large 7 X 100 1000

with more than 50 successful solutions in 100 runs have been
categorized as high success rate, below or equal to 50 but more
than 5 in 100 runs as medium and the rest as low success
rate. These thresholds have been chosen without a statistical
measure and are open to discussion, but seemed adequate when
looking at the success rates achieved.

We now turn our focus to the subset of problems with low
success rates to gain a deeper understanding of why success
rates are low in those instances. The subset of problems
selected for this study is shown in Table [ The problems
marked with an X in the column Used have been tackled in
this study. All problems categorized with a medium success
rate as well as all that have been solved at least once from
the low success rate problems are used in this study, as
the idea is to see if and how the success rate increases.
Additionally, Checksum has been added, because its dataset
has been adapted in comparison to when the benchmark suite
was introduced, as mentioned in Section [[l and Mirror Images
due to experiments conducted outside of this study that have
shown that it can be solved with G3P. Also, Super Anagrams
can be found twice in the result section. The reason is that
the description of the dataset in the paper that introduced the
benchmark suite was not very specific and the code to
generate it has been adapted to be closer to the original. We
kept the previous Super Anagrams dataset for comparison. All
problems with a changed dataset in comparison with [4] have
been marked with an asterisk (*) in the result section.



TABLE II
PARAMETER SETTINGS

Parameter Increased effort / Default
Runs 100
Generations 600 / 300
Population size 2000 / 1000
Crossover probability 0.9

Mutation probability 0.05

Elite size 1

Node limit 250

Variables per type 3

Max execution time 1 second

A. Parameters and Computational Effort

The benchmark suite [3|] was first used with PushGP as
explained in Section [lI| and therefore parameter settings for
PushGP are available, which are not applicable to all other
GP systems, except e.g. population size and number of gener-
ations. The population size was set to 1000 for all problems
and the maximum number of generations was set to 300 except
Number 10, Median and Smallest which used 200. When G3P
was tested on these problems, the same settings were used to
be able to do a comparison between the two approaches.

To analyse if GP is unable to solve the selected problems
more often or if the computational effort it is given is just
too limited, the population size and the number of generations
were doubled which quadruples the search effort. All other
parameter settings have been taken from [4] and no parameter
tuning has taken place to be able to compare to previous
results. A summary of the settings is shown in Table
Lexicase selection [22] is used as it was shown to be superior
to other selection operators in the program synthesis domain
[3. Runs are stopped as soon as one successful solution
based on the training data is found, as there is no further
improvement possible without looking at additional data.

B. Larger Training Set

After the experiments, we noticed that some of the problems
have a high success rate on training, but fail some of the test
cases. Therefore an additional experiment with an increased
training set size was carried out with problems which showed
such a characteristic after increasing the computational effort.
Section [V-D] explains and discusses that experiment and its
results.

V. RESULTS

This section discusses the results of the experiments run
with increased effort, where the population size and number
of generations were doubled. First, the overall success rate
and performance of the two parameter settings are compared.
Afterwards, certain problems of the datasets and overfitting are
analysed, which are addressed in a subsequent experiment.

A. Success Rates

The number of successful results on all the problems tackled
as well as the average test fitness of the best training individual
per runs are shown in Table [T} The number of successful runs

is of importance in program synthesis as a program that not
always gives the correct answer might be of little use unless
it can be repaired after the run. Nevertheless, the test fitness
of the best training solution gives a good indication of how
close to the optima a solution is. A Wilcoxon rank-sum test is
used to compare the test fitness of the best training solutions.
The p-values are also shown in Table

Statistically significant different values are indicated in
bold. As expected when increasing the computational effort,
many problems show a significant difference, 8 out of 15. In
some cases, like Compare String Lengths, Grade and Super
Anagrams, it is not surprising that no difference is found.
Even though the number of successful solutions could be
increased, the number of solutions that pass all training cases is
already rather high, which indicates that the runs have finished.
Therefore the 8 significantly different problems with increased
effort are definitely an improvement over the default setting. In
many cases, even the number of successfully found solutions
has drastically improved. In some cases, this number was
nearly doubled or, in the extreme case of Sum of Squares,
increased by more than eight times what was achieved with
the default setting.

There are two cases in which the default settings have
more successful solutions than with increased effort, Small Or
Large and Super Anagrams. Small Or Large has less successful
solutions with increased effort settings, but at the same time,
it achieves a better performance on the average best fitness.
When also comparing how many runs successfully managed to
find a solution that fits the training data, the increased effort
is able to find over 30 more solution, even though they do
not generalize. A problem that is discussed in Section
In case of Super Anagrams, the problem is that the training
solutions do not generalize to test, which happens with default
and increased effort settings. In both cases, the number of
successful solutions found with default settings is only slightly
bigger.

B. Accumulated Successful Solutions Over Generations

A more fine-grained comparison between the default set-
tings and the increased effort one can be made with Figure [I]
which shows the accumulated successful solutions that have
been found for every problem over generations. If all the runs
of a problem stop before reaching the maximum number of
generations due to successful solutions on the training data,
the line in the plot is also stopped to indicate how many
generations the experiments ran at maximum. This is only
the case for Compare String Length and Super Anagram with
the increased effort parameter setting.

When comparing the number of successful solutions at
generation 300, the results of only doubling the population
size can be compared, which only doubles the computational
effort. All problems that have more successful solutions, in the
end, have already more successful solutions at generation 300
with increased effort except Even Square and Vector Average*,
which are both just 1 off. This indicates that an increase of
computational effort by a factor of four might not be required.



TABLE III
RESULTS ON BENCHMARK PROBLEMS RUNNING G3P 100 TIMES ON EACH PROBLEM WITH INCREASED EFFORT. THE TABLE CONTAINS THE NUMBER OF
SUCCESSFUL RUNS ON TEST AND TRAINING DATA, THE AVERAGE TEST FITNESS AND THE AVERAGE PERCENTAGE OF SOLVED TRAINING AND TEST
CASES OF THE BEST SOLUTION FOUND DURING TRAINING WITH THE IMPROVEMENT OVER THE DEFAULT SETTINGS AND THE P-VALUE FROM WILCOXON
RANK-SUM TEST ON THE AVERAGE TEST FITNESS. THE RESULT IS COMPARED TO THE DEFAULT SETTING. THE DIFFERENCES ARE SHOWN IN BRACKETS.

Problem Name Test Training Avg Fitness (% Improv.) Avg Solved Training Cases Avg Solved Test Cases p-value
Checksum* 0 (+0) 0 (+0) 31065.12 (+13.74%) 53.37% (+0.21) 30.69% (+0.18) 2.20E-07
Compare String Lengths 3(+1) 100 (+3) 108.32 (+7.56%) 100.00% (+0.03) 89.17% (+0.89) 0.5039
Count Odds 22 (+10) 28 (+16) 3881.11 (+24.25%) 59.58% (+15.92) 44.80% (+15.15) 0.0029
Even Squares 2 (+1) 4 (+3) 1947381.31 (+9.24%) 6.60% (+3.83) 5.37% (+3.32) 2.17E-06
For Loop Index 21 (+13)  35(+15) 2591911.15 (+46.33%) 44.85% (+16.63) 44.14% (+16.47) 1.27E-05
Grade 34 (+3) 97 (+16) 70.19 (+71.51%) 99.90% (+2.65) 98.60% (+3.20) 0.2906
Last Index of Zero 26 (+4) 64 (+10) 2707.18 (+5.47%) 89.83% (+5.27) 71.87% (+3.55) 0.6149
Mirror Image 1(+1) 94 (+43) 299.93 (+11.07%) 99.92% (+0.99) 70.01% (+3.74) 0.0280
Scrabble Score 7 (+5) 12 (+7) 5425.83 (+14.10%) 39.47% (+16.63) 23.85% (+11.76) 0.0066
Small Or Large 4(-3) 87 (+36) 510.37 (+21.60%) 99.82% (+3.54) 89.76% (+3.30) 0.0981
Sum of Squares 26 (+23)  32(+29) 58560.96 (+77.65%) 46.46% (+35.60) 43.58% (+34.72) 6.75E-12
Super Anagrams 19 (-2) 100 (+1) 22.49 (+1.01%) 100.00% (+0.00) 98.88% (+0.01) 0.5179
Super Anagrams* 0 (+0) 98 (+54) 278.48 (-4.40%) 99.99% (+0.00) 86.08% (-0.01) 0.0248
Vector Average 5 (+0) 6(-1) 93068.60 (+5.99%) 7.58% (+0.86) 6.45% (+0.93) 0.2091
Vector Average* 18 (+2) 19 (+2) 237307.42 (-4.59%) 37.11% (+0.02) 36.05% (+0.03) 0.4693

Only a few problems, like Count Odds, Sum of Squares, For
Loop Index and Scrabble Score, seem to take advantage of the
increased number of generations. Especially Sum of Squares
and Scrabble Score are able to double the number of successful
solutions after generation 300.

Another aspect that should be mentioned is that although the
increased effort parameter setting was given a total budget of
four times the computational effort, this is only the worst-case
scenario where no solution is found. As shown in Figure[I] the
increase of the population on its own provided better results in
most cases and many runs stop before reaching the maximum
number of generations. On average the last generation reached
over all problems is generation 362 with double the population.
This is less than 2.5 times the total budget of computation
effort compared to the default setting.

C. Problems with the Training Data

The increased effort further boosts the problem of having
solutions that solve the training but do not generalize to the test
set similar to the default parameter setting. This phenomenon
has already been observed before with program synthesis prob-
lems [3]], [4]. This boost is expected, as increasing population
and generations does not counter this problem, but shows that
it is an even bigger concern. Figure [2| depicts the number
of successful solutions on training and test. As can be seen
on nearly half of the problems the training data is solved by
almost all runs, but only a few or no solutions generalize to
the test set. This may be due to overfitting or because the
training data does not represent the problem well. All runs for
the problems Compare String Lengths and Super Anagram
stop before reaching the maximum number of generations,
generation 146 and 110 respectively, due to all runs finding
solutions that solve the training cases. Even without increased
effort 97 solutions that solve the training dataset have been
found for Compare String Lengths and 99 for Super Anagram.

As mentioned in Section [lI} the datasets of two problems,
Checksum and Vector Average have been adapted before,

which lead to finding better solutions with PushGP [5]]. This
can be confirmed for Vector Average with G3P. This shows
that the dataset has a tremendous influence on the success of
the search. Adapting the training set seems to be a logical
conclusion to represent the problem more accurately and
counter overfitting.

D. Larger Training Set

An additional experiment was carried out on all problems
that have been solved more than twice as often on the training
than on the test data. Compare String Lengths, Grade, Last
Index of Zero, Mirror Image, Small Or Large and Super
Anagrams*. Each problem gets an additional 100 randomly
generated training cases, which relates to a 50-100% increase
in training data, depending on the problem. The experiment is
run with increased effort as before.

The results are presented in Table and compared to
the increased effort setting. Figure [3] illustrates these results.
Three of the six cases, Compare String Lengths, Last Index
of Zero and Small Or Large, show an increase of successful
test solutions of up to four times. Only Grade and Mirror
Image decrease slightly. Another positive side effect is that
the number of solutions that solve the training but do not
generalize to the test set decreases in almost all cases. For
Mirror Image and Super Anagrams* this number has decreased
to less than half than before. The decrease shows the advantage
of using a bigger training set, as it indicates that the previous
training set might not have represented the problem space
accurately. As a solution that solves training but not test is
of little use and only stops the search prematurely, no solution
found that solves training might be better than one that solves
training but not test. One should also be aware that just
because a solution solves every case in the test set does not
automatically mean that it is correct, as not every possible
combination of inputs can be tested.

This experiment shows that with a bigger training dataset
that better represents the problem overfitting can be countered
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Fig. 1. Accumulated successful solutions over generations over 100 runs.

TABLE IV
RESULTS OF USING AN INCREASED TRAINING DATA. THE TABLE SHOWS
THE NUMBER OF SUCCESSFUL SOLUTIONS ON TRAINING AND TEST. THE
DIFFERENCE TO THE INCREASED EFFORT SETTING WITH THE ORIGINAL
DATASET IS SHOWN IN BRACKETS.

Problem Name Test Training
Compare String Lengths 12 (+9) 100 (0)
Grade 29 (-5) 93 (-4)
Last Index of Zero 41 (+15) 79 (+15)
Mirror Image 0 1 24 (-70)
Small Or Large 18 (+14) 88 (+1)
Super Anagrams* 0 (0) 45 (-53)

at least to some degree, as is expected in typical supervised
learning. In most cases, the number of runs that only solve
the training set is still double compared to the ones that
generalize to the test set. Further investigation is needed to
better understand the problem and solve it.

One approach by Helmuth et al. [5]] is a post simplification
process that showed to improve generalization of programs
as well as that smaller programs tend to generalize better.
Therefore, it might be worth to run experiments with smaller
tree sizes.

VI. DISCUSSION

From the analysis in this paper, multiple signals have
become apparent that hint at what the next steps should be
to increase the success rate on your problems.

The first signal for problems with low success rate is the
check if training was solved significantly more often then
test. If that is the case, increasing the computational effort
has little effect. The step to take in this case is to adapt the
dataset to accurately represent the problem or adding more
data if available. This is not always possible for real world
or when problems are used for comparing different methods.
As data sets of some problems in the benchmark suite used in
this paper have already been adapted to improve performance
before, it is certainly of interest to see what is required to
solve others that are still not solved.

The second signal is a low number of solutions that
solve training and test. An increased population size has
improved most problems. Additionally, an increased number
of generations further improved some problems. It has not yet
been identified what type of problems may benefit from the
increased number of generations at this moment. This is left
for future work.

The improvement of success rates is an iterative process as
increasing the computational effort can result in an increase of
solutions that solve the training, but may fail test and adapting
the dataset can lead to requiring more computational effort. If
neither of those two methods improves the results anymore,
other steps have to be considered, like using better operators
or adapting the search space e.g. by changing the function set.



# of successfull runs

100 T

mm Training
m Test

80 |

60 |

40 -

@ e [e; & A G, < 4y, S S N St S IZ |7
ﬁs‘“fﬁy 0,’7'06 o"”[ Ve”s Of(oo re”s e‘v//; 705 /, cr"bb 076//0 U”’Of %o 0'09/- eqo» eq’or
e 5y, Wt Vg, P, Pk o Mg S0 Ty Sy, 00, Vg, Wery er,
g s oy o % 9 g s sy 9o Yex
S
/79(7)3

Problem

Fig. 2. Number of runs which successfully solve the training and test set per problem.

# of successfull runs

qQ G G lon, Lo

s, 0, 906 9% R
RCNE %, %
%,

1‘/7-/7 (‘/7,7 oF >
9 o, 9 g Sy

”,
ths s

Problem

. Training
m— Test
; ; Sy S S, S
%’Or,% o, ey ey Doy, Lo
N, ” ’ 2 2
06 206 <e,9 (,5,9 0rs, 20r,
;B e Yo Msx Mo
(9 %

Fig. 3. Number of runs which produce successful solutions that solve training and test with the larger training set. + marks the problems that were run with

the increased training set.

VII. CONCLUSION

We analysed the general program synthesis benchmark suite
by categorizing problems into groups depending on their
success rate to date using G3P. A subset of problems with
low success rates was used to show that G3P is capable to
further improve on the problems with increased effort and
that parameters of the benchmark suite should be adapted
depending on the difficulty of the problem. This could help to
have better comparisons when using different approaches and
operators, as comparing two suboptimal results due to stopping
runs early may have little meaning. A number of signals that
help to choose the next steps to improve success rates have
been given in the previous section. As program synthesis
is a complex problem, it requires a higher computational
effort compared to other problems tackled with GP. Increasing
population size and the number of generations improved the
number of found solutions and showed a statistically signif-
icant difference. Simply increasing computational effort does

not always mean that GP will get better results, as it can get
stuck in local optima or plateaus.

In many cases more computational effort lead to an increase
of runs that solved the training but not the test data. This
problem was countered by adding additional training samples
to the data set, which increased the number of solutions that
also solve the test set correctly. In other cases, it prevents
that runs stop prematurely due to solutions that only solve the
training data but not test.

Both approaches increase the number of solutions found that
are successful but increase the computational effort. On the
one hand, at least in the worst-case scenario that no solutions
are found, and the run only stops due to reaching the maximum
number of generations the extra computational effort can be
high. On the other hand, it is more likely to find a solution,
the solution is more reliable, at least when using more training
data, and due to advancements in CPU’s computational power
has steadily increased and should not be the main concern.



Some of the problems in the general program synthesis
benchmark suite are not solved to date and even more have a
small success rate. This work is a first step towards enhancing
it to understanding its problems better and to identify the
effort it takes to solve program synthesis problems. Especially
it shows that the available effort should be adjusted per
problem instead of using the same parameters independent
of the difficulty of the problem tackled. The goal is to have
a complete benchmark suite that can also be of benefit when
encountering new similar problems. Further refinement of the
datasets for certain problems is required as has been done
before and has been shown in this study.

VIII. FUTURE WORK

Parameter settings in this and previous papers have been
chosen either using settings from other papers or due to
preliminary experiments. Tuning GP parameters for program
synthesis could be a way to further improve results in program
synthesis possibly without increasing the computational effort.
This could be done by an automatic toolbox like irace [23]] or
SPOT [24].

As some problems of the benchmark suite used in this paper,
have not yet or rarely been solved by G3P or other methods, a
focus should be placed on these problems. A detailed analysis
of those problems could help to understand why it is difficult
for GP to find correct solutions and to further improve GP in
the domain of program synthesis.

As mentioned in Section many programs do not
generalize well, even though a larger training set was used.
Further analysis is needed to check if runs with smaller tree
sizes are able to evolve more successful programs or if other
strategies could improve performance and counter overfitting.

ACKNOWLEDGMENTS

This research is based upon works supported by the Science
Foundation Ireland, under Grant No. 13/IA/1850.

REFERENCES

[1] S. Gulwani, “Dimensions in program synthesis,” in Proceedings of

the 12th International ACM SIGPLAN Symposium on Principles and

Practice of Declarative Programming, ser. PPDP "10. New York, NY,

USA: ACM, 2010, pp. 13-24.

E. Kitzelmann, Inductive Programming: A Survey of Program Synthesis

Techniques. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp.

50-73.

[3] T. Helmuth and L. Spector, “General program synthesis benchmark
suite,” in GECCO ’15: Proceedings of the 2015 on Genetic and
Evolutionary Computation Conference. Madrid, Spain: ACM, 11-15
Jul. 2015, pp. 1039-1046.

[4] S. Forstenlechner, D. Fagan, M. Nicolau, and M. O’Neill, “A grammar
design pattern for arbitrary program synthesis problems in genetic
programming,” in EuroGP 2017: Proceedings of the 20th European Con-
ference on Genetic Programming, ser. LNCS, M. Castelli, J. McDermott,
and L. Sekanina, Eds., vol. 10196. Amsterdam: Springer Verlag, 19-21
Apr. 2017, pp. 262-277.

[5] T. Helmuth, N. E. McPhee, E. Pantridge, and L. Spector, “Improving
generalization of evolved programs through automatic simplification,” in
Proceedings of the Genetic and Evolutionary Computation Conference,
ser. GECCO ’17. New York, NY, USA: ACM, 2017, pp. 937-944.

[2

—

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]
[17]

[18]

[19]

[20]

(21]

[22]

[23]

[24]

E. Pantridge, T. Helmuth, N. F. McPhee, and L. Spector, “On the
difficulty of benchmarking inductive program synthesis methods,” in
Proceedings of the Genetic and Evolutionary Computation Conference
Companion, ser. GECCO ’17. New York, NY, USA: ACM, 2017, pp.
1589-1596.

R. Moll, “ijjava - an online interactive textbook for elementary java
instruction: Demonstration,” J. Comput. Sci. Coll., vol. 26, no. 6, pp.
55-57, Jun. 2011.

C. L. Goues, N. Holtschulte, E. K. Smith, Y. Brun, P. Devanbu,
S. Forrest, and W. Weimer, “The manybugs and introclass benchmarks
for automated repair of ¢ programs,” IEEE Transactions on Software
Engineering, vol. 41, no. 12, pp. 1236-1256, Dec 2015.

L. S. T. M. Helmuth, “Detailed problem descriptions for general program
synthesis benchmark suite,” School of Computer Science, University of
Massachusetts Ambherst, Tech. Rep., 2015.

L. Spector and A. Robinson, “Genetic programming and autoconstruc-
tive evolution with the push programming language,” Genetic Program-
ming and Evolvable Machines, vol. 3, no. 1, pp. 7-40, Mar. 2002.

D. R. White, J. Mcdermott, M. Castelli, L. Manzoni, B. W. Goldman,
G. Kronberger, W. Jaskowski, U.-M. O’Reilly, and S. Luke, “Better
gp benchmarks: Community survey results and proposals,” Genetic
Programming and Evolvable Machines, vol. 14, no. 1, pp. 3-29, Mar.
2013.

S. Gulwani, “Automating string processing in spreadsheets using input-
output examples,” in Proceedings of the 38th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, ser.
POPL ’11. New York, NY, USA: ACM, 2011, pp. 317-330.

S. Katayama, “Systematic search for lambda expressions,” in Revised
Selected Papers from the Sixth Symposium on Trends in Functional
Programming, TFP 2005, Tallinn, Estonia, 23-24 September 2005.,
2005, pp. 111-126.

——, Recent Improvements of MagicHaskeller.
Springer Berlin Heidelberg, 2010, pp. 174-193.
A. L. Gaunt, M. Brockschmidt, R. Singh, N. Kushman, P. Kohli, J. Tay-
lor, and D. Tarlow, “Terpret: A probabilistic programming language for
program induction,” CoRR, vol. abs/1608.04428, 2016.

S. Muggleton, “Inductive logic programming,” New Generation Com-
puting, vol. 8, no. 4, pp. 295-318, Feb 1991.

D. J. Montana, “Strongly typed genetic programming,” Evol. Comput.,
vol. 3, no. 2, pp. 199-230, Jun. 1995.

M. O’Neill and C. Ryan, Grammatical Evolution: Evolutionary Auto-
matic Programming in an Arbitrary Language. Norwell, MA, USA:
Kluwer Academic Publishers, 2003.

A. Agapitos and S. M. Lucas, Learning Recursive Functions with Object
Oriented Genetic Programming.  Berlin, Heidelberg: Springer Berlin
Heidelberg, 2006, pp. 166—177.

P. A. Whigham, “Grammatically-based genetic programming,” in Pro-
ceedings of the Workshop on Genetic Programming: From Theory to
Real-World Applications, J. P. Rosca, Ed., Tahoe City, California, USA,
9 Jul. 1995, pp. 33-41.

L. Spector, “GitHub repository: The push programming language and
the pushgp genetic programming system implemented in clojure.”
2016, [Online; accessed 08-November-2017]. [Online]. Available:
https://github.com/Ispector/Clojush

T. Helmuth, L. Spector, and J. Matheson, “Solving uncompromising
problems with lexicase selection,” IEEE Transactions on Evolutionary
Computation, vol. 19, no. 5, pp. 630-643, Oct 2015.

M. Lépez-Ibanez, J. Dubois-Lacoste, L. Pérez Caceres, T. Stiitzle, and
M. Birattari, “The irace package: Iterated racing for automatic algorithm
configuration,” Operations Research Perspectives, vol. 3, pp. 43-58,
2016.

T. Bartz-Beielstein, C. Lasarczyk, and M. Zaefferer, “Sequential param-
eter optimization,” in Proceedings Congress on Evolutionary Computa-
tion 2005 (CEC’05), Edinburgh, Scotland, 2005, p. 1553.

Berlin, Heidelberg:


https://github.com/lspector/Clojush

	Introduction
	General Program Synthesis Benchmark Suite Remarks
	Solved Problems

	Previous Approaches to Program Synthesis
	Grammar-Guided Genetic Programming
	PushGP

	Experimental Setup
	Parameters and Computational Effort
	Larger Training Set

	Results
	Success Rates
	Accumulated Successful Solutions Over Generations
	Problems with the Training Data
	Larger Training Set

	Discussion
	Conclusion
	Future Work
	References

