
Analysis of Constant Creation Techniques on the
Binomial-3 Problem with Grammatical Evolution

Jonathan Byrne, Michael O’Neil, Erik Hemberg and Anthony Brabazon

Natural Computing Research & Applications Group, Complex and Adaptive Systems Lab, University College Dublin

Abstract— This paper studies the difference between Persistent
Random Constants (PRC) and Digit Concatenation as methods
for generating constants. It has been shown that certain problems
have different fitness landscapes depending on how they are
represented, independent of changes to the combinatorial search
space, thus changing problem difficulty. In this case we show that
the method for generating the constants can also influence how
hard the problem is for Genetic Programming.

I. INTRODUCTION

The metaphor of a fitness landscape has been used to explain

how difficult a problem is for different types of evolutionary

computation. This metaphor was originally conceived for use

with Genetic Algorithms and has since been applied to the

field of Genetic Programming (GP) [7]. The problem is that

it has been demonstrated that the metaphor is not applicable

to GP in every case. It has been shown that a number of

factors such as how the problem is represented and the fitness

evaluation used to solve the problem can also have an impact

on the fitness landscape [1] [12]. The Binomial-3 problem is

an example of a tunable problem where the range of constants

have a dramatic impact on how hard the problem is for GP,

even though the combinatorial space of the problem remains

the same [1]. For this paper we decided to explore different

grammatical representations for constants to determine if this

would also impact the fitness landscape.

This paper is organised as follows. Section II describes

previous work in the area of problems with tunable difficulty

and the results that were obtained. It also gives a brief

explanation of Grammatical Evolution (GE), a grammar based

representation of GP. Section III explains the differences

between Ephemeral Random Constants (ERC), Persistent Ran-

dom Constants (PRC) and Digit Concatenation as constant

creation techniques. Section IV explains the parameters that

were used while carrying out the experiments. Section V

describes how the experiment was implemented and the exper-

imental approach that was used to carry out the experiments.

Section VI examines the results we obtained from each of the

constant generation methods in the experiment. Section VII

discusses the possible conclusions can be drawn from the

results and outlines what future work should be examined in

this area.

II. BACKGROUND AND PREVIOUS WORK

The reasons for a problem being difficult for GP has only

had limited theoretical analysis. Many of the approaches are

themselves stochastic, involving a random sampling of the

search space or approximations to calculate how many trails

are required to get a certain probability of success. Koza

suggested in his first book a measure to calculate the amount

of processing to solve a problem. He accomplished this by

measuring the number of individuals that must be processed

in order to satisfy the success predicate within a certain

probability [5]. Langdon and Poli [6] suggested a systematic

exploration of the search space through either exhaustive or

random sampling and Tomassini et al [13] provided a Distance

Correlation Metric to statistically show how the difficulty of a

problem is based on a fitness landscape, but all these methods

have their shortcomings. One of the main obstacles with

these approaches is that they assume that the problem and its

respective fitness landscape are invariant to how the problem

is represented or how the algorithm solving the problem is

implemented.

One example that hints at a deeper complexity are problems

where the difficulty can be varied. There are a number of

problems however that the difficulty can be tuned. Koza [5]

initially set out the the boolean multiplexer and the boolean

parity functions as problems which can be varied from easy to

hard. These have since been used as a benchmark for testing

GP. Punch et al [12] devised the tunably difficult Royal Tree

Problem for GP based on the the Royal road problem in GA.

They then used this as a platform to test GP abilities and as

platform for tuning GP parameters. There is also symbolic

regression which is based on polynomial equations. These

problems increase in difficulty by adding more variables or

changing the coefficients. These tunable problems open up

the possibility of discovering what really makes a difference

to the difficulty by allowing us to alter certain settings while

leaving the rest unchanged.

A. The Binomial-3 Problem

The Binomial-3 problem is a problem which can be cast as

Symbolic Regression. The Binomial-3 polynomial is:

1 + 3x + 3x2 + x3 (1)

The 3 refers to the order of the equation and it is Binomial

because of the sequence of coefficients in it.

(1 + x)3 (2)

The reason this problem was chosen is because it only requires

one constant to be generated, and that constant is 1, otherwise

568978-1-4244-2959-2/09/$25.00 c© 2009 IEEE

it is a simple symbolic regression problem to solve. There

are many paths to the correct solution of the problem. The

coefficients for the solution can be generated by using a

constant of approximate value, multiplying a number by its

reciprocal eg:(4 ∗ 0.25) or by summing individual variables

eg:(x+x) [1]. Some example solutions are given below.

(1 −−x)3

(1 + x)(1 + 2x + x2)
(1 + x + x + x + x2 + x2 + x2 + x3)
(x + 1)/(1/(1 + (x/5) + (x/(1/x)))
There is also the possibility that it could generate an ap-

proximate function that would match the Binomial-3 prob-

lem for the range we are testing the solution fitness [-1,1]

In its most basic form it is easily solved by GP. We are

basing our experiments on this polynomial because it was

previously shown by Daida et al[1] that by increasing the

range of the constants used the problem becomes exponentially

more difficult. This is different from other tunably difficult

problems because the coefficients and variables themselves

do not change, only the range of possible values. This is

particularly interesting because the only difference is how

the algorithm represents the problem while the problem itself

remains unchanged. It was also shown that this has no affect

on the combinatorial solution space as the terminal set on

the leaf nodes remains unchanged, only the values contained

within those nodes. The Original Binomial-3 experiment was

conducted using Ephemeral Random Constants. In our ex-

periment we will use Grammatical Evolution with Persistent

Random Constants and Digit Concatenation to examine if the

grammatical representation for constant creation will affect the

solutions generated.

B. Grammatical Evolution

Grammatical Evolution is an evolutionary algorithm that is

a grammar based form of GP[8]. It differs from standard GP

by representing the parse-tree based structure of GP as a linear

genome. It accomplishes this by using a Genotype-Phenotype

mapping of a chromosome represented by a variable length

bit or integer string. The chromosome is made up of codons

eg:(integer based blocks). Each codon in the string is used to

select a production rule from a Backus Naur Form (BNF)

grammar. The BNF represents a language in the form of

production rules. Each rule is comprised of non-terminals that

map to either terminals or other non-terminals depending on

the production rules. A simple example BNF grammar is given

below, where <expr> is the start symbol from which all

programs are generated. The grammar states that <expr>
can be replaced with either one of <expr><op><expr> or

<var>. An <op> can become either +, -, or *, and a <var>
can become either x, or y.

<expr> ::= <expr><op><expr> | <var>
<op> ::= + | - | *
<var> ::= x | y

The codons decide on which rule is chosen by simply

calculating the modulus of the codon value with the number

of rules. This can be represented with the following formula:

Rule = Codon Value % Num. Rules (3)

By iterating through the codons the BNF rules are applied

and a derivation tree is built. If you remove the non-terminal

rules from the derivation trees we end up with tree structures

that are identical to the tree structures of GP.

III. CONSTANT CREATION TECHNIQUES

We now present the different representations for constant

generation examined in this study. These include the classic

Ephemeral Random constants of GP, Persistent Random Con-

stants, and Digit Concatenation.

A. Ephemeral Random Constants

Ephemeral Random constants were devised as a means for

constant creation in GP [5]. It operates by adding a new

terminal R to the terminal set. This terminal is used normally

during the initialisation phase of the population but before

the experiment starts each R is replaced with a randomly

generated number of a specified data type within the set range.

Once generated and inserted into the initial tree population

these constants remain fixed. The constants themselves are

ephemeral because if they are removed from the population

by selection pressure then they cannot be recovered.

B. Persistent Random Constants

Persistent Random Constants take advantage of the BNF

production rules for adding constants to the tree structure

by having a non-terminal for constants. For example, at the

initialisation of the population the production part of the rule

is replaced with a set of approximately 100 constants of the

specified data type within the set range. Once generated the

constants remain fixed. They are persistent because even if

they are taken out of a population there is the possibility they

can return if a leaf node is mutated. An example of PRC is

given below.

before initialisation:
<PRC> ::= "10 random real constants"
after initialisation:
<PRC> ::= 10.5|37.3|45.9|52|3.7|97.6|

12.8|64.8|20.8|41.7

C. Digit Concatenation

Digit Concatenation [3] also utilises the BNF grammar

without limiting the number of available constants to a limited

set that is generated at initialisation. It does this by con-

catenating digits to form a single value. By availing of the

recursive nature of the non-terminals it is possible to create any

constant within the specified range. This method of constant

creation has already been tested against traditional methods for

constant creation in GE [9] [2] and it was shown to exhibit

a significant improvement. An example of digit concatenation

for real numbers is shown in the grammar below:

<realCat> ::= <cat> <dot> <cat> | <cat>

2009 IEEE Congress on Evolutionary Computation (CEC 2009) 569

<cat> ::= <cat> <digit> | <digit>
<digit> ::= 1|2|3|4|5|6|7|8|9|0
<dot> ::= .

The grammar rules were adapted in our experiments to limit

the range, Some examples of the digit rules are given below:

for the range [0,5]
<int> ::= <nzdigit>.<digit><digit>
<digit> ::= 1|2|3|4|5|6|7|8|9|0
<nzdigit> ::= 0|1|2|3|4

for the range [0,100]
<int> ::=<nzdigit><digit>.<digit><digit>|

<digit>.<digit><digit>
<digit> ::= 1|2|3|4|5|6|7|8|9|0
<nzdigit> ::= 1|2|3|4|5|6|7|8|9

for the range [0,5000]
<int> ::=<anzdigit><digit><digit><digit>

.<digit><digit> |
<nzdigit><digit><digit>
.<digit><digit>|
<nzdigit><digit>.<digit><digit>|
<digit>.<digit><digit>

<digit> ::= 1|2|3|4|5|6|7|8|9|0
<nzdigit> ::= 1|2|3|4|5|6|7|8|9
<anzdigit> ::= 1|2|3|4

IV. EXPERIMENT PROCEDURE

This experiment was implemented using GEVA [10], this is

an open source framework for Grammatical Evolution in Java

designed by the NCRA group in UCD. As this experiment

is based on the research already done on the Binomial-

3 problem [1] we matched the experimental conditions as

closely as possible. Population size = 500, Crossover rate

= 0.9, replication rate= 0.1, maximum generations =200, the

Mersenne Twister as the random number generator and fitness

proportionate selection using the Roulette Wheel selection

operator. It was decided to use a precision of two decimal

places to simulate real values. The fitness was calculated using

50 randomly selected points between the range -1 and 1. The

mutation rate was not specified so we used the same mutation

rate that Koza used for Symbolic Regression [5].In our experi-

ment the GE version of ramped half-and-half initialisation was

used, A Ramped Full Grow initialiser with the tree depth set

to 17. This tree depth is greater than the previous experiments

set-up of 2-6 but this is because Grammatical Evolution grows

the trees at a slower rate during crossover than standard GP.

This also avoids the problem of oversampling smaller solutions

that occurs when the solution length is limited which, in turn,

leads to bloat [4] [11] .The replacement operator was not

specified in the previous experiment so tests were run for both

Generational and Steady-State replacement. Our experiment

differed from the previous one in that we did not consider

negative values. To remove the impact of the sign on the

constant we kept the range positive ie; [-100,100] became

[0,200]. This still has the same amount of elements in the

set and so should still be considered of comparative difficulty.

V. EXPERIMENT DESCRIPTION

This experiment was carried out on the Binomial-3 problem

for different ranges of Real constants to 2 decimal places.

The ranges used for both PRC and Digit Concatenation were

[0,5], [0,10], [0,50], [0,100],[0,500], [0,1000], [0,2000] and

[0,5000]. For each range there were 60 trials run, 30 for

Steady State and 30 for Generational. Another experiment

was executed where the set size for the Persistent Random

Constants was increased from 100 to 1000. For each range

there were 30 trial runs for Generational replacement only.

The grammar used for this experiment is shown below:

<expr> ::= (<op><expr><expr>)|
<var>|<const>

<op> ::= +|-|*
<var> ::= x0
<const>::= "constant generation method"

TABLE I: results for Persistent Random Constants (Steady-

State)

Case BestFitness stdDev Average Fitness stdDev

PRC5 36.15 27.28 37.7 28.04
PRC10 59.58 36.74 60.71 38.01
PRC50 158.11 45.90 158.11 45.9
PRC100 186.96 54.92 187.12 54.72
PRC500 205.59 58.7 206.47 58.09

PRC1000 216.9 43.19 217.6 42.48
PRC2000 209.43 47.29 211.14 46.18
PRC5000 202.48 37.05 202.47 37.05

TABLE II: results for Digit Concatenation (Steady-State)

Case BestFitness stdDev Average Fitness stdDev

Concat5 1.14 1.65 727.36 2709.2
Concat10 28.05 21.43 29.20 20.89
Concat50 35.25 21.38 36.02 21.24
Concat100 36.6 29.73 37.28 29.83
Concat500 36.78 25.87 37.69 25.19

Concat1000 33.34 18.83 33.68 18.74
Concat2000 32.97 21.41 34.21 21.15
Concat5000 34.56 22.89 35.35 19.76

TABLE III: results for Persistent Random Constants (Genera-

tional)

Case BestFitness stdDev Average Fitness stdDev

PRC5 9.56 10.9 4596.1 15122.4
PRC10 16.6 20.4 2579.5 6858.4
PRC50 90.09 64.3 13976.9 43121.6

PRC100 104.7442 71.9 2624609 1437136
PRC500 140.6 57.7 1512553876 8276308040
PRC1000 164.3 65.04 2996614 13835151
PRC2000 164.1 50.8 586146.7 305680.9
PRC5000 160.9 62.2 8.716e+16 4.77e+17

570 2009 IEEE Congress on Evolutionary Computation (CEC 2009)

TABLE IV: results for Digit Concatenation (Generational)

Case BestFitness stdDev Average Fitness stdDev

Concat5 1.14 1.65 727.3 2709.2
Concat10 3.19 5.16 10654.27 34445.8
Concat50 4.5 6.88 52486.8 124798.6
Concat100 5.2 6.97 1418010 6980128
Concat500 6.15 8.22 84063967 409599805

Concat1000 8.2 8.68 901673203 4857220418
Concat2000 5.44 7.25 2815668301 10691830451
Concat5000 3.43 4.75 240268558871 1.311852e+12

VI. EXPERIMENTAL RESULTS

The results for the Steady State Replacement are shown

in tables I and II and in Figures 1 and 2. In figure 1

it is clear that this problem is indeed tunably difficult for

Pesistent Random Constants as the error steadily increases

for the larger ranges. The results plateau after the range

[0,100], this is because the algorithm eschewed using constants

and instead creating coefficients by adding several variables

together. It is clear that Digit Concatenation accomplished

the task more successfully as shown in Figure 2. The results

for Generational Replacement are shown in tables III and

IV and also in figures 3 and 4. Again it shows that PRCs

are tunably difficult for the Binomial-3 problem(figure 3) and

that Digit Concatenation performed much better on the same

problem(figure 4). Although the range did have some effect

on Digit Concatenation, it still regularly managed to find the

optimal solution even with the range [0,5000].The results in

Figures 5 and 6 show the difference to the fitness when the

set size was increased to 1000. Figure 5 seems to show a

better performance during the run with the increased set size

in every range instance. a two way Analysis of Variance test

was carried out against the set size and the varying ranges to

see if it had an impact on the results. It failed to show any

statistically significant improvement. Figure 6 shows that for

ranges greater than [0,500] it ended up performing equivalent

to the smaller set. Once the range exceeded 1000 however, the

results turned out to be worse than the smaller set size.

A. Discussion

It is clear that Digit Concatenation performed better than

PRC in both examples. It also showed that the range alone

had less of an impact on the tunability of the problem than the

method for creating the constants. Our initial reasoning for this

improvement was that Digit Concatenation seemed to have the

possibility of generating any one of the constants within the set

range whereas PRC is partially limited by its set size. When

examining the individuals in the population it became clear

that the right combinations for getting the desired constants

were more readily available for Digit Concatenation. To further

test this hypothesis the set size was increased to 1000 and

the experiments repeated. the results initially suggested that

this improved the overall fitness up to a point. Once the set

size matched the range the performance became worse. We

performed an analysis of variance test on the results and it

failed to show any statistical significance. This weakens the set

0 50 100 150 200

0
50

10
0

15
0

20
0

25
0

Best Fitness(Steady State)

generation

fit
ne
ss

prcSteady5
prcSteady10
prcSteady50
prcSteady100
prcSteady500
prcSteady1000
prcSteady2000
prcSteady5000

Fig. 1: PRC using Steady State Replacement.

0 50 100 150 200

0
50

10
0

15
0

20
0

25
0

Best Fitness(Steady State)

generation

fit
ne
ss

concatSteady5
concatSteady10
concatSteady50
concatSteady100
concatSteady500
concatSteady1000
concatSteady2000
concatSteady5000

Fig. 2: Digit Concatenation using Steady State Replacement.

size hypothesis and we must conclude that set size is not the

primary factor for this difference. The issue of the difference

between PRC and ERC must also be raised. In ERC there

is the possibility that many more than 100 constants could be

generated which would undermine the set size theory, however

as the run progresses the number of constants can decrease due

to losses from mutation so again the trees could be stuck with

the same problem of not having enough of the right constants

to make the desired coefficients. We have to conclude from

this result that there is something else at play other than set

2009 IEEE Congress on Evolutionary Computation (CEC 2009) 571

0 50 100 150 200

0
50

10
0

15
0

20
0

25
0

Best Fitness(Generational)

generation

fit
ne
ss

prc5
prc10
prc50
prc100
prc500
prc1000
prc2000
prc5000

Fig. 3: PRC using Generational Replacement.

0 50 100 150 200

0
50

10
0

15
0

20
0

25
0

Best Fitness(Generational)

generation

fit
ne
ss

concat5
concat10
concat50
concat100
concat500
concat1000
concat2000
concat5000

Fig. 4: Digit Concatenation using Generational Replacement.

size which makes this problem more difficult for PRC than

Digit Concatenation.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we examined the impact of constant creation

techniques on a tunably difficult problem. We showed that

there are many factors contributing to the difficulty of a

problem in GP and that the fitness landscape can be radically

0 50 100 150 200

0
50

10
0

15
0

20
0

25
0

Best Fitness(Generational)

generation

fit
ne
ss

prc5
prc10
prc50
prc100
prcRange5
prcRange10
prcRange50
prcRange100

Fig. 5: Comparison between different set sizes for the ranges

5 to 100

0 50 100 150 200

0
50

10
0

15
0

20
0

25
0

Best Fitness(Generational)

generation

fit
ne
ss

prc500
prc1000
prc2000
prc5000
prcRange500
prcRange1000
prcRange2000
prcRange5000

Fig. 6: Comparison between different set sizes for the ranges

500 to 5000.

altered by elements from outside the problem space. We

showed that the Binomial-3 problem is tunably difficult for

Persistent Random Constants but our results also showed that

Digit Concatenation can circumnavigate the tunability of the

same problem. This suggested that it might be something

else other than the range that has an impact on the difficulty.

572 2009 IEEE Congress on Evolutionary Computation (CEC 2009)

Considering that we used PRC in our experiment as opposed

to ERC, future work in this area should examine if the PRC is

an accurate representation of ERC for Grammatical Evolution.

VIII. ACKNOWLEDGMENTS

We would like to thank James McDermott for his help

with the statistical analysis of our results. This publication has

emanated from research conducted with the financial support

of Science Foundation Ireland

REFERENCES

[1] Jason M. Daida, Robert R. Bertram, Stephen A. Stanhope, Jonathan C.
Khoo, Shahbaz A. Chaudhary, Omer A. Chaudhri, and John A. Polito
II. What makes a problem GP-hard? analysis of a tunably difficult
problem in genetic programming. Genetic Programming and Evolvable
Machines, 2(2):165–191, June 2001.

[2] Ian Dempsey. Grammatical Evolution in Dynamic Environments. PhD
thesis, University College Dublin, Ireland, 2007.

[3] Ian Dempsey, Michael O’Neill, and Anthony Brabazon. Constant
creation in grammatical evolution. International Journal of Innovative
Computing and Applications, 1(1):23–38, 2007.

[4] Stephen Dignum and Riccardo Poli. Crossover, sampling, bloat and the
harmful effects of size limits. In Michael O’Neill, Leonardo Vanneschi,
Steven Gustafson, Anna Isabel Esparcia Alcazar, Ivanoe De Falco,
Antonio Della Cioppa, and Ernesto Tarantino, editors, Proceedings of
the 11th European Conference on Genetic Programming, EuroGP 2008,
volume 4971 of Lecture Notes in Computer Science, pages 158–169,
Naples, 26-28 March 2008. Springer.

[5] John R. Koza. Genetic Programming: On the Programming of Comput-
ers by Means of Natural Selection. MIT Press, Cambridge, MA, USA,
1992.

[6] W. B. Langdon and R. Poli. Why ants are hard. Technical Report CSRP-
98-4, University of Birmingham, School of Computer Science, January
1998. Presented at GP-98.

[7] W. B. Langdon and Riccardo Poli. Foundations of Genetic Program-
ming. Springer-Verlag, 2002.

[8] Michael O’Neill. Automatic Programming in an Arbitrary Language:
Evolving Programs with Grammatical Evolution. PhD thesis, University
Of Limerick, Ireland, August 2001.

[9] Michael O’Neill, Ian Dempsey, Anthony Brabazon, and Conor Ryan.
Analysis of a digit concatenation approach to constant creation. In
Conor Ryan, Terence Soule, Maarten Keijzer, Edward Tsang, Riccardo
Poli, and Ernesto Costa, editors, Genetic Programming, Proceedings of
EuroGP’2003, volume 2610 of LNCS, pages 173–182, Essex, 14-16
April 2003. Springer-Verlag.

[10] Michael O’Neill, Erik Hemberg, Eliott Bartley, Anthony Brabazon, and
Conor Gilligan. Geva - grammatical evolution in java. ncra.ucd.
ie/GEVA, 2008.

[11] R. Poli, W. B. Langdon, and Stephen Dignum. On the limiting
distribution of program sizes in tree-based genetic programming. Tech-
nical Report CSM-464, Department of Computer Science, University of
Essex, December 2006.

[12] William F. Punch, Douglas Zongker, and Erik D. Goodman. The royal
tree problem, a benchmark for single and multiple population genetic
programming. In Peter J. Angeline and K. E. Kinnear, Jr., editors,
Advances in Genetic Programming 2, chapter 15, pages 299–316. MIT
Press, Cambridge, MA, USA, 1996.

[13] Marco Tomassini, Leonardo Vanneschi, Philippe Collard, and Manuel
Clergue. A study of fitness distance correlation as a difficulty measure
in genetic programming. Evolutionary Computation, 13(2):213–239,
Summer 2005.

2009 IEEE Congress on Evolutionary Computation (CEC 2009) 573

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

