
The Automatic Generation of Programs for
Classification Problems with Grammatical Swarm

Michael O’Neill
Biocomputing and Developmental Systems Group

University of Limerick
Ireland

Email: Michael.ONeill@ul.ie

Anthony Brabazon
University College Dublin

Ireland
Email: Anthony.Brabazon@ucd.ie

Catherine Adley
University of Limerick

Ireland
Email: Catherine.Adley@ul.ie

Abstract— This case study examines the application of Gram-
matical Swarm to classification problems, and illustrates the
Particle Swarm algorithms’ ability to specify the construction
of programs. Each individual particle represents choices of
program construction rules, where these rules are specified
using a Backus-Naur Form grammar. Two problem instances are
tackled, the first a mushroom classification problem, the second a
bioinformatics problem that involves the detection of eukaryotic
DNA promoter sequences. For the first problem we generate
solutions that take the form of conditional statements in a C-like
language subset, and for the second problem we generate simple
regular expressions. The results demonstrate that it is possible to
generate programs using the Grammatical Swarm technique with
a performance similar to the Grammatical Evolution evolutionary
automatic programming approach.

I. INTRODUCTION

One model of social learning that has attracted interest in
recent years is drawn from a swarm metaphor. Two popular
variants of swarm models exist, those inspired by studies of
social insects such as ant colonies, and those inspired by
studies of the flocking behavior of birds and fish. This study
focuses on the latter. The essence of these systems is that
they exhibit flexibility, robustness and self-organization [1].
Although the systems can exhibit remarkable coordination of
activities between individuals, this coordination does not stem
from a ‘center of control’ or a ‘directed’ intelligence, rather
it is self-organizing and emergent. Social ‘swarm’ researchers
have emphasized the role of social learning processes in these
models [2], [3]. In essence, social behavior helps individuals
to adapt to their environment, as it ensures that they obtain
access to more information than that captured by their own
senses.

This paper details an investigation examining the possibility
of specifying the automated construction of a program (clas-
sifiers in this case) using a Particle Swarm learning model.
In the Grammatical Swarm (GS) approach, each particle or
real-valued vector, represents choices of program construction
rules specified as production rules of a Backus-Naur Form
grammar.

This approach is grounded in the linear Genetic Program-
ming representation adopted in Grammatical Evolution (GE)
[4], [5], [6], [7], [8], which uses grammars to guide the
construction of syntactically correct programs, specified by

variable-length genotypic binary or integer strings. The search
heuristic adopted with GE is thus a variable-length Genetic
Algorithm. In the Grammatical Swarm technique presented
here, a particle’s real-valued vector is used in the same manner
as the genotypic binary string in GE. This results in a new form
of automatic programming based on social learning, which we
could dub Social Programming, or Swarm Programming. It is
interesting to note that this approach is completely devoid of
any crossover operator characteristic of Genetic Programming.

The remainder of the paper is structured as follows. Before
describing the mechanism of Grammatical Swarm in section
4, introductions to the salient features of Particle Swarm
Optimization (PSO) and Grammatical Evolution (GE) are
provided in sections 2 and 3 respectively. Section 5 details the
experimental approach adopted and results, section 6 provides
some discussion of the results, and finally section 7 details
conclusions and future work.

II. PARTICLE SWARM OPTIMIZATION

In the context of PSO, a swarm can be defined as ‘... a
population of interacting elements that is able to optimize
some global objective through collaborative search of a space.’
[2](p. xxvii). The nature of the interacting elements (particles)
depends on the problem domain, in this study they represent
program construction rules. These particles move (fly) in an n-
dimensional search space, in an attempt to uncover ever-better
solutions to the problem of interest.

Each of the particles has two associated properties, a current
position and a velocity. Each particle has a memory of the best
location in the search space that it has found so far (pbest), and
knows the location of the best location found to date by all the
particles in the population (or in an alternative version of the
algorithm, a neighborhood around each particle) (gbest). At
each step of the algorithm, particles are displaced from their
current position by applying a velocity vector to them. The
velocity size / direction is influenced by the velocity in the
previous iteration of the algorithm (simulates ‘momentum’),
and the location of a particle relative to its pbest and gbest.
Therefore, at each step, the size and direction of each particle’s
move is a function of its own history (experience), and the
social influence of its peer group.

220 20253101203220240 102203 55 202221

241 133 30 204 140 39 202 203 10274

Fig. 1. An example GE individuals’ genome represented as integers for ease of reading.

A number of variants of the PSA exist. The following
paragraphs provide a description of the basic continuous
version described by [2].

i. Initialize each particle in the population by randomly
selecting values for its location and velocity vectors.

ii. Calculate the fitness value of each particle. If the current
fitness value for a particle is greater than the best fitness
value found for the particle so far, then revise pbest.

iii. Determine the location of the particle with the highest
fitness and revise gbest if necessary.

iv. For each particle, calculate its velocity according to
equation 1.

v. Update the location of each particle.
vi. Repeat steps ii - v until stopping criteria are met.

The update algorithm for the velocity, v, of each dimension,
i, of a vector is:

v‘

i
= (w∗vi)+(c1∗R1∗ (pbest−pi))+(c2∗R2∗ (gbest−pi))

(1)
where,

w = wmax − ((wmax − wmin)/itermax) ∗ iter (2)

c1 = 1.0 is the weight associated with the personal best
dimension value, c2 = 1.0 the weight associated with the
global best dimension value, R1 and R2 are random real
numbers between 0 and 1, pbest is the vector’s best dimension
value to date, pi is the vector’s current dimension value,
gbest is the best dimension value globally, wmax = 0.9,
wmin = 0.4, itermax is the total number of iterations in
the simulation, iter is the current iteration value, and vmax
places bounds on the magnitude of the updated velocity value.

Once the velocity update for particle i is determined, its
position is updated and pbest is updated if necessary.

xi(t + 1) = xi(t) + vi(t + 1) (3)

After all particles have been updated, a check is made to
determine whether gbest needs to be updated.

ŷ ∈ (y0, y1, ..., yn)|f(ŷ) = max (f(y0), f(y1), ..., f(yn))
(4)

III. GRAMMATICAL EVOLUTION

Grammatical Evolution (GE) is an evolutionary algorithm
that can evolve computer programs in any language [4], [5],
[6], [7], [8], and can be considered a form of grammar-based
genetic programming. Rather than representing the programs
as parse trees, as in GP [9], [10], [11], [12], [13], a linear

genome representation is used. A genotype-phenotype map-
ping is employed such that each individual’s variable length
binary string, contains in its codons (groups of 8 bits) the
information to select production rules from a Backus Naur
Form (BNF) grammar. The grammar allows the generation of
programs in an arbitrary language that are guaranteed to be
syntactically correct, and as such it is used as a generative
grammar, as opposed to the classical use of grammars in
compilers to check syntactic correctness of sentences. The user
can tailor the grammar to produce solutions that are purely
syntactically constrained, or they may incorporate domain
knowledge by biasing the grammar to produce very specific
forms of sentences.

BNF is a notation that represents a language in the form
of production rules. It is comprised of a set of non-terminals
that can be mapped to elements of the set of terminals (the
primitive symbols that can be used to construct the output
program or sentence(s)), according to the production rules. A
simple example BNF grammar is given below, where <expr>
is the start symbol from which all programs are generated.
These productions state that <expr> can be replaced with
either one of <expr><op><expr> or <var>. An <op>
can become either +, -, or *, and a <var> can become either
x, or y.

<expr> ::= <expr><op><expr> (0)
| <var> (1)

<op> ::= + (0)
| - (1)
| * (2)

<var> ::= x (0)
| y (1)

The grammar is used in a developmental process to con-
struct a program by applying production rules, selected by the
genome, beginning from the start symbol of the grammar. In
order to select a production rule in GE, the next codon value
on the genome is read, interpreted, and placed in the following
formula:

Rule = Codon V alue % Num. Rules

where % represents the modulus operator.
Given the example individuals’ genome (where each 8-bit

codon is represented as an integer for ease of reading) in Fig.1,
the first codon integer value is 220, and given that we have 2
rules to select from for <expr> as in the above example, we
get 220 % 2 = 0. <expr> will therefore be replaced with
<expr><op><expr>.

TRANSCRIPTION

TRANSLATION

DNA

RNA

Acids
Rules

Grammatical Evolution

Protein

Integer String

Binary String

Amino

Biological System

Phenotypic Effect

Program /
Function

Executed Program

Fig. 2. A comparison between Grammatical Evolution and the molecular biological processes of transcription and translation. The binary string of GE is
analogous to the double helix of DNA, each guiding the formation of the phenotype. In the case of GE, this occurs via the application of production rules to
generate the terminals of the compilable program. In the biological case by directing the formation of the phenotypic protein by determining the order and
type of protein subcomponents (amino acids) that are joined together.

Beginning from the the left hand side of the genome, codon
integer values are generated and used to select appropriate
rules for the left-most non-terminal in the developing program
from the BNF grammar, until one of the following situations
arise: (a) A complete program is generated. This occurs when
all the non-terminals in the expression being mapped are
transformed into elements from the terminal set of the BNF
grammar. (b) The end of the genome is reached, in which
case the wrapping operator is invoked. This results in the
return of the genome reading frame to the left hand side of the
genome once again. The reading of codons will then continue
unless an upper threshold representing the maximum num-
ber of wrapping events has occurred during this individuals
mapping process. (c) In the event that a threshold on the
number of wrapping events has occurred and the individual
is still incompletely mapped, the mapping process is halted,
and the individual assigned the lowest possible fitness value.
Returning to the example individual, the left-most <expr> in
<expr><op><expr> is mapped by reading the next codon
integer value 240 and used in 240 % 2 = 0 to become
another <expr><op><expr>. The developing program now
looks like <expr><op><expr><op><expr>. Continuing
to read subsequent codons and always mapping the left-most
non-terminal the individual finally generates the expression
y*x-x-x+x, leaving a number of unused codons at the end
of the individual, which are deemed to be introns and simply
ignored. Fig.2 draws an analogy between GE’s mapping pro-

cess and the molecular biological processes of transcription
and translation. A full description of GE can be found in [4].

IV. GRAMMATICAL SWARM

Grammatical Swarm (GS) adopts a Particle Swarm learning
algorithm coupled to a Grammatical Evolution (GE) genotype-
phenotype mapping to generate programs in an arbitrary
language. The update equations for the swarm algorithm are
as described earlier, with additional constraints placed on the
velocity and dimension values, such that velocities are bound
to ±VMAX=255, and each dimension is bound to the range
0 to 255. Note that this is a continuous swarm algorithm
with real-valued particle vectors. The standard GE mapping
function is adopted with the real-values in the particle vectors
being rounded up or down to the nearest integer value, for
the mapping process. In the current implementation of GS,
fixed-length vectors are adopted, within which it is possible
for a variable number of dimensions to be required during the
program construction genotype-phenotype mapping process. A
vector’s values may be used more than once if the wrapping
operator is used, and in the opposite case it is possible that
not all dimensions will be used during the mapping process
if a complete program comprised only of terminal symbols
is generated before reaching the end of the vector. In this
latter case, the extra dimension values are simply ignored and
considered introns that may be switched on in subsequent
iterations.

V. EXPERIMENTS & RESULTS

Two classification problems from the literature are tackled
using Grammatical Swarm to demonstrate proof of concept for
the GS methodology. The first, Mushroom Classification, is a
standard benchmark problem from the UCI Machine Learning
Repository [14]. The second problem is from the domain
of Bioinformatics, and involves the detection of promoter
sequences in Eukaryotic DNA.

The parameters adopted across the following experiments
are c1 = 1.0, c2 = 1.0, wmax = 0.9, wmin = 0.4, CMIN
= 0 (minimum value a coordinate may take), CMAX =
255 (maximum value a coordinate may take), and VMAX =
CMAX (i.e., velocities are bound to the range +VMAX to -
VMAX). In addition, a swarm size of 30 running for 1000
iterations using 100 dimensions is used.

The same problems are also tackled with Grammatical Evo-
lution in order to get some indication of how well Grammatical
Swarm is performing at program generation in relation to
the more traditional variable-length Genetic Algorithm-driven
search engine of standard GE. In an attempt to achieve a rela-
tively fair comparison of results given the differences between
the search engines of Grammatical Swarm and Grammatical
Evolution, we have restricted each algorithm in the number of
individuals they process, and using typical population sizes
from the literature adopted for each method. Grammatical
Swarm running for 1000 iterations with a swarm size of 30
processes 30,000 individuals, therefore, a standard population
size of 500 running for 60 generations is adopted for Gram-
matical Evolution. The remaining parameters for Grammatical
Evolution are roulette selection, steady state replacement, one-
point crossover with probability of 0.9, and a bit mutation with
probability of 0.01.

A. Mushroom Classification

The data set for this problem is taken from [14], and
contains samples of 23 species of gilled mushrooms from
the Agaricus and Lepiota families. The aim is to generate a
classifer to predict if a mushroom is poisonous or edible, with
the data set containing 8124 mushroom instances. As such
there are two classes, and 22 attributes associated with this
problem. The dataset has been split into a training set of 6424
instances, and a test set of 1700 instances.

The grammar adopted for this problem is given below, and
results in the generation of a conditional statement, where
the number of conditions is not specified a priori, and must
be determined by the evolutionary automatic programming
system.

<lc> ::= if(<expr>)
guess=’poisonous’;

else
guess=’edible’;

<expr> ::= (<expr>) and (<expr>)
| (<expr>) or (<expr>) | <var>

<var> ::= <cap-shape> | <cap-surface>
| <cap-color> | <bruises?> | <odor>
| <gill-attachment> | <gill-spacing>
| <gill-size> | <gill-color>

| <stalk-shape> | <stalk-root>
| <stalk-surface-above-ring>
| <stalk-surface-below-ring>
| <stalk-color-above-ring>
| <stalk-color-below-ring>
| <veil-type> | <veil-color>
| <ring-number> | <ring-type>
| <spore-print-color>
| <population> | <habitat>

<cap-shape> ::= var2==’b’ | var2==’c’
| var2==’x’ | var2==’f’
| var2==’k’ | var2==’s’

<cap-surface> ::= var3==’f’ | var3==’g’
| var3==’y’ | var3==’s’

<cap-color> ::= var4==’n’ | var4==’b’
| var4==’c’ | var4==’g’
| var4==’r’ | var4==’p’
| var4==’u’ | var4==’e’
| var4==’w’ | var4==’y’

<bruises?> ::= var5==’t’ | var5==’f’
<odor> ::= var6==’a’ | var6==’l’

| var6==’c’ | var6==’y’
| var6==’f’ | var6==’m’
| var6==’n’ | var6==’p’
| var6==’s’

<gill-attachment> ::= var7==’a’ | var7==’d’
| var7==’f’ | var7==’n’

<gill-spacing> ::= var8==’c’ | var8==’w’
| var8==’d’

<gill-size> ::= var9==’b’ | var9 ==’n’
<gill-color> ::= var10==’k’ | var10==’n’

| var10==’b’ | var10==’h’
| var10==’g’ | var10==’r’
| var10==’o’ | var10==’p’
| var10==’u’ | var10==’e’
| var10==’w’ | var10==’y’

<stalk-shape> ::= var11==’e’ | var11==’t’
<stalk-root> ::= var12==’b’ | var12==’c’

| var12==’u’ | var12==’e’
| var12==’z’ | var12==’r’
| var12==’?’

<stalk-surface-above-ring> ::=
var13==’f’ | var13==’y’

| var13==’k’ | var13==’s’
<stalk-surface-below-ring> ::=

var14==’f’ | var14==’y’
| var14==’k’ | var14==’s’

<stalk-color-above-ring> ::=
var15==’n’ | var15==’b’

| var15==’c’ | var15==’g’
| var15==’o’ | var15==’p’
| var15==’e’ | var15==’w’
| var15==’y’

<stalk-color-below-ring> ::=
var16==’n’ | var16==’b’

| var16==’c’ | var16==’g’
| var16==’o’ | var16==’p’
| var16==’e’ | var16==’w’
| var16==’y’

<veil-type> ::= var17==’p’ | var17==’u’
<veil-color> ::= var18==’n’ | var18==’o’

| var18==’w’ | var18==’y’
<ring-number> ::= var19==’n’ | var19==’o’

| var19==’t’
<ring-type> ::= var20==’c’ | var20==’e’

| var20==’f’ | var20==’l’
| var20==’n’ | var20==’p’

| var20==’s’ | var20==’z’
<spore-print-color> ::= var21==’k’

| var21==’n’ | var21==’b’
| var21==’h’ | var21==’r’
| var21==’o’ | var21==’u’
| var21==’w’ | var21==’y’

<population> ::= var22==’a’ | var22==’c’
| var22==’n’ | var22==’s’
| var22==’v’ | var22==’y’

<habitat> ::= var23==’g’ | var23==’l’
| var23==’m’ | var23==’p’
| var23==’u’ | var23==’w’
| var23==’d’

A plot of the mean best fitness for 30 runs can be seen in
Fig.3, and the performance of the best evolved classifiers are
presented in Table I. A true positive (TP) in this case is the
correct classification of a mushroom as being poisonous, a true
negative (TN) is correctly classifying a mushroom to be edible,
a false positive (FP) is incorrectly classifiying a mushroom as
poisonous, and a false negative (FN) is incorrectly predicting
a mushroom to be edible.

The best solution generated by Grammatical Swarm is given
below, where a gill-size of ’n’ is broad, a spore-print-color of
’h’ is chocolate, and a gill-color of ’r’ is green.

if(((gill-size == ’n’)
or (spore-print-color == ’h’))
or (gill-color == ’r’))

guess=’poisonous’;
else

guess=’edible’;

TABLE I

PERFORMANCE OF THE BEST RULES ON THEIR CORRESPONDING TRAIN

AND TEST SAMPLE DATA ON THE MUSHROOM PROBLEM INSTANCE.

Name Fitness TP TN FP FN
GS - Train .96 3013 3121 217 73
GE - Train .96 3055 3121 217 31
GS - Test .95 819 799 71 11
GE - Test .96 825 799 71 5

B. Eukaryotic Promoter Sequence Detection

Gene’s are the sequence of nucleic acid bases in the chromo-
some of animals, plants and microorganisms that are used to
express a protein product. Gene expression or transcription is
tightly regulated, ubiquitous in nature the RNA polymerase II
(PolII) is the most common transcription initiator, and together
with a set of accessory general transcription initiation factors
(GTF’S) bind to core promoter DNA elements. The promoter
element is a highly conserved sequence (e.g. the TATA box),
which is common to both prokaryotic and eukaryotic systems
and positions RNA PolII for transcription imitation. A single
base change in this nucleotide sequence drastically decreases
in vitro transcription of TATA containing promoters [15].
Approximately 70% of human promoters contain a TATA
box located approximately 27bp upstream of a start site for
transcription [16]. The problem is to automatically generate a

classifier to predict the presence or absence of a promoter in
a given DNA sequence.

The sequence of the promoter can be in two general positions
regarding the position of the start of the gene. In one case the
promoter is located near and often adjacent to the transcribed
region of the gene and are known as proximal promoter
sequences. Those that are located some distance from the
transcription site of a gene are known as enhancer elements.
Within the proximal promoter or transcription centres the
architecture of the DNA is critical.

As more sequence data is generated in the scientific field
including the human genome published simultaneously in
Nature and Science in 2001 [17], [18], and many other
animal, plant, and bacterial genomes, the search for promoter
sequences is ongoing through the analysis of DNA sequences
deposited to gene banks such as the EMBL nucleotide se-
quence database [19]. A number of specialised databases also
exist such as the Eukaryotic promoter database EPD [20]
(available at http://www.epd.isb-sib.ch) that contains an anno-
tated non redundant collection of eukaryotic PolII promoters,
experimentally defined by a transcription start site.

The data set adopted here was obtained from [21], where
there are five recuts of the dataset each containing 178
examples of coding sequences, 113 examples of human pro-
moter sequences, and 869 examples of intron sequences. The
experiments are conducted using the promoter sequences and
the coding region sequences as postive and negative examples
of the promoter and non-promoter classes respectively. The
first of the five recuts of the data is used as provided, where
the first two thirds of each class were used for training and
the final third in each case used for the out-sample dataset to
test for generalisation.

The grammar adopted for this problem is given below, and
the meaning of each wildcard symbol is presented in Table II.
As can be seen from the grammar, Grammatical Swarm in this
case is generating regular expressions of variable length that
are used to predict the presence or absence of a promoter. The
DNA sequences of interest are passed to the generated regular
expressions, with the result that DNA sub-sequences matching
the regular expression are marked as promoter regions. No
a priori knowledge regarding promoter sequence length or
location is required to use this approach.

<re> ::= <re><re> | <wildcard> | <base>
<wildcard> ::= * | W | R | S | Y

| K | V | H | D | B
<base> ::= A | T | G | C

The single best evolved solution over the 30 runs is tested on
the outsample dataset for overfitting, and the numbers of true
positives (TP - correctly classified promoters), true negatives
(TN - correctly classified non-promoters), false positives (FP -
incorrectly classified non-promoters), and false negatives (FN
- incorrectly classified promoters) are calculated and used to
generate sensitivity and specificity values according to the
following equations.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500 600 700 800 900 1000

M
ea

n
F

itn
es

s
(3

0
R

un
s)

Generation(GE) / Iteration(GS)

Grammatical Swarm - Mushroom

GS - Best
GS - Average

GE - Best
GE - Average

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0 100 200 300 400 500 600 700 800 900 1000

M
ea

n
F

itn
es

s
(3

0
R

un
s)

Generation(GE) / Iteration(GS)

Grammatical Swarm - Eukaryotic Promoters

GS - Best
GS - Average

GE - Best
GE - Average

Fig. 3. Plot of mean fitness over 30 runs on the Mushroom problem instance (left), and the Eukaryotic Promoter problem instance (right).

TABLE II

MEANING OF THE WILDCARD SYMBOLS USED IN THE EXTENDED

GRAMMAR.

Wildcard Nucleotides
W A or T
R A or G
S C or G
Y C or T
K G or T
V A or C or G
H A or C or T
D A or G or T
B C or G or T
* A or C or G or T

sensitivity =
TP

TP + FN

specificity =
TN

TN + FP

A plot of the mean best fitness for GE and GS over 30 runs
can be seen in Fig.3, and the performance of the best evolved
classifiers in each case are presented in Table III alongside
some well known promoter sequences from the literature [22],
[23].

VI. DISCUSSION

Table IV provides a summary and comparison of the perfor-
mance of Grammatical Swarm and Grammatical Evolution on
each of the problem domains tackled. In both problems Gram-
matical Swarm’s performance is on a par with Grammatical

Evolution in terms of the quality of the classifiers generated.
In terms of best fitness on the mushroom classification prob-
lem both algorithms’ performance is statistically equivalent
according to a resampling t-test at the 5% level, although
Grammatical Evolution has a better average fitness. On the
promoter prediction problem Grammatical Evolution takes the
edge on average producing better solutions than Grammatical
Swarm. The key finding is that the results demonstrate proof
of concept that Grammatical Swarm can successfully generate
solutions to problems of interest. In this initial study, we have
not attempted parameter optimization for either algorithm,
but results and observations of the particle swarm engine
suggests that swarm diversity is open to improvement. We
note that a number of strategies have been suggested in the
swarm literature to improve diversity [24], and we suspect
that a significant improvement in Grammatical Swarms’ per-
formance can be obtained with the adoption of these measures.
Given the relative simplicity of the Swarm algorithm, the
small population sizes involved, and the complete absence of
a crossover operator synonymous with program evolution in
GP, it is impressive that solutions to each of the benchmark
problems have been obtained.

When analyzing the results presented one has to consider
the fact that the Grammatical Evolution representation is
variable-length with individuals’ lengths restricted only by
the machines physical storage limitations. In the current
implementation of Grammatical Swarm fixed-length vectors
are adopted in which a variable number of dimensions can
be used, however, vectors have a hard length constraint of
100 dimensions. We intend to implement a variable-length
version of Grammatical Swarm that will allow the number

TABLE III

PERFORMANCE OF THE BEST EVOLVED REGULAR EXPRESSIONS ON THEIR CORRESPONDING TEST SAMPLE DATA COMPARED TO SOME WELL KNOWN

PROMOTER SEQUENCES FROM THE LITERATURE. THE SENSITIVITY (SENS.) AND SPECIFICITY (SPEC.) OF EACH EXPRESSION ARE ALSO INCLUDED.

RegExp Fitness TP TN FP FN sens. spec.
GE: WTAWADV .84 26 57 3 13 .67 .95

GS: TAKADR .77 25 51 9 14 .64 .85
TATA .74 23 50 10 16 .59 .83
CAAT .54 21 32 28 18 .54 .53
TAAC .73 19 53 7 20 .49 .88

GGGCGG .65 10 54 6 29 .26 .9
GGCGGG .67 12 54 6 27 .31 .9

YYANWYY .61 0 60 0 39 .0 1.0

TABLE IV

A COMPARISON OF THE RESULTS OBTAINED FOR GRAMMATICAL SWARM

AND GRAMMATICAL EVOLUTION AVERAGED OVER 30 RUNS IN EACH

CASE.

Mean Best Mean Average
Fitness (Std.Dev.) Fitness (Std.Dev.)

Mushroom
GS 0.93 (0.032) 0.83 (0.022)
GE 0.94 (0.034) 0.92 (0.041)

Eukaryotic Promoters
GS 0.74 (0.02) 0.68 (0.02)
GE 0.76 (0.01) 0.74 (0.01)

of dimensions of a particle to increase and decrease over
simulation time to overcome this current limitation.

VII. CONCLUSIONS & FUTURE WORK

This study demonstrates the feasibility of the generation of
computer programs using Grammatical Swarm, and demon-
strates its application to two classification problems. A perfor-
mance comparison to Grammatical Evolution has shown that
Grammatical Swarm is on a par with Grammatical Evolution,
and is capable of generating solutions with much smaller pop-
ulations, with a fixed-length vector representation, an absence
of any crossover, no concept of selection or replacement, and
without optimization of the algorithm’s parameters. This is
very encouraging for future development of the much simpler
Grammatical Swarm, and other potential Social or Swarm
Programming variants. Future work will involve developing
a variable-length Particle Swarm algorithm to remove Gram-
matical Swarms’ length constraint, conducting an investigation
into swarm diversity, the impact of a continuous encoding
over a discrete encoding variant such as presented in [25],
and considering the implications of a social learning approach
to the automatic generation of programs.

REFERENCES

[1] Bonabeau, E., Dorigo, M. and Theraulaz, G. (1999). Swarm Intelligence:
From natural to artificial systems, Oxford: Oxford University Press.

[2] Kennedy, J., Eberhart, R. and Shi, Y. (2001). Swarm Intelligence, San
Mateo, California: Morgan Kauffman.

[3] Kennedy, J. and Eberhart, R. (1995). Particle swarm optimization, Pro-
ceedings of the IEEE International Conference on Neural Networks,
December 1995, pp.1942-1948.

[4] O’Neill, M., Ryan, C. (2003). Grammatical Evolution: Evolutionary
Automatic Programming in an Arbitrary Language. Kluwer Academic
Publishers.

[5] O’Neill, M. (2001). Automatic Programming in an Arbitrary Language:
Evolving Programs in Grammatical Evolution. PhD thesis, University of
Limerick, 2001.

[6] O’Neill, M., Ryan, C. (2001). Grammatical Evolution, IEEE Trans.
Evolutionary Computation. 2001.

[7] O’Neill, M., Ryan, C., Keijzer M., Cattolico M. (2003). Crossover in
Grammatical Evolution. Genetic Programming and Evolvable Machines,
Vol. 4 No. 1. Kluwer Academic Publishers, 2003.

[8] Ryan, C., Collins, J.J., O’Neill, M. (1998). Grammatical Evolution:
Evolving Programs for an Arbitrary Language. Proc. of the First Eu-
ropean Workshop on GP, 83-95, Springer-Verlag.

[9] Koza, J.R. (1992). Genetic Programming. MIT Press.
[10] Koza, J.R. (1994). Genetic Programming II: Automatic Discovery of

Reusable Programs. MIT Press.
[11] Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D. (1998). Genetic

Programming – An Introduction; On the Automatic Evolution of Com-
puter Programs and its Applications. Morgan Kaufmann.

[12] Koza, J.R., Andre, D., Bennett III, F.H., Keane, M. (1999). Genetic
Programming 3: Darwinian Invention and Problem Solving. Morgan
Kaufmann.

[13] Koza, J.R., Keane, M., Streeter, M.J., Mydlowec, W., Yu, J., Lanza, G.
(2003). Genetic Programming IV: Routine Human-Competitive Machine
Intelligence. Kluwer Academic Publishers.

[14] Blake C.L., and Merz C.J. (1998). UCI Repository of machine learning
databases. University of California, Irvine, Dept. of Information and
Computer Sciences. http://www.ics.uci.edu/∼mlearn/MLRepository.html.

[15] Wasylyk B and P. Chambon. (1981). A T to A base substitution and
small deletions in the conalbumin TATA box drastically decrease specific
in vitro transcription. Nucleic Acids Res. 9:1813-1824.

[16] Bucher P. (1990). Weight matrix analysis description of four eukaryotic
RNA Polymerase II promoter sequences. Nucleic Acids Res. 22:10009-
10026.

[17] Venter J,C. et al. (2001) The sequence of the human genome. Science
291:1303-1351.

[18] Lander E.S. et al. (2001). Initial sequencing and analysis of the human
genome. Nature 409:860-921.

[19] Baker W., van den Broek A., Camon E., Hingamp P., Sterk P., Stoesser
G., and Tuli M.A. (2002). The EMBL nucleotide sequence database.
Nucleic Acids Res. 28:19-23

[20] Schmid CD., Praz V., Delorenzi M., Prier R., and Bucher P. (2004).
The eukaryotic promoter database EPD: the impact of in silico primer
extension. Nucleic Acids Res. 2004 32: D82-D85.

[21] http://www.fruitfly.org/seq tools/datasets/Human/promoter/.
[22] Howard, D., Benson, K. (2003). Evolutionary Computation Method for

Promoter Site Prediction in DNA. In LNCS 2724, Proceedings of GECCO
2003, pp. 1690-1701. Springer-Verlag.

[23] Lewin, B. (1999). Genes VII. Oxford University Press.
[24] Silva, A., Neves, A., Costa, E. (2002). An Empirical Comparison of

Particle Swarm and Predator Prey Optimisation. In LNAI 2464, Artificial
Intelligence and Cognitive Science, the 13th Irish Conference AICS 2002,
pp. 103-110, Limerick, Ireland, Springer.

[25] Kennedy, J., and Eberhart, R. (1997). A discrete binary version of
the particle swarm algorithm. Proceedings of the 1997 Conference on
Systems, Man, and Cybernetics, pp. 4104-4109. Piscataway, NJ: IEEE
Service Center.

