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Abstract

For computational intelligence to be useful in creating gagent Al we need
to focus on methods that allow the creation and maintenaine®adels for the en-
vironment, which the artificial agents inhabit. Maintaigimmodel allows an agent
to plan its actions more effectively by combining immedisémsory information
along with a memories that have been acquired while operatirthat environ-
ment. To this end, we propose a way to build environment nsofielnon-player
characters in car racing games using stateful Genetic &rogmng. A method is
presented, where general-purpose 2-dimensional datetites are used to build a
model of the racing track. Results demonstrate that modiédihg behaviour can
be cooperatively coevolved with car-controlling behaviaumodular programs
that make use of these models in order to navigate succlgsafolund a racing
track.

1 Introduction

An essential component of intelligent behaviour is theitib extract, store and utilise
information about the environment. Maintaining an enviremt model may allow an
agent to plan its actions more effectively by combining indimée sensory information
along with memories that have been acquired while operdtitigat environment [1].

It is very likely that most interesting problems do not hawtutons that are sim-
ple mappings from inputs to correct outputs; some kind afrimal state or memory
is needed to operate optimally in these domains. Surpiisiegolutionary learning

techniques in general and Genetic Programming (GP) [2]iitiqudar, do not typically

utilise this particular type of learning.



Most GP-evolved programs evolved so far are simple expregsées that perform
simple mappings from inputs to desired outputs, and tylyickl not utilise state vari-
ables nor employ side-effecting primitive constructs. Tdren stateful GP (or GP with
memory [1]) encompasses those GP program representatianaliow some sort of
program state to be maintained either throughout a singlgrpm execution (i.e. state
takes the form of a local data-structure), or in-betweenenams consecutive program
executions (i.e. state takes the form of a non-transieftayldata-structure). The task
of learning how to use memory by means of stateful GP reqaimevolutionary search
in the space of imperative programs. In computer scienggeiiative programming is
a programming paradigm that expresses computations irstefia program state and
statements that alter the program state. From a low-leusppetive, the program
state is defined by the contents of memory registers. Assghistatements, which
sit at the heart of imperative programming, perform an d@neon information lo-
cated in memory and store the results in memory for later e use of state can
come in many different incarnations; be it a single localigll variable, an arbitrary
data-structure, up to a point of an encapsulated colleciatata that is being exclu-
sively operated upon by a set of methods, which naturallgidega data abstraction,
and further to object orientation. A comprehensive literatreview on the evolution
of stateful programs by mans of GP can be found in [3]; it capdfely stated that this
revealed a very limited number of attempts in this researea.a

This paper tackles the problem of environment modellingnfar-player characters
in computer games using stateful GP. We apply this techrtigtiee open-source car
racing computer game by the name of TOR@S6t(p: / / t or cs. sour cef or ge. net).
The current work is an initial investigation of the applicatof stateful GP to TORCS,
and explores the feasibility of:

1. Learning a racing track model, represented as an inatemtiof a general-
purpose data-structure.

2. Using this model to navigate around the track.

We are currently not interested in learning how to navigateiad the track as fast
as possible, as we felt that this is a challenging reseaszhan its own right, and may
compose a hindering factor by introducing complexity to owdelling technique.
In this part of the work, the criterion for success is the eyeace of model-building
ability, thus we do not provide a comparison on the racing@d@ainst GP controllers
that do not utilise memory. It is an absolute requirementéver, that further research
into this area should seek to compare the performance agdes benchmark drivers.
In this work, we concentrate on building track models in coilep memory, and use
those to successfully navigate around the track. In ordengure that the evolved
drivers utilise the model for navigation, they are requit@dace using a minimum of
sensory information, limited to the car’s current velocitye car’s distance from the
start line, and the car’s distance from the track axis.

The contribution of this paper is twofold. First, in the amfagame agent Al, it
provides a method to evolve agents that use state effectiodbuild models of the
environment given sensory information in an initial moteltding process, and then
utilise this model to effectively navigate and plan. Ourrent focus is to study a



model-building method based on GP witidexed memory [1], applied to the car rac-
ing domain. The investigation of building racing track misd@ computer memory
is closely mirrored by the ongoing investigation of how tstevolve programs with
state in GP. We believe there can be much fruitful interpketydeen these two research
domains. The second contribution is to further evaluatexed memory as a general
tool for using memory in GP. We expect that for particulassks of problem, such pro-
gram representations provide a more appropriate unit dfigea than the traditional,
essentially stateless approach to expressing compuation

The rest of the paper is organised as follows. Section lireglprevious work on
the evolution of car racing controllers, work on the autamiaduction of environment
models via stateful GP, as well as previous approachesck tnadel-building in car
racing games. Section Il collectively presents the metttwdearning environment
models. Firstly, it presents the multi-phasic fithess estidun approach to the cooper-
ative coevolution of program functionality which performmedel-building, and track
navigation. Secondly, it describes the stateful progrgoresentation language, and the
details of the evolutionary algorithm employed. Sectionpiésents the experimental
results, while Section V draws our conclusions and sketftitase research directions.

2 PreviousWork

2.1 Evolving Car Racing Controllers

The evolution of car racing controllers has already at&@dittention from the ML
community. The majority of controllers in evolutionary aacing have been repre-
sented as feed-forward multilayer perceptrons, recumrental networks, and various
forms of GP. Togelius et al., in their own version of a carmgcimulator, have previ-
ously investigated how to best evolve controllers for sérgsr, single-track racing [4],
how to generalise controllers to reliably drive on seveiasidilar tracks and spe-
cialise them for particular tracks [5], and the impact ofdia functions on competitive
co-evolution of two cars on the same track [6]. The contrelia those experiments
employed a neural network representation. Furthermoi@],jifogelius et al. investi-
gated various flavours of coevolutionary learning, andedéfht controller architectures
to evolve car racers. There, they contrasted between neetrabrk and GP represen-
tations.

In the domain of GP, Agapitos et al. studied the performaric@oous program
representations for evolving car controllers [8]. Theytcasted the performance of
stateless versus stateful representations, as well apesseatations that allow for
modules versus those that are based on a single express@art¢hitecture. Their sub-
sequent work in the same area reports experimental rekatteinploy multi-objective
optimisation to encourage the effective use of state viagah the evolution of car rac-
ing controllers [9]. Additionally, in [10], Agapitos et gbresented experiments, where
a number of partially conflicting objectives were defined ¢ar racing game com-
petitors, and multi-objective evolution of GP-based colférs yielded Pareto fronts of
interesting and behavioural diverse driver opponents. mbst recent work that em-
ployed a GP-based representation is reported by Ebner au Ti1], in which car



racing controllers represented by multi-tree program itectures have been evolved
out of simple arithmetic and sensory-input primitive consts.

A review of previous work on the application of GP to TORCS gesfs that
evolved car racing controllers do not utilise any sort ofiéag of an explicit model
of the environment. Controllers are typically purely réastutilising a variety of ego-
centric (i.e. first-person) sensors whose values form tlsésha the output control
commands.

2.2 Evolving Environment Modelswith Stateful GP

The current work is based on advances in the evolution ofrenmient models in
artificial-life agent-based simulations by means of stdt&fP. Teller [12] studied the
evolution of agents that build and maintain mental modelst that purpose he de-
signed Tartarus, which is an NxN toroidal grid-world. Theeats goal is to push all
the boxes out of the center of the grid onto the perimetergpgitions. Programs were
evolved that solved the problem of pushing blocks up agahestoundaries of the
world. He biased the evolutionary search towards prograaistilise state variables
by strictly limiting the function sets so that the evolvedgrams could move only
once per evaluation and received very limited sensory faeklbWithout using state
only limited fithess was possible. Andre [13] tackled thelypeon of an agent whose
task is to collect all of the gold scattered in a five-by-fiveoidal grid. To encourage
the use of memory in the evolved programs, the evaluatiomdh@ividual occurred
in two stages, namelynap-making and map-using. In the first stage, the agent was
allowed to move around the world and write to a five-by-five meynbut not pick
up any gold. In the second stage, the agent can access itsrypdibis unable to
see the gold. Andre found that this approach can evolve progithat store simple
representations of their environments, and use thesesespagions to produce simple
plans of actions. Finally, Brave [14] studied a similar gesb of an agent that explores
the world and is required to produce a plan for reaching eadritrary location in the
world from every arbitrary starting point. He used a duahgfitness function similar
to that used in Andre’s experiments. Brave’s work corrotemi@revious results on the
validity of indexed memory as a powerful extension to GPeyst that learn how to
utilise memory structures, and found that the path-plagneoiution could be synthe-
sised by accessing a memory store whose structure is noededipriori but evolves
to create a directed graph.

2.3 Building a Mode of the Racing Track

In the domain of car racing games, learning a model of thaggicack has the potential
of integrating information into a planning process, thuswing a car racing controller
to be introspective rather than purely reactive. As a conéepas already been ex-
plored in the domain of TORCS. The work of [15] introduced itiea of recording
crash points to improve the performance from previous égpee. Of direct relevance
to our work is the previous work of [16] on generating trackdals. The technique
was based on estimating the curvature of the next invisibhe gf the track in order
to classify track segments accordingly. The classificatias then used to adjust the



speed of the car. A mechanism for aggregating this infoilwnadllowed the formation
of complete track models.

3 Evolutionary TORCS

3.1 Cooperative Coevolution of Model-builder and Car-controller
Branches

Our approach to the generation and usage of environmentimtmleavigate around
the racing track, roughly resembles the approaches of AsleBrave (Section 2.2).
This revolves around the notion ofraulti-phasic fithess evaluation procedure that
enforces an environment model to be stored in memory duhieditst phase of the
evaluation procedure, and the fitness of the individual t@\duated in the second
phase, biasing individuals towards an effective storageretmieval of information via
a sensory deprivation method. We will refer to these two phad fithess evaluation
asmodel-building phase, andar-controlling phase respectively.

Each individual evolved program employs a modular architecthat is designed
to consist of two main expression-tree branches (i.e. a tvmdkling branch, and
a car-controlling branch), one of which will be executed atle phase of the fithess
evaluation procedure. This modular structure of expressiees is coupled with a
general-purpose 2-dimensional data-structure (i.e. an2kional array ofloubl e
values), representing program’s memory.

In order to build a model of the track, the controller is reqdito access a repre-
sentation of the track itself. The track representatioraiselol on information that has
been gathered offline, while racing a hand-coded contraleund the track. The
information is tabular, taking the form of an external infila; each file-line represents
sensory information that is recorded in every simulateestep:

1. X: Distance of car from the right most edge of the track. Todake this, we
combined the information of the distance between the carthedrack axis
(given byget Tr ackPosi ti on()) with the information of the track-width,
so that the value of zero denotes that the car is on the rigist-edge of the
track. This can be taken for the value of x in an x-y coordirsytetem, where
X measures the track-width, and y measures the distancetfrermmack origin
that is taken to be the race start-line along the track-kigure 3 illustrates this
simple coordinate system.

2. Y: Distance of car from the start line (givenggt Di st anceFrontt art Li ne()).
This can be taken for the value of y in an x-y coordinate systehere x mea-
sures the track-width, and y measures the distance fronrdbk origin that is
taken to be the race start-line along the track-line.

3. Angle: Angle between the car direction and the direction of theldraxis (given
by get Angl eToTr ackAxi s()).

1We have usedhanp201icl i ent. Si npl eDri ver that is included in the distribution provided by
http://cig.ws.dei.polim.it/



4. TrackEdgeSensorsA: This is the mean value of 6 range finder sensors with in-
dices in the interval [0, 5] that are given gt Tr ackEdgeSensor s() .

5. TrackEdgeSensorsB: This is the mean value of 6 range finder sensors with in-
dices in the interval [6, 11] that are given bgt Tr ackEdgeSensor s() .

6. TrackEdgeSensorsC: This is the mean value of 7 range finder sensors with in-
dices in the interval [12, 18] that are given gt Tr ackEdgeSensor s() .

Given this sensory information, each line of the input filasists of the 6-tuple (X,
Y, Angle, TrackEdgeSensorsA, TrackEdgeSensorsB, Trag&&dnsorsC). In the first
phase, the individual may examine this sensory informaaol may manipulate (i.e.
read, write) its data-structure. The model-building braigciteratively executed once
for each 6-tuple until the whole of the input file has been ested. Program’s mem-
ory is being initialised in the beginning of the model-birilg phase, and is preserved
during the series of model-building branch executions withsecutive 6-tuple inputs.

Program fitness is assigned in the second phase (car-dmgrphase). Racing
around the track requires executing the car-controllirambh to output driving com-
mands. In this second phase, the sensory information isvéepmwith the input vector
consisting solely of the 4-tuple (X, Y, Speed, LateralSpékdt is given in every sim-
ulated time-step. Program state, represented by the tratan of the memory array,
composes an additional input to the controller. Note thandrthe race, X and Y come
in real-time from the simulation server, they are not thelitesf an offline recording as
in the case of the model-building phase. The multi-phasie$i$ evaluation procedure
depends on this sensory deprivation method to bias the tawolaf programs that are
able to build a model of the environment, and utilise this eidor navigation purposes.
Figure 1 illustrates the information flow in model-buildiagd car-controlling phases
respectively. An automatic programming system is now fagitk the task of coop-
eratively coevolving two distinct program components of @adar stateful program
representation.

3.2 Stateful Program Representation

Program representation is based on a modular architedtateonsists of two main
expression-tree branches that are coupled with a generpbpe 2-dimensionah-
dexed memory [1] structure odoubl e values. Ourimplementation uses a 2-dimensional
array of size 20002000, resulting in a significantly large state space. A mgmsta-
ment is indexed from (0, 0) to (1999, 1999). Each of tH#¥®? elements is doubl e
value in the same range. These are initialised to the valmerofprior to the first phase
of the fithess evaluation procedure. The choice of memosgytsis been made with a
particular racing track in mind (i.e. Etrack5); applyingstimnemory-based modelling
method to other tracks would require the memory size to beogpiately calibrated.
Traditionally, the idealisation of indexed memory is a meyrarray indexed over the
integers or rounded doubles whose element values are aégens or doubles in the
same range [12]. The rationale behind the choice of the mgsipe is to provide a
memory structure that is roughly isomorphic to the racingiremment. ETrackb is

a standard TORCS racing track that has been used in the texeeriments. Given
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Figure 1: Information flow in model-building (left), and eeontrolling (right) phases
of fitness evaluation. In model-building the external fildieh has been generated of-
fline by a hand-coded driver, is used to build a model of thengaizack in memory. In
the car-controlling phase, the track model is used as igbartg with x, y coordionates
information to perform localisation.
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Figure 2: An example of localisation operator in 2D memory.
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Figure 3: lllustration of the coordinate system. X referstte distance from the left-
had edge of the track. Y refers to the distance from the steat |

this environment, X and Y coordinates (discussed in theipusvsection) are defined
within the ranges of0,...,163 (i.e. x-axis), and{0,...,1622 (i.e. y-axis) respec-
tively. Recall that under our normalisation scheme, 0 arirgfresent the right-most
and left-most track positions respectively; whereas 0 &®1 kepresent the start-line
and end-of-track respectively. This design decision alith the choice of memory
size have the potential of facilitating the emergence ofjpams that develop an iso-
morphic relation between the environment and the memorynbpping an agent’s
move in the racing track to a roughly equivalent positiorhi@ 2-dimensional array.
Two non-terminals are added to the function-setad andwri t e. r ead takes
two arguments X, y, and returns Memory[x][yw i t e takes three arguments x, v,
z. It returns the old value in Memory[x][y], and puts z into Mery[x][y]. Arith-
metic operators are also made available in the functionvgetused protected divi-
sion). These functions were constrained to return doulleegebetween 0 and 1999
so that any computed value was a legal memory index. Thisiatsh could have
been relaxed by taking the index modulo 2000 before acagssemory, but was not
for simplicity. Note that because the arithmetic operatord the values of memory
are of typedoubl e, each time a memory operation is invoked, its argumentsrepr
senting the array indices are rounded to the closest integjae before memory is
accessed. Additionally, we introduced a fuzzy memory a&ingoperator by the name
ofl ocal i se.l ocal i se takes two arguments x, y, and returns Memory[x][y] if this
memory cell has been written before; otherwise it returesdbsest written memory
cell. Closeness is defined in terms of Euclidean distancerevkand y access-indices
are treated as x and y coordinates in the Cartesian spacgeHdllustrates an exam-



Table 1: Program Construction Language
M odel-Building Branch

Non-Terminal set | Terminal set

add(x, y) X, Y, Angle, TrackEdgeSensorsA,

sub(x, y) TrackEdgeSensorsB, TrackEdgeSensorsC
mul(x, y)
div(x, y)
read(x, y)
write(X, Y, )
Car-Controlling Branch

Non-Terminal set | Terminal set

add(x, y) X, Y, Speed, LateralSpeed

sub(x, y) 10 random constants in [-1.0, 1.0] interval
mul(x, y)
div(x, y)
read(x, y)
localise(x, y)

ple of the localisation operation. In this example, invgkirocal i se( 7, 5) results
inread(9, 5). This is because Memory[7][5] is empty, and Memory[9][5]te
closest non-empty memory-cell. In a different case, inngkiocal i se( 4, 6) , will
return Memory[4][6], as the requested memory cell is nompmFor time-efficiency,
we constrained the search for the closest non-empty menetipanemory cells that
are at most 50 columns and rows away from the memory cell given by x, y indices.
Note that in the example of Figure 2, the localisation windewf dimensions 2 6.
Table 1 summarises the primitive non-terminal and termiamajuage constructs
that are used in model building and car-controlling brasalespectively. For the case
of model-building expression-tree, we are only interesteds side-effects on pro-
gram’s memory. The car-controlling expression-tree idgiesd to return two values
that are instantiated by evaluating the two subtrees ofoité node. The output of
first subtree is interpreted as a driving (gas/break) congnahereas the output of the
second subtree is interpreted as the steering (left/rggh)mand. Both control out-
puts are being exponentially scaled to map to the range ai¢heator values used by
TORCS. The gear is set automatically depending on the rprheofrtotor. For that,
we have used the implementationgdt Gear ( Sensor Model sensor s) thatis
available inchanp2011cl i ent. Si npl eDri ver of the Java distribution, but we
constrained it so that the maximum gear that can be attameear 1. Given this
constraint, the racing car of tygear 1- t r b1 can develop a maximum speed of ap-
proximately82Km/h, and can cover a distance of approxima20m within 5, 000
time-steps (distance was calculated on average basgédltoials of a human player).

3.3 Evolutionary Algorithm

The GP system employs a generational, elitist genetic éfgr The algorithm uses
tournament selection with a tournament size3ofThe population size is set 00
individuals, and evolution proceeds 8 generations. Ramped-half-and-half [2] tree-



creation with a maximum depth 6&fis used to perform an initial random sampling of
programs. Throughout evolution, expression-trees aosvall to grow up to depth of
8. The evolutionary search employs a variation scheme thabaotes mutation with
standard subtree crossover. A probability governs theiegifmn of each, set t6.7

in favour of mutation. We are combining subtree and pointatioih; subtree mu-
tation is applied with a probability.6 relative to point mutation. No reproduction
was used. It should be noted that the crossover operatorfigrpeed only between
model-building or car-controlling expression-treespeding the different representa-
tion language specifications (branch-typing in Koza's feotogy [2]). Additionally,
because of the fact that each individual is composed of tyoession-trees, we apply
a variation operator twice in the selected individual(sic®in each expression-tree;
each application creating one offspring. This resultslior fitness evaluations per gen-
eration. At the end of the evaluation process, the indiMglase sorted in terms of
fitness, and the be800 of these form the current population.

We defined a maximisation problem, which uses a bi-objefitivess function that
is reduced to a scalar value by calculating the weightedaayeof two objectives. The
first objective is the distance raced within the allottedtisteps (the bigger the better),
whereas the second objective is the average displacenoemtlfie track center during
the race (the smaller the better). The second objectiveedfititess function penalises
individuals that use the track walls as a steering aid, andees the emergence of
sound driving behaviour more likely. Each race lasts foB8,6imulated time-steps.
The fitness function takes the following form:

5000
f=wix DR — ws * =000 ; TCD; (1)

whereD R is the distance raced (given et Di st anceRaced() ),andT’CD is
the displacement from the track center in every time-ste@(doyget Tr ackPosi ti on()).
Both of DR andT'C'D are normalised within the [0.0, 1.0] interval prior caldirg
the fitness value. Coefficients; andw- are used to enforce weights on the objec-
tives. This allows for a fine-grained control over the bigs #ach fithess compartment
should exert in the evolutionary search. We experimented all possible combi-
nations of these coefficients with a minimum a value of 0.5 at&ph size of 0.05.
Herein, we report the experimental results accrued fromaftbe most interestingly-
performing combinations ofif;, w-), namely (0.65, 0.35), and (0.75, 0.25).

4 Experimental Results

We present results from 25 independent evolutionary ruimgusach of two fitness
function coefficient setups; these are, ( w2) = (0.65, 0.35) andw;, w=) = (0.75,
0.25). Figure 4 presents the learning curves (fitness histoy as well as the histogram
of distance raced by the best-of-generation individuabslsb illustrates the decompo-
sition of the best-of-generation fithess value into its twmpartments, and how these
evolve during the course of the run. Contrasting betweenrEgy4(a) and 4(e), we
observe that the fitness function of (0.75, 0.25) enable&theystem to learn faster

10



and attain higher fitness. Figures 4(b) and 4(f) further sggthat controllers are able
to race longer distances under the (0.75, 0.25) coefficiips This result was ex-

pected, given that when a fitness function is crafted to rév@mg-distance racers,

such behaviour should emerge. However, caution needs tkba tvhen interpreting

the performance of the system based solely on numericakfigand not on the actual
testing and inspection of the driving behaviour in a sirmalatun. Inspecting how the

evolved drivers behave in the simulation revealed manyéstang lessons to be learnt
about the nature of the search space, the effectivenessiedafgness function coef-

ficient configuration, and the prerequisites for efficientimmment model-building.

We found that most runs that rewarded the distance-racextibig with a coeffi-
cient greater than or equal to 0.7 resulted in controlless tlsed the track boundaries
as a driving aid to navigate around a track. A viable drivitrgtegy that repeatedly
emerged under various genotypic representations madeathe maintain a moderate
constant speed while it was sliding along the track edgesibee used as a steering
medium. Such strategies appeared very early in the evahryoruns, and were pre-
served throughout evolution, resulting in individualsttivere able to cover distances
up to 2,117m. This is the main reason that the learning cust/€sgure 4(e) appear
steeper than those of Figure 4(a) . This finding is furtheratwrated by a faster in-
crease in distance raced in the case of Figure 4(f) as oppodeidure 4(b). These
results suggest that the evolutionary search could easitgibled by a fitness function
that highly rewards the distance raced; most importantth $ugh fitness is potentially
attainable without any use of an environment model for retidg.

Results indicated that the search bias, which is exerteHégdcond compartment
of the fitness function is pivotal in order to learn how to dudin environment model.
Figures 4(d) and 4(h) present the evolution of the trackeredisplacement objective
as this is extracted from the fitness value of best-of-geioerindividuals, for cases
(0.65, 0.35) and (0.75, 0.25) respectively. In Figure 4(d)abserve that there is an
ongoing minimisation taking place, as opposed to the apmpatagnation in minimis-
ing this objective in Figure 4(h). Worse still, Figure 4(lggests that in the search for
long-distance racers, controllers are trading a drivingav@ur that exhibits on aver-
age a small displacement from the track center with a dribigtgaviour that results in a
long distance being covered (Figure 4(g)) but does not ditmthe development of an
environment model. The marked tendency of the evolutionamg with a coefficient
setup of (0.65, 0.35) to optimise the second objective isbated to the fact that a
search bias has been created towards the evolution of pnggheat build environment
models, and utilise them for navigation purposes.

We used heatmap plots as a way to visualise the program s&tecOntents of
2-dimensional array of size 20@@000) at the end of the model-building phase of fit-
ness evaluation. These can also be regarded as a meansaiisinguread and write
accesses of the array. The bottom-left corner of each hgatar@esponds to index-
pair (0, 0). In the case of write-heatmaps, grey colour iatdis that no value is written
in the array-cell by the model-building expression-treajlevwhite colour indicates
that the cell contains a value. For read-heatmaps, greyrcaidicates that the car-
controlling expression-tree is not reading from the curestl, whereas white colour
indicates that the cell is being read. Memory read-accesseallowed either by the
constructsr ead or | ocal i se. In the case of a call to theocal i se function,
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the white colour indicates the center of the search for theedt non-empty array-cell
that resides within the range of 150 columns and 5 rows. Eg&fa) and 5(b) illus-
trate the program state (representing the environment hadtee the execution of the
model-building expression-tree), and the way this stabeiisg utilised vid ocal i se
invocations by the car-controlling expression-tree, foregolved individual that cov-
ered an average distance of 1,031m. in 10 independent tfl@sid visualisation,
we are only presenting a portion of the original array withizze ©f 1000<300. In-
spection of the model-building expression-tree showetlttteaarray contents in Fig-
ure 5(a) contain the evaluation of arbitrary arithmeticresgions of all three families
of track-edge-sensors, and these values are extracted Iwdead i se is being in-
voked. The fact that the array is roughly isomorphic to tleémg-environment allowed
the evolved program to map the Y dimension of the tracingktta individual columns
in the array. Similarly, Figures 5(c) and 5(d) illustratate/rand read heatmaps for an
evolved individual that covered an average distance of 1y89during 10 indepen-
dent trials. Its simplified car-controlling expressiopdris depicted in Figure 6. The
subtree on the left (under the control root-node) issuesmdyicommands, whereas
the subtree on the right issues steering commands. The @mguiments in the car-
controller are mapped from (args[0], args[1], args[2],sE3D to (X, Y, Speed, Lat-
eralSpeed). The steering subtree is invokingal i se(l ocal i se(0, Y), 0).
This expression of array access maps the Y dimension of ttiegdrack to a sin-
gle column in the 2-dimensional array. Finally, Figures)5&f), 5(g), 5(h), 5(i)
illustrate program states that have been produced by \&best-of-run individuals,
but unfortunately haven’t been successfully utilised ®irthespective car-controlling
expression-trees. The main observation is that the madklibg program compo-
nents exploit the potential isomorphism between the ratiiack and the memory store
to map x-y environment coordinates to (x, y) array indiceae ©f the most neat and
interesting evolved program state is depicted in Figure Récall that the input argu-
ments to the model-builder are mapped from (args[0], atgafds[2], args[3], args[4],
args[5]) to (X, Y, Angle, TrackEdgeSensorsA, TrackEdgessesB, TrackEdgeSen-
sorsC). In Figure 5(f), the model-building expressioretmntains the invocations
wite{args[0], args[1l], args[3]}andwite{args[1l], args[O], args[5]}
to map x-y coordinates to (X, y) indices, and store the vatiesack-edge-sensors A
and C.

5 Conclusion

We presented an approach to environment model-buildingdbar stateful modular
GP. This is achieved through the cooperative coevolutiawofmain branches that are
responsible for constructing a model based on the contépti®gram’s memory, and

hence utilising this program state to navigate around tiver@mment. Experimental

results suggest that a fithess function that penalisesaltant, which deviate heav-
ily from the track’s center, provides the necessary seaiah towards sound driving
behaviours. We also found that most evolved environmentaisadeveloped an iso-
morphic relation between the environment and the memomdgyping the car’'s move
in the racing track to a roughly equivalent position in théithensional array. From the
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GP point of view, this study further corroborates the extmsf theindexed-memory
paradigm as a powerful extension that allows the evolutfaffective gathering, stor-
age and retrieval of arbitrarily complicated state infotioa

For future work, we will study methods that will allow the ageo utilise the
evolved environment model to plan future actions. As a ptatly, we are currently
experimenting with the use of multi-objective fitness fuoes that reward individual
programs that access memory cells in greater than the ¢yraamay-indices assuming
a isomorphic relation between the array’s number of rows thedenvironment’s Y
coordinate. Furthermore, we are planning to investigateggmeralisability of model-
building behaviours by studying the induced environmentet® when porting the
evolved individuals in different, previously unseen rariracks.
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Figure 4: Best-of-generation individuals (average in pol@olumn 1: Fitness his-
tograms. Column 2: Distance-raced histograms, Column 8taDce-raced-objective
histograms. Column 4: Track-center-displacement-objetiistograms. Figures (a),
(b), (c), (d) for the case ofif;, w2) = (0.65, 0.35). Figures (e), (f), (g), (h) for the case
of (’LU1, w2) = (075, 025)
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Figure 5. Heatmaps illustrating write or read accessesdr2tdimensionatioubl e
array. The bottom-left corner of each heatmap correspandsdex-pair (0, 0). In
the case of write-heatmaps, grey colour indicates that heeva written in the cell,
and white colour indicates that the cell’®ntains a valughéncase of read-heatmaps,
grey colour indicates that the car-controlling expressree is never reading from the
current cell, and white colour indicates that the curretitisdeing read. In the case
of function| ocal i se, the white cell indicates the center of the search for a non-
empty cell that resides within the range of 150 columns anowWsr Figures (a), (b)
illustrate the write and read heatmaps for an inidividualexd under the coefficient
setting (0.65, 0.35). Figures (c), (d) illustrate the weted read heatmaps for another
inidividual evolved under the coefficient setting (0.68%). Figures (e), (f), (g), (h),
(i) illustrate various evolved write-heatmaps. To aid waiksation, Figures (a), (b) il-
lustrate only a part of the original array, with a size of 18@00. Figures (c), (d)
illustrate a part of the original array with a size of 200000. Finally, Figures (e), (f),
(9), (h), (i) present a part of the array of size 16a®M0O0.
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Figure 6: A simplified evolved car-controlling expressimee that belongs to the
individual program that produced read and write heatmajpsctisl in Figures 5(c)
and 5(d).
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