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Abstract
For computational intelligence to be useful in creating game agent AI we need

to focus on methods that allow the creation and maintenance of models for the en-
vironment, which the artificial agents inhabit. Maintaining a model allows an agent
to plan its actions more effectively by combining immediatesensory information
along with a memories that have been acquired while operating in that environ-
ment. To this end, we propose a way to build environment models for non-player
characters in car racing games using stateful Genetic Programming. A method is
presented, where general-purpose 2-dimensional data-structures are used to build a
model of the racing track. Results demonstrate that model-building behaviour can
be cooperatively coevolved with car-controlling behaviour in modular programs
that make use of these models in order to navigate successfully around a racing
track.

1 Introduction

An essential component of intelligent behaviour is the ability to extract, store and utilise
information about the environment. Maintaining an environment model may allow an
agent to plan its actions more effectively by combining immediate sensory information
along with memories that have been acquired while operatingin that environment [1].
It is very likely that most interesting problems do not have solutions that are sim-
ple mappings from inputs to correct outputs; some kind of internal state or memory
is needed to operate optimally in these domains. Surprisingly, evolutionary learning
techniques in general and Genetic Programming (GP) [2] in particular, do not typically
utilise this particular type of learning.
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Most GP-evolved programs evolved so far are simple expression-trees that perform
simple mappings from inputs to desired outputs, and typically do not utilise state vari-
ables nor employ side-effecting primitive constructs. Theterm stateful GP (or GP with
memory [1]) encompasses those GP program representations that allow some sort of
program state to be maintained either throughout a single program execution (i.e. state
takes the form of a local data-structure), or in-between numerous consecutive program
executions (i.e. state takes the form of a non-transient global data-structure). The task
of learning how to use memory by means of stateful GP requiresan evolutionary search
in the space of imperative programs. In computer science, imperative programming is
a programming paradigm that expresses computations in terms of a program state and
statements that alter the program state. From a low-level perspective, the program
state is defined by the contents of memory registers. Assignment statements, which
sit at the heart of imperative programming, perform an operation on information lo-
cated in memory and store the results in memory for later use.The use of state can
come in many different incarnations; be it a single local/global variable, an arbitrary
data-structure, up to a point of an encapsulated collectionof data that is being exclu-
sively operated upon by a set of methods, which naturally leads to data abstraction,
and further to object orientation. A comprehensive literature review on the evolution
of stateful programs by mans of GP can be found in [3]; it can besafely stated that this
revealed a very limited number of attempts in this research area.

This paper tackles the problem of environment modelling fornon-player characters
in computer games using stateful GP. We apply this techniqueto the open-source car
racing computer game by the name of TORCS (http://torcs.sourceforge.net).
The current work is an initial investigation of the application of stateful GP to TORCS,
and explores the feasibility of:

1. Learning a racing track model, represented as an instantiation of a general-
purpose data-structure.

2. Using this model to navigate around the track.

We are currently not interested in learning how to navigate around the track as fast
as possible, as we felt that this is a challenging research area on its own right, and may
compose a hindering factor by introducing complexity to ourmodelling technique.
In this part of the work, the criterion for success is the emergence of model-building
ability, thus we do not provide a comparison on the racing speed against GP controllers
that do not utilise memory. It is an absolute requirement, however, that further research
into this area should seek to compare the performance against other benchmark drivers.
In this work, we concentrate on building track models in computer memory, and use
those to successfully navigate around the track. In order toensure that the evolved
drivers utilise the model for navigation, they are requiredto race using a minimum of
sensory information, limited to the car’s current velocity, the car’s distance from the
start line, and the car’s distance from the track axis.

The contribution of this paper is twofold. First, in the areaof game agent AI, it
provides a method to evolve agents that use state effectively to build models of the
environment given sensory information in an initial model-building process, and then
utilise this model to effectively navigate and plan. Our current focus is to study a
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model-building method based on GP withindexed memory [1], applied to the car rac-
ing domain. The investigation of building racing track models in computer memory
is closely mirrored by the ongoing investigation of how to best evolve programs with
state in GP. We believe there can be much fruitful interplay between these two research
domains. The second contribution is to further evaluate indexed memory as a general
tool for using memory in GP. We expect that for particular classes of problem, such pro-
gram representations provide a more appropriate unit of evolution than the traditional,
essentially stateless approach to expressing computations.

The rest of the paper is organised as follows. Section II outlines previous work on
the evolution of car racing controllers, work on the automatic induction of environment
models via stateful GP, as well as previous approaches to track model-building in car
racing games. Section III collectively presents the methodfor learning environment
models. Firstly, it presents the multi-phasic fitness evaluation approach to the cooper-
ative coevolution of program functionality which performsmodel-building, and track
navigation. Secondly, it describes the stateful program representation language, and the
details of the evolutionary algorithm employed. Section IVpresents the experimental
results, while Section V draws our conclusions and sketchesfuture research directions.

2 Previous Work

2.1 Evolving Car Racing Controllers

The evolution of car racing controllers has already attracted attention from the ML
community. The majority of controllers in evolutionary carracing have been repre-
sented as feed-forward multilayer perceptrons, recurrentneural networks, and various
forms of GP. Togelius et al., in their own version of a car racing simulator, have previ-
ously investigated how to best evolve controllers for single-car, single-track racing [4],
how to generalise controllers to reliably drive on several dissimilar tracks and spe-
cialise them for particular tracks [5], and the impact of fitness functions on competitive
co-evolution of two cars on the same track [6]. The controllers in those experiments
employed a neural network representation. Furthermore, in[7], Togelius et al. investi-
gated various flavours of coevolutionary learning, and different controller architectures
to evolve car racers. There, they contrasted between neuralnetwork and GP represen-
tations.

In the domain of GP, Agapitos et al. studied the performance of various program
representations for evolving car controllers [8]. They contrasted the performance of
stateless versus stateful representations, as well as as representations that allow for
modules versus those that are based on a single expression-tree architecture. Their sub-
sequent work in the same area reports experimental results that employ multi-objective
optimisation to encourage the effective use of state variables in the evolution of car rac-
ing controllers [9]. Additionally, in [10], Agapitos et al.presented experiments, where
a number of partially conflicting objectives were defined forcar racing game com-
petitors, and multi-objective evolution of GP-based controllers yielded Pareto fronts of
interesting and behavioural diverse driver opponents. Themost recent work that em-
ployed a GP-based representation is reported by Ebner and Tiede [11], in which car
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racing controllers represented by multi-tree program architectures have been evolved
out of simple arithmetic and sensory-input primitive constructs.

A review of previous work on the application of GP to TORCS suggests that
evolved car racing controllers do not utilise any sort of learning of an explicit model
of the environment. Controllers are typically purely reactive, utilising a variety of ego-
centric (i.e. first-person) sensors whose values form the basis of the output control
commands.

2.2 Evolving Environment Models with Stateful GP

The current work is based on advances in the evolution of environment models in
artificial-life agent-based simulations by means of stateful GP. Teller [12] studied the
evolution of agents that build and maintain mental models. For that purpose he de-
signed Tartarus, which is an NxN toroidal grid-world. The agent’s goal is to push all
the boxes out of the center of the grid onto the perimeter gridpositions. Programs were
evolved that solved the problem of pushing blocks up againstthe boundaries of the
world. He biased the evolutionary search towards programs that utilise state variables
by strictly limiting the function sets so that the evolved programs could move only
once per evaluation and received very limited sensory feedback. Without using state
only limited fitness was possible. Andre [13] tackled the problem of an agent whose
task is to collect all of the gold scattered in a five-by-five toroidal grid. To encourage
the use of memory in the evolved programs, the evaluation of an individual occurred
in two stages, namely,map-making andmap-using. In the first stage, the agent was
allowed to move around the world and write to a five-by-five memory, but not pick
up any gold. In the second stage, the agent can access its memory, but is unable to
see the gold. Andre found that this approach can evolve programs that store simple
representations of their environments, and use these representations to produce simple
plans of actions. Finally, Brave [14] studied a similar problem of an agent that explores
the world and is required to produce a plan for reaching everyarbitrary location in the
world from every arbitrary starting point. He used a dual-phase fitness function similar
to that used in Andre’s experiments. Brave’s work corroborated previous results on the
validity of indexed memory as a powerful extension to GP systems that learn how to
utilise memory structures, and found that the path-planning solution could be synthe-
sised by accessing a memory store whose structure is not defined a priori but evolves
to create a directed graph.

2.3 Building a Model of the Racing Track

In the domain of car racing games, learning a model of the racing track has the potential
of integrating information into a planning process, thus allowing a car racing controller
to be introspective rather than purely reactive. As a concept, it has already been ex-
plored in the domain of TORCS. The work of [15] introduced theidea of recording
crash points to improve the performance from previous experience. Of direct relevance
to our work is the previous work of [16] on generating track models. The technique
was based on estimating the curvature of the next invisible part of the track in order
to classify track segments accordingly. The classificationwas then used to adjust the
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speed of the car. A mechanism for aggregating this information allowed the formation
of complete track models.

3 Evolutionary TORCS

3.1 Cooperative Coevolution of Model-builder and Car-controller
Branches

Our approach to the generation and usage of environment models to navigate around
the racing track, roughly resembles the approaches of Andreand Brave (Section 2.2).
This revolves around the notion of amulti-phasic fitness evaluation procedure that
enforces an environment model to be stored in memory during the first phase of the
evaluation procedure, and the fitness of the individual to beevaluated in the second
phase, biasing individuals towards an effective storage and retrieval of information via
a sensory deprivation method. We will refer to these two phases of fitness evaluation
asmodel-building phase, andcar-controlling phase respectively.

Each individual evolved program employs a modular architecture that is designed
to consist of two main expression-tree branches (i.e. a model-building branch, and
a car-controlling branch), one of which will be executed in each phase of the fitness
evaluation procedure. This modular structure of expression-trees is coupled with a
general-purpose 2-dimensional data-structure (i.e. a 2-dimensional array ofdouble
values), representing program’s memory.

In order to build a model of the track, the controller is required to access a repre-
sentation of the track itself. The track representation is based on information that has
been gathered offline, while racing a hand-coded controlleraround the track1. The
information is tabular, taking the form of an external inputfile; each file-line represents
sensory information that is recorded in every simulated time-step:

1. X: Distance of car from the right most edge of the track. To calculate this, we
combined the information of the distance between the car andthe track axis
(given bygetTrackPosition()) with the information of the track-width,
so that the value of zero denotes that the car is on the right-most edge of the
track. This can be taken for the value of x in an x-y coordinatesystem, where
x measures the track-width, and y measures the distance fromthe track origin
that is taken to be the race start-line along the track-line.Figure 3 illustrates this
simple coordinate system.

2. Y: Distance of car from the start line (given bygetDistanceFromStartLine()).
This can be taken for the value of y in an x-y coordinate system, where x mea-
sures the track-width, and y measures the distance from the track origin that is
taken to be the race start-line along the track-line.

3. Angle: Angle between the car direction and the direction of the track-axis (given
by getAngleToTrackAxis()).

1We have usedchamp2011client.SimpleDriver that is included in the distribution provided by
http://cig.ws.dei.polimi.it/
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4. TrackEdgeSensorsA: This is the mean value of 6 range finder sensors with in-
dices in the interval [0, 5] that are given bygetTrackEdgeSensors().

5. TrackEdgeSensorsB: This is the mean value of 6 range finder sensors with in-
dices in the interval [6, 11] that are given bygetTrackEdgeSensors().

6. TrackEdgeSensorsC: This is the mean value of 7 range finder sensors with in-
dices in the interval [12, 18] that are given bygetTrackEdgeSensors().

Given this sensory information, each line of the input file consists of the 6-tuple (X,
Y, Angle, TrackEdgeSensorsA, TrackEdgeSensorsB, TrackEdgeSensorsC). In the first
phase, the individual may examine this sensory information, and may manipulate (i.e.
read, write) its data-structure. The model-building branch is iteratively executed once
for each 6-tuple until the whole of the input file has been exhausted. Program’s mem-
ory is being initialised in the beginning of the model-building phase, and is preserved
during the series of model-building branch executions withconsecutive 6-tuple inputs.

Program fitness is assigned in the second phase (car-controlling phase). Racing
around the track requires executing the car-controlling branch to output driving com-
mands. In this second phase, the sensory information is deprived, with the input vector
consisting solely of the 4-tuple (X, Y, Speed, LateralSpeed) that is given in every sim-
ulated time-step. Program state, represented by the instantiation of the memory array,
composes an additional input to the controller. Note that during the race, X and Y come
in real-time from the simulation server, they are not the result of an offline recording as
in the case of the model-building phase. The multi-phasic fitness evaluation procedure
depends on this sensory deprivation method to bias the evolution of programs that are
able to build a model of the environment, and utilise this model for navigation purposes.
Figure 1 illustrates the information flow in model-buildingand car-controlling phases
respectively. An automatic programming system is now facedwith the task of coop-
eratively coevolving two distinct program components of a modular stateful program
representation.

3.2 Stateful Program Representation

Program representation is based on a modular architecture that consists of two main
expression-tree branches that are coupled with a general-purpose 2-dimensionalin-
dexed memory [1] structure ofdouble values. Our implementation uses a 2-dimensional
array of size 2000×2000, resulting in a significantly large state space. A memory ele-
ment is indexed from (0, 0) to (1999, 1999). Each of these2000

2 elements is adouble
value in the same range. These are initialised to the value ofzero prior to the first phase
of the fitness evaluation procedure. The choice of memory size has been made with a
particular racing track in mind (i.e. Etrack5); applying this memory-based modelling
method to other tracks would require the memory size to be appropriately calibrated.
Traditionally, the idealisation of indexed memory is a memory array indexed over the
integers or rounded doubles whose element values are also integers or doubles in the
same range [12]. The rationale behind the choice of the memory size is to provide a
memory structure that is roughly isomorphic to the racing environment. ETrack5 is
a standard TORCS racing track that has been used in the current experiments. Given
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Figure 1: Information flow in model-building (left), and car-controlling (right) phases
of fitness evaluation. In model-building the external file, which has been generated of-
fline by a hand-coded driver, is used to build a model of the racing track in memory. In
the car-controlling phase, the track model is used as input,along with x, y coordionates
information to perform localisation.

Figure 2: An example of localisation operator in 2D memory.
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Figure 3: Illustration of the coordinate system. X refers tothe distance from the left-
had edge of the track. Y refers to the distance from the start line.

this environment, X and Y coordinates (discussed in the previous section) are defined
within the ranges of{0,. . . ,163} (i.e. x-axis), and{0,. . . ,1621} (i.e. y-axis) respec-
tively. Recall that under our normalisation scheme, 0 and 163 represent the right-most
and left-most track positions respectively; whereas 0 and 1621 represent the start-line
and end-of-track respectively. This design decision alongwith the choice of memory
size have the potential of facilitating the emergence of programs that develop an iso-
morphic relation between the environment and the memory, bymapping an agent’s
move in the racing track to a roughly equivalent position in the 2-dimensional array.

Two non-terminals are added to the function-set:read andwrite. read takes
two arguments x, y, and returns Memory[x][y].write takes three arguments x, y,
z. It returns the old value in Memory[x][y], and puts z into Memory[x][y]. Arith-
metic operators are also made available in the function set (we used protected divi-
sion). These functions were constrained to return double values between 0 and 1999
so that any computed value was a legal memory index. This restriction could have
been relaxed by taking the index modulo 2000 before accessing memory, but was not
for simplicity. Note that because the arithmetic operatorsand the values of memory
are of typedouble, each time a memory operation is invoked, its arguments repre-
senting the array indices are rounded to the closest integervalue before memory is
accessed. Additionally, we introduced a fuzzy memory accessing operator by the name
of localise. localise takes two arguments x, y, and returns Memory[x][y] if this
memory cell has been written before; otherwise it returns the closest written memory
cell. Closeness is defined in terms of Euclidean distance, where x and y access-indices
are treated as x and y coordinates in the Cartesian space. Figure 2 illustrates an exam-
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Table 1: Program Construction Language
Model-Building Branch

Non-Terminal set Terminal set
add(x, y) X, Y, Angle, TrackEdgeSensorsA,
sub(x, y) TrackEdgeSensorsB, TrackEdgeSensorsC
mul(x, y)
div(x, y)
read(x, y)
write(x, y, z)
Car-Controlling Branch

Non-Terminal set Terminal set
add(x, y) X, Y, Speed, LateralSpeed
sub(x, y) 10 random constants in [-1.0, 1.0] interval
mul(x, y)
div(x, y)
read(x, y)
localise(x, y)

ple of the localisation operation. In this example, invokinglocalise(7,5) results
in read(9,5). This is because Memory[7][5] is empty, and Memory[9][5] isthe
closest non-empty memory-cell. In a different case, invokinglocalise(4,6), will
return Memory[4][6], as the requested memory cell is non-empty. For time-efficiency,
we constrained the search for the closest non-empty memory cell to memory cells that
are at most150 columns and5 rows away from the memory cell given by x, y indices.
Note that in the example of Figure 2, the localisation windowis of dimensions 9×6.

Table 1 summarises the primitive non-terminal and terminallanguage constructs
that are used in model building and car-controlling branches respectively. For the case
of model-building expression-tree, we are only interestedin its side-effects on pro-
gram’s memory. The car-controlling expression-tree is designed to return two values
that are instantiated by evaluating the two subtrees of its root node. The output of
first subtree is interpreted as a driving (gas/break) command, whereas the output of the
second subtree is interpreted as the steering (left/right)command. Both control out-
puts are being exponentially scaled to map to the range of theactuator values used by
TORCS. The gear is set automatically depending on the rpm of the motor. For that,
we have used the implementation ofgetGear(SensorModel sensors) that is
available inchamp2011client.SimpleDriver of the Java distribution, but we
constrained it so that the maximum gear that can be attained is gear 1. Given this
constraint, the racing car of typecar1-trb1 can develop a maximum speed of ap-
proximately82Km/h, and can cover a distance of approximately2, 320m within 5, 000

time-steps (distance was calculated on average based on10 trials of a human player).

3.3 Evolutionary Algorithm

The GP system employs a generational, elitist genetic algorithm. The algorithm uses
tournament selection with a tournament size of3. The population size is set to300
individuals, and evolution proceeds for40 generations. Ramped-half-and-half [2] tree-
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creation with a maximum depth of5 is used to perform an initial random sampling of
programs. Throughout evolution, expression-trees are allowed to grow up to depth of
8. The evolutionary search employs a variation scheme that combines mutation with
standard subtree crossover. A probability governs the application of each, set to0.7
in favour of mutation. We are combining subtree and point mutation; subtree mu-
tation is applied with a probability0.6 relative to point mutation. No reproduction
was used. It should be noted that the crossover operator is performed only between
model-building or car-controlling expression-trees, respecting the different representa-
tion language specifications (branch-typing in Koza’s terminology [2]). Additionally,
because of the fact that each individual is composed of two expression-trees, we apply
a variation operator twice in the selected individual(s), once in each expression-tree;
each application creating one offspring. This results in600 fitness evaluations per gen-
eration. At the end of the evaluation process, the individuals are sorted in terms of
fitness, and the best300 of these form the current population.

We defined a maximisation problem, which uses a bi-objectivefitness function that
is reduced to a scalar value by calculating the weighted average of two objectives. The
first objective is the distance raced within the allotted time-steps (the bigger the better),
whereas the second objective is the average displacement from the track center during
the race (the smaller the better). The second objective of the fitness function penalises
individuals that use the track walls as a steering aid, and renders the emergence of
sound driving behaviour more likely. Each race lasts for 5,000 simulated time-steps.
The fitness function takes the following form:

f = w1 ∗DR− w2 ∗
1

5000

5000∑

i=1

TCDi (1)

whereDR is the distance raced (given bygetDistanceRaced()), andTCD is
the displacement from the track center in every time-step (given bygetTrackPosition()).
Both ofDR andTCD are normalised within the [0.0, 1.0] interval prior calculating
the fitness value. Coefficientsw1 andw2 are used to enforce weights on the objec-
tives. This allows for a fine-grained control over the bias that each fitness compartment
should exert in the evolutionary search. We experimented with all possible combi-
nations of these coefficients with a minimum a value of 0.5 andstep size of 0.05.
Herein, we report the experimental results accrued from twoof the most interestingly-
performing combinations of (w1, w2), namely (0.65, 0.35), and (0.75, 0.25).

4 Experimental Results

We present results from 25 independent evolutionary runs using each of two fitness
function coefficient setups; these are (w1, w2) = (0.65, 0.35) and (w1, w2) = (0.75,
0.25). Figure 4 presents the learning curves (fitness histogram), as well as the histogram
of distance raced by the best-of-generation individuals. It also illustrates the decompo-
sition of the best-of-generation fitness value into its two compartments, and how these
evolve during the course of the run. Contrasting between Figures 4(a) and 4(e), we
observe that the fitness function of (0.75, 0.25) enables theGP system to learn faster
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and attain higher fitness. Figures 4(b) and 4(f) further suggest that controllers are able
to race longer distances under the (0.75, 0.25) coefficient setup. This result was ex-
pected, given that when a fitness function is crafted to reward long-distance racers,
such behaviour should emerge. However, caution needs to be taken when interpreting
the performance of the system based solely on numerical figures, and not on the actual
testing and inspection of the driving behaviour in a simulation run. Inspecting how the
evolved drivers behave in the simulation revealed many interesting lessons to be learnt
about the nature of the search space, the effectiveness of a given fitness function coef-
ficient configuration, and the prerequisites for efficient environment model-building.

We found that most runs that rewarded the distance-raced objective with a coeffi-
cient greater than or equal to 0.7 resulted in controllers that used the track boundaries
as a driving aid to navigate around a track. A viable driving strategy that repeatedly
emerged under various genotypic representations made the car to maintain a moderate
constant speed while it was sliding along the track edges that were used as a steering
medium. Such strategies appeared very early in the evolutionary runs, and were pre-
served throughout evolution, resulting in individuals that were able to cover distances
up to 2,117m. This is the main reason that the learning curvesof Figure 4(e) appear
steeper than those of Figure 4(a) . This finding is further corroborated by a faster in-
crease in distance raced in the case of Figure 4(f) as opposedto Figure 4(b). These
results suggest that the evolutionary search could easily be misled by a fitness function
that highly rewards the distance raced; most importantly such high fitness is potentially
attainable without any use of an environment model for navigation.

Results indicated that the search bias, which is exerted by the second compartment
of the fitness function is pivotal in order to learn how to build an environment model.
Figures 4(d) and 4(h) present the evolution of the track-center-displacement objective
as this is extracted from the fitness value of best-of-generation individuals, for cases
(0.65, 0.35) and (0.75, 0.25) respectively. In Figure 4(d) we observe that there is an
ongoing minimisation taking place, as opposed to the apparent stagnation in minimis-
ing this objective in Figure 4(h). Worse still, Figure 4(h) suggests that in the search for
long-distance racers, controllers are trading a driving behaviour that exhibits on aver-
age a small displacement from the track center with a drivingbehaviour that results in a
long distance being covered (Figure 4(g)) but does not allowfor the development of an
environment model. The marked tendency of the evolutionaryruns with a coefficient
setup of (0.65, 0.35) to optimise the second objective is attributed to the fact that a
search bias has been created towards the evolution of programs that build environment
models, and utilise them for navigation purposes.

We used heatmap plots as a way to visualise the program state (i.e. contents of
2-dimensional array of size 2000×2000) at the end of the model-building phase of fit-
ness evaluation. These can also be regarded as a means of visualising read and write
accesses of the array. The bottom-left corner of each heatmap corresponds to index-
pair (0, 0). In the case of write-heatmaps, grey colour indicates that no value is written
in the array-cell by the model-building expression-tree, while white colour indicates
that the cell contains a value. For read-heatmaps, grey colour indicates that the car-
controlling expression-tree is not reading from the current cell, whereas white colour
indicates that the cell is being read. Memory read-accessesare allowed either by the
constructsread or localise. In the case of a call to thelocalise function,
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the white colour indicates the center of the search for the closest non-empty array-cell
that resides within the range of 150 columns and 5 rows. Figures 5(a) and 5(b) illus-
trate the program state (representing the environment model after the execution of the
model-building expression-tree), and the way this state isbeing utilised vialocalise
invocations by the car-controlling expression-tree, for an evolved individual that cov-
ered an average distance of 1,031m. in 10 independent trials. To aid visualisation,
we are only presenting a portion of the original array with a size of 1000×300. In-
spection of the model-building expression-tree showed that the array contents in Fig-
ure 5(a) contain the evaluation of arbitrary arithmetic expressions of all three families
of track-edge-sensors, and these values are extracted whenlocalise is being in-
voked. The fact that the array is roughly isomorphic to the racing-environment allowed
the evolved program to map the Y dimension of the tracing-track to individual columns
in the array. Similarly, Figures 5(c) and 5(d) illustrate write and read heatmaps for an
evolved individual that covered an average distance of 1,391m. during 10 indepen-
dent trials. Its simplified car-controlling expression-tree is depicted in Figure 6. The
subtree on the left (under the control root-node) issues driving commands, whereas
the subtree on the right issues steering commands. The inputarguments in the car-
controller are mapped from (args[0], args[1], args[2], args[3]) to (X, Y, Speed, Lat-
eralSpeed). The steering subtree is invokinglocalise(localise(0, Y), 0).
This expression of array access maps the Y dimension of the racing track to a sin-
gle column in the 2-dimensional array. Finally, Figures 5(e), 5(f), 5(g), 5(h), 5(i)
illustrate program states that have been produced by various best-of-run individuals,
but unfortunately haven’t been successfully utilised by their respective car-controlling
expression-trees. The main observation is that the model-building program compo-
nents exploit the potential isomorphism between the racing-track and the memory store
to map x-y environment coordinates to (x, y) array indices. One of the most neat and
interesting evolved program state is depicted in Figure 5(f). Recall that the input argu-
ments to the model-builder are mapped from (args[0], args[1], args[2], args[3], args[4],
args[5]) to (X, Y, Angle, TrackEdgeSensorsA, TrackEdgeSensorsB, TrackEdgeSen-
sorsC). In Figure 5(f), the model-building expression-tree contains the invocations
write{args[0], args[1], args[3]} andwrite{args[1], args[0], args[5]}
to map x-y coordinates to (x, y) indices, and store the valuesof track-edge-sensors A
and C.

5 Conclusion

We presented an approach to environment model-building based on stateful modular
GP. This is achieved through the cooperative coevolution oftwo main branches that are
responsible for constructing a model based on the contents of program’s memory, and
hence utilising this program state to navigate around the environment. Experimental
results suggest that a fitness function that penalises controllers, which deviate heav-
ily from the track’s center, provides the necessary search bias towards sound driving
behaviours. We also found that most evolved environment models developed an iso-
morphic relation between the environment and the memory, bymapping the car’s move
in the racing track to a roughly equivalent position in the 2-dimensional array. From the
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GP point of view, this study further corroborates the extension of theindexed-memory
paradigm as a powerful extension that allows the evolution of effective gathering, stor-
age and retrieval of arbitrarily complicated state information.

For future work, we will study methods that will allow the agent to utilise the
evolved environment model to plan future actions. As a pilotstudy, we are currently
experimenting with the use of multi-objective fitness functions that reward individual
programs that access memory cells in greater than the current y-array-indices assuming
a isomorphic relation between the array’s number of rows andthe environment’s Y
coordinate. Furthermore, we are planning to investigate the generalisability of model-
building behaviours by studying the induced environment models when porting the
evolved individuals in different, previously unseen racing tracks.

Acknowledgement

This publication has emanated from research conducted withthe financial support of
Science Foundation Ireland under Grant Number 08/SRC/FM1389.

References

[1] A. Teller, “Turing completeness in the language of genetic program-
ming with indexed memory,” inProceedings of the 1994 IEEE World
Congress on Computational Intelligence, vol. 1. Orlando, Florida,
USA: IEEE Press, 27-29 Jun. 1994, pp. 136–141. [Online]. Available:
http://www.cs.cmu.edu/afs/cs/usr/astro/public/papers/Turing.ps

[2] J. Koza,Genetic Programming: on the programming of computers by means of
natural selection. Cambridge, MA: MIT Press, (1992).

[3] A. Agapitos, “The evolution of recursive and object-oriented programs,” Ph.D.
dissertation, University of Essex, Department of ComputerScience and Elec-
tronic Engineering, Wivenhoe Park, Colchester, UK, 2009.

[4] J. Togelius and S. M. Lucas, “Evolving controllers for simulated car racing,” in
Proceedings of the Congress on Evolutionary Computation, 2005.

[5] ——, “Evolving robust and specialized car racing skills,” in Proceedings of the
IEEE Congress on Evolutionary Computation, 2006.

[6] ——, “Arms races and car races,” inProceedings of Parallel Problem Solving
from Nature. Springer, 2006.

[7] J. Togelius, P. Burrow, and S. M. Lucas, “Multi-population competitive co-
evolution of car racing controllers,” in2007 IEEE Congress on Evolutionary
Computation, D. Srinivasan and L. Wang, Eds., IEEE Computational Intelligence
Society. Singapore: IEEE Press, 25-28 Sep. 2007, pp. 4043–4050.

13



[8] A. Agapitos, J. Togelius, and S. M. Lucas, “Evolving controllers for simulated car
racing using object oriented genetic programming,” inProceedings of the Genetic
and Evolutionay Computation Conference, 2007.

[9] ——, “Multiobjective techniques for the use of state in genetic programming
applied to simulated car racing,” inProc. of IEEE CEC, 2007, pp. 1562–1569.

[10] A. Agapitos, J. Togelius, S. M. Lucas, J. Schmidhuber, and A. Kon-
stantinidis, “Generating diverse opponents with multiobjective evolution,” in
Proceedings of the 2008 IEEE Symposium on Computational Intelligence
and Games. Perth, Australia: IEEE, Dec. 15-18 2008. [Online]. Available:
http://julian.togelius.com/Agapitos2008Generating.pdf

[11] M. Ebner and T. Tiede, “Evolving driving controllers using genetic program-
ming,” in IEEE Symposium on Computational Intelligence and Games, CIG 2009,
Sep. 2009, pp. 279–286.

[12] A. Teller, “The evolution of mental models,” in Ad-
vances in Genetic Programming, K. E. Kinnear, Jr., Ed.
MIT Press, 1994, ch. 9, pp. 199–219. [Online]. Available:
http://www.cs.cmu.edu/afs/cs/usr/astro/public/papers/MentalModels.ps

[13] D. Andre, “Evolution of mapmaking ability: Strategiesfor the evolution of learn-
ing, planning, and memory using genetic programming,” inProceedings of the
1994 IEEE World Congress on Computational Intelligence, vol. 1. Orlando,
Florida, USA: IEEE Press, 27-29 Jun. 1994, pp. 250–255.

[14] S. Brave, “The evolution of memory and mental models using genetic program-
ming,” in Genetic Programming 1996: Proceedings of the First Annual Confer-
ence, J. R. Koza, D. E. Goldberg, D. B. Fogel, and R. L. Riolo, Eds. Stanford
University, CA, USA: MIT Press, 28–31 Jul. 1996, pp. 261–266.

[15] M. V. Butz and T. D. Lönneker, “Optimized sensory-motor couplings plus strat-
egy extensions for the torcs car racing challenge,” inProceedings of the 5th in-
ternational conference on Computational Intelligence and Games, ser. CIG’09.
Piscataway, NJ, USA: IEEE Press, 2009, pp. 317–324.

[16] J. Quadflieg, M. Preuss, O. Kramer, and G. Rudolph, “Learning the track and
planning ahead in a car racing controller,” inProceedings of the 6th international
conference on Computational Intelligence and Games, ser. CIG’10, 2010.

14



0 10 20 30 40
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Generation

B
es

t F
itn

es
s

(a)

0 10 20 30 40
0

500

1000

1500

2000

Generation

M
ax

im
um

 D
is

ta
nc

e 
R

ac
ed

(b)

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

Generation

D
is

ta
nc

e 
R

ac
ed

 F
itn

es
s 

C
om

po
ne

nt

(c)

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

Generation

T
ra

ck
−

ce
nt

er
 D

ev
ia

tio
n 

C
om

po
ne

nt

(d)

0 10 20 30 40
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Generation

B
es

t F
itn

es
s

(e)

0 10 20 30 40
0

500

1000

1500

2000

Generation

M
ax

im
um

 D
is

ta
nc

e 
R

ac
ed

(f)

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

Generation

D
is

ta
nc

e 
R

ac
ed

 F
itn

es
s 

C
om

po
ne

nt

(g)

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

Generation

T
ra

ck
−

ce
nt

er
 D

ev
ia

tio
n 

C
om

po
ne

nt

(h)

Figure 4: Best-of-generation individuals (average in bold). Column 1: Fitness his-
tograms. Column 2: Distance-raced histograms, Column 3: Distance-raced-objective
histograms. Column 4: Track-center-displacement-objective histograms. Figures (a),
(b), (c), (d) for the case of (w1, w2) = (0.65, 0.35). Figures (e), (f), (g), (h) for the case
of (w1, w2) = (0.75, 0.25).
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(i)

Figure 5: Heatmaps illustrating write or read accesses in the 2-dimensionaldouble
array. The bottom-left corner of each heatmap corresponds to index-pair (0, 0). In
the case of write-heatmaps, grey colour indicates that no value is written in the cell,
and white colour indicates that the cell contains a value. Inthe case of read-heatmaps,
grey colour indicates that the car-controlling expression-tree is never reading from the
current cell, and white colour indicates that the current cell is being read. In the case
of functionlocalise, the white cell indicates the center of the search for a non-
empty cell that resides within the range of 150 columns and 5 rows. Figures (a), (b)
illustrate the write and read heatmaps for an inidividual evolved under the coefficient
setting (0.65, 0.35). Figures (c), (d) illustrate the writeand read heatmaps for another
inidividual evolved under the coefficient setting (0.65, 0.35). Figures (e), (f), (g), (h),
(i) illustrate various evolved write-heatmaps. To aid visualisation, Figures (a), (b) il-
lustrate only a part of the original array, with a size of 1000×300. Figures (c), (d)
illustrate a part of the original array with a size of 200×1000. Finally, Figures (e), (f),
(g), (h), (i) present a part of the array of size 1000×1000.
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Figure 6: A simplified evolved car-controlling expression-tree that belongs to the
individual program that produced read and write heatmaps depicted in Figures 5(c)
and 5(d).
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