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Abstract
In this paper, using high-frequency intra-daily data from the UK market, we employ 
genetic programming (GP) to uncover a hedging strategy for FTSE 100 call options, 
hedged using FTSE 100 futures contracts. The output from the evolved strategies is 
a rebalancing signal which is conditioned upon a range of dynamic non-linear fac-
tors related to market conditions including liquidity and volatility. When this signal 
exceeds threshold values during the trading day, the hedge position is rebalanced. 
The performance of the GP-evolved strategy is evaluated against a number of com-
monly used, time-based, deterministic hedging strategies where the hedge position 
is rebalanced at fixed time intervals ranging from 5  min to 1  day. Assuming the 
delta hedger pays the bid-ask spread on the futures contract whenever the portfolio 
is rebalanced, this study finds that the GP-evolved hedging strategy out-performs 
standard, deterministic, time-based approaches. Empirical analysis shows that the 
superior performance of the GP strategy is driven by its ability to account for non-
linear intra-day persistence in high frequency measures of liquidity and volatility. 
This study is the first to apply a GP methodology for the task of delta hedging with 
high frequency data, a significant risk management issue for investors and market 
makers in financial options.

Keywords Hedging · Delta neutrality · Genetic programming

1 Introduction

A critical concern in finance is management of risk exposure. Risk can take many 
forms including market risk (markets here can encompass stock markets, bond 
markets, foreign exchange markets, commodity markets and derivatives markets), 
credit risk, and liquidity risk. A variety of tools and strategies have been devel-
oped in order to manage these risks. In this study we are concerned with market 
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risk, i.e., the risk faced by an investor arising from changes in the market price 
of a traded item. A common strategy for protecting against this risk is to engage 
in hedging. In a hedge strategy, a counter position is taken (usually) in finan-
cial instruments which will offset, in full or part, any changes in value of the 
investments held. Hence, a hedging strategy can be likened to buying ‘insurance’ 
against changes in the value of investments.

The range of assets traded on financial markets has expanded enormously over 
the past 20 years, moving far beyond the trading of shares and debt instruments to 
encompass financial derivatives. A financial derivative can be defined as a finan-
cial instrument (for example, a contract), the value of which is based on the value 
or values of one or more underlying assets. Derivatives can be based on the value 
of equities, debt, market indices, currencies, commodity prices etc. Two of the 
best known forms of derivative are futures and options. A future is a contract to 
buy or sell a specific quantity of an asset, at a specified price, at a specified time 
in the future, whereas an option gives the buyer the right (but not the obligation) 
to buy/sell a financial asset at a specified price, on or between specified future 
dates.

Market makers and traders in options markets often engage in a risk manage-
ment process known as delta hedging. Under this strategy, a market maker (or 
trader) seeks to hedge the risk of price changes in a written (sold) option by taking 
an offsetting position in ‘delta’ units of the underlying asset to neutralise the result-
ing hedge portfolio to changes in the underlying asset price. The term ‘delta hedg-
ing’ arises from the ‘Greeks’ in mathematical finance terminology, in which ‘delta’ 
refers to the first derivative of an option’s price with respect to the underlying instru-
ment’s price (i.e., the sensitivity of an option’s price to changes in the price of the 
underlying). The object in delta hedging is to create a delta neutral position for the 
market maker, so that the market maker is unaffected by small price changes in the 
underlying asset.

In theory, in a world with no market frictions and no transaction costs there are 
no constraints on the ability to continuously rebalance a portfolio, hence a delta neu-
tral hedge could be constructed and continuously updated for a given portfolio of 
options thereby eliminating hedging risk altogether. However, in real-world finan-
cial markets, traders are subject to transaction costs in the form of bid-ask spreads, 
commissions and price impact. Furthermore options traders are subject to varying 
liquidity on electronic order books and varying volatility dynamics. Hence, a trade 
off occurs between rebalancing the hedge position very frequently during the trad-
ing day (which incurs high transactions costs) but reducing exposure to movements 
in the underlying asset price, and rebalancing the hedge position less frequently but 
bearing more hedging risk. The latter incurs lower transactions cost but exposes 
the investor to market risk as the hedge is imperfect with the hedge portfolio tak-
ing on more risk than a more frequently rebalanced hedge portfolio. The question 
facing investors using delta hedging therefore is when to rebalance the hedge posi-
tion, weighing up this trade off. Simple strategies include the rebalancing of the 
hedge position at fixed time intervals or when underlying prices change by a preset 
amount. However, while these strategies are easy to implement, there is no guaran-
tee that they will produce good results.
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In this paper, using high-frequency, intra-daily data from the UK market we 
employ genetic programming (GP) to uncover a delta hedging strategy for FTSE 100 
call options, hedged using FTSE 100 futures contracts. The output from the evolved 
strategies is a rebalancing signal which is conditioned upon a range of dynamic non-
linear factors related to market conditions including liquidity and volatility. When 
this signal exceeds threshold values during the trading day, the hedge position is 
rebalanced. The performance of the GP-evolved strategy is evaluated against a num-
ber of commonly used, time-based, deterministic hedging strategies ranging from 
5 min to 1 day.

The findings of the study indicate that the GP-evolved strategy, taking account 
of realistic transaction costs, out-performs deterministic time-based approaches. 
Empirical analysis shows that the superior performance of the GP strategy is driven 
by its ability to account for non-linear intra-day persistence in high frequency meas-
ures of liquidity and volatility. The GP-evolved strategy rebalances more frequently 
during periods of higher liquidity and less frequently during periods of low volatil-
ity. These characteristics of the strategy help ensure it minimises transactions costs.

It is also noted that while GP has been previously applied for a variety of appli-
cations in finance such as asset allocation in portfolio management and forecast-
ing, there has been much less attention paid to application of GP approaches for 
the important issue of risk management. In addition to contributing to the finance 
literature on discrete hedging performance, this paper represents the first application 
of GP for the important task of delta hedging. Thus this work has implications for 
options traders and market makers who are considering using more sophisticated 
algorithms to delta hedge their positions whilst also extending the application of GP 
to real world cutting edge problems in financial markets.

1.1  Structure of paper

The remainder of this study is organized as follows. Section  2 reviews the litera-
ture which is broken down in terms of the finance literature covering hedging per-
formance and then provides a rationale motivating the application of GP to delta 
hedging. Section  3 provides an explanation of the intra-daily options and futures 
dataset used in the study to evaluate hedging performance. The experimental design 
is described in Sect. 4, while Sects. 5 and 6 report the results and conclusions.

2  Literature review

In this section, we overview the literature on delta hedging. A significant take-away 
from this is that most common delta hedging strategies are quite basic, usually 
employing a fixed time interval or price change trigger. This suggests potential util-
ity for a more sophisticated approach which explicitly considers a range of market 
factors which will impact on the cost of rebalancing such as liquidity and volatility. 
We also provide a short introduction to GP, indicating why it has particular utility in 
the development of an effective and cost efficient hedging strategy.
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2.1  Delta hedging

In the Black–Scholes [1] option pricing model there are various risk dimensions 
comprising of the first-order Greeks (delta, vega, theta, rho) and the second-order 
Greek gamma. In practice, it is not possible for an options market maker or trader 
to maintain all Greeks at zero. Usually traders zero out delta and monitor the other 
Greeks [2]. This study considers the Greek delta (the sensitivity of the option price 
to changes in the underlying security price) and examines how a derivatives market 
maker or trader hedges an open option position by trading the underlying security.

The Black–Scholes [1] no-arbitrage argument used to price options in their model 
assumes that a written option can be perfectly hedged by trading continuously in 
the underlying asset price producing a riskless hedged portfolio. Transaction costs 
invalidate this no-arbitrage argument for option pricing since continuous revisions 
implies infinite trading [3] which would cost an infinite amount in the presence of 
transaction costs.

Theoretical advances have relaxed the Black–Scholes assumptions on market 
frictions to examine option pricing and hedging in the presence of transaction costs 
and discrete-time trading. One of the earliest studies to examine discrete hedging 
was Boyle and Emmanuel [4] who analysed the main component of returns from a 
discretely rebalanced hedged portfolio. Leland [3] explicitly proposed a modified 
option replicating strategy (a strategy to replicate the option by trading in the under-
lying asset and a risk-free rate) based on Black–Scholes where the hedging strat-
egy itself depends on transaction costs and the revision interval. A number of stud-
ies followed this direction including Avellaneda and Paras [5], where the hedging 
strategies proposed were able to cover large transaction costs or small time-intervals 
between rebalancing, and Wilmott et al. [6] where the strategy developed includes 
a fixed cost structure and also reduces to the modified variance method described 
by Leland in the case of a single option. Parallel to this work, Boyle and Vorst 
[7] proposed a hedging strategy covering transaction costs from a binomial lattice 
framework.

Table 1 summarises hedging rebalancing frequencies examined in a range of prior 
studies. The more often the portfolio is rebalanced, the lower the hedging risk, but 
the greater the transaction costs. The rebalancing frequencies range from 0.26 days 
to 6 months (Avellaneda and Paras [5]; Toft [8]). The analysis of Wilmott [9] sug-
gests an optimal rebalancing frequency of approximately a week under a very strong 

Table 1  Rebalancing frequency 
review

This table gives the rebalancing frequency used in discrete hedging 
strategies in prior studies

Paper Revision frequency

[4] 1 day
[3] 1 week, 4 weeks, 8 weeks
[5] 0.26 day, 0.52 day, 2.6 days
[7] 1 day, 1 week, 2 months
[8] 1 day, 1 week, 1 month and 6 months
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assumption that the growth rate of the underlying security price is more than the 
risk-free rate. While this assumption seems reasonable in the long run it is question-
able in the short run as growth rates can vary markedly over time.

In a number of studies, hedging strategies are triggered by an underlying price 
change (Henrotte [10]; Toft [8]), or by a change in the delta itself (Whalley and 
Wilmott [11]; Avellaneda and Paras [5]). However, these studies do not provide a 
simple answer as to how a threshold size for movement of the underlying price or 
delta should be set in order to trigger a revision in the hedged portfolio. Henrotte 
[10], assuming expected transaction costs and the variance of the total cash-flows, 
compares price move hedging strategies with discrete uniform time interval based 
hedging strategies. Toft [8] reports that neither strategy dominates and that the best 
choice of strategy depends on underlying volatility and transaction costs. When vol-
atility is low and transaction costs are high, then a time based strategy produces bet-
ter outcomes.

Davis et al. [12] propose an optimal rebalancing strategy in the presence of pro-
portional transaction costs through “Utility Maximisation”. The written option price 
was obtained by comparing the maximum utility available to the writer by trading in 
the market, with and without the obligation to fulfil the terms of an option contract 
at the time of exercise. The use of utility or loss functions to model optimal out-
comes for the investor in these models is attractive. However, this approach is com-
putationally expensive as it usually results in three or four dimension free boundary 
problem.

Hodges and Neuberger [13] develop a simplified approach to the problem of 
optimal rebalancing a written option in the presence of transactions costs. In this 
approach, depicted in Fig.  1, no-transaction regions and transaction regions are 
defined by a control variable which we term the hedging border. If the current hedge 
ratio lies within this hedging border then no rebalancing action is needed. If the cur-
rent hedge ratio is outside of the hedging border, rebalancing is triggered and the 
hedge ratio is brought back to the nearest boundary of the border by changing the 
quantity of the underlying security held. This hedging border is optimised endog-
enously. However, there is no closed-form solution to determine the boundary points 

Fig. 1  Simplified optimal hedging strategy
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of the hedging border. This analysis was extended by Clewlow and Hodges [14] 
under a general cost function with fixed and proportional costs. A number of studies 
attempted to improve the computation speed for this hedging strategy, including the 
use of asymptotic analyses (Whalley and Wilmott [15], Barles and Soner [16]), and 
the analytic approximation approach adopted by Zakamouline [17]. However, the 
approximated solutions from these approaches are all different though they share 
some common elements including the underlying price, time to maturity, risk-free 
interest rate, a proportional ratio of transaction cost and a measure of the hedgers 
risk aversion. Some of these approaches may be closer to the exact strategy (by 
using numerical methods) than others in some range of model parameters under a 
simulated environment (Zakamouline [17]). These hedging strategies give endog-
enous rebalancing frequencies and the optimal rebalancing frequency is solved theo-
retically based on the model’s assumptions. However, these approaches are not prac-
tical as, apart from computational cost issues, they also require that the investors 
risk preference functions are specified.

In summary, delta hedging involves dynamically trading the underlying asset to 
hedge the option(s) position. With only one hedging point in time this is a straight-
forward technical exercise. However, in practice, the lifetime of an option contract 
spans an extended time period with 3-months being a common contract specifica-
tion. Consequently, hedging error depends not only on the initial and final market 
conditions, but also on the entire sequence of market changes in-between. The hedg-
ing problem is a path dependent minimisation problem with time-varying market 
conditions throughout the life of the option.

A simple approach is to rebalance at fixed intervals or when the underlying price 
or the delta moves by a pre-determined set amount. The problem then becomes how 
should the relevant time or price change threshold values for rebalancing be set? In 
deterministic schemes such as the above no account is taken of market conditions, 
which is a weakness given the variation in intra-day market volatility and liquidity 
measures. In the utility based optimal hedging strategy discussed in the delta hedg-
ing literature above, rebalancing is triggered endogenously by maximising the hedg-
ers utility. However, there is no closed-form solution for this utility-based optimal 
hedging strategy.

2.2  Genetic programming

Genetic programming (GP) is a model induction technique initially developed to 
allow the automatic creation of a computer program from a high-level statement of a 
problem’s requirements, by means of an evolutionary process (Koza et al. [18]; Poli 
et al. [19]). An iterative evolutionary process is employed by GP where better (fitter) 
programs for the task at hand are allowed to reproduce using recombination pro-
cesses to recombine components of existing programs. Their production process is 
supplemented by incremental trial-and-error development. Both variety-generating 
mechanisms act to generate variants of existing good programs. In contrast to some 
other evolutionary algorithms such as the genetic algorithm, GP uses a variable-
length representation in that the size of the structure of a solution may not be known 
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a priori. Hence the number of elements used in the final solution, as well as any 
necessary parameters of those elements, must be open to evolution. This property 
allows GP to evolve a simple or a complex structure, depending on the nature of the 
problem being solved.

2.3  Why apply GP to this problem?

Evolutionary approaches have been widely applied in finance since the late 1980s. 
Initially, attention was primarily focused on the application of GAs for model 
parameter optimization and variable selection [20] but from the mid 1990s increas-
ing attention has been placed on the use of GP for financial forecasting, trading sys-
tem induction, and more recently, derivatives pricing and volatility prediction. A 
sampling of these works and related review articles include, Allen and Karjalainen 
[21]; Iba and Sasaki [22]; Santini and Tettamanzi [23]; Li et al. [24]; Wei and Clack 
[25]; Brabazon et al. [26], and Contreras et al. [27]. The sophistication of finance 
applications of GP has increased markedly in recent years.

A key rationale for finance applications of GP is that both the solution form and 
associated parameters are co-evolved. This offers particular utility in financial mod-
eling. Typically, while many plausible explanatory variables exist, we often lack a 
hard theory as to how all these factors effect the prices of financial assets, partly 
because the effects can be non-linear and time-lagged. In the case of delta hedging, 
while a significant literature exists in finance concerning the factors that can impact 
on trading costs and consequently on a hedging strategy, we do not have clear guid-
ance on how best to design a delta hedging strategy based on these. Many real-world 
strategies are surprisingly simple, utilising relatively little intra day market informa-
tion, suggesting that notable improvement may be possible from the utilisation of 
more sophisticated approaches. Although risk management via hedging is of sig-
nificant practical importance in finance, no previous study has employed GP for the 
purposes of delta hedging.

3  Data

The data used in this study was drawn from market prices on futures and options on 
the FTSE 100 index. The dataset consists of all recorded traded prices, volumes, bid 
and ask quotations and depths from 2 January 2004 to 31 December 2004. FTSE 
index futures and options markets are very actively traded markets and therefore are 
less subject to known microstructure issues which can cause problems when mod-
eling illiquid markets (Dennis and Mayhew [28]). The FTSE 100 dividend yields 
and the Bank of England LIBOR rates (1 day, 1 week, 2 weeks, 1 month, 3 months, 
6 months, 1 year) were obtained from Datastream. The continuously compounded 
risk-free interest rate for a given option maturity is extracted on a given day using 
the Nelson and Siegel interest rate model [29]. In the rest of this section an overview 
of the high frequency options and futures dataset is provided (Sects. 3.1 and 3.2), 
with an overview of the futures bid-ask information being provided in Sect. 3.3.
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3.1  Option data

In this 1-year intraday option dataset there are in total 75,755,106 records, of which 
41,794,081 are call options and 33,961,025 are put options. The data is split into 
different types including ask quotes, bid quotes, trades and other wholesale trading 
types. The wholesale transactions are associated with large trading volumes and are 
excluded in this analysis. The option data on ask quotes, bid quotes, and trades is 
given in Table  2. Call option quotes are updated more frequently than put option 
quotes although put options are traded more frequently than call options. The analy-
sis in Hull and White [2] also shows that the put options on S&P 500 are traded 
more heavily than call options. The trading hours for FTSE 100 index options are 
from 8:00 to 16:30.

An option contract is characterised by its option type, strike price and maturity 
date. The option moneyness describes the intrinsic value of an option. We measure 
option moneyness as the current underlying price, S, divided by the strike price, K. 
Options with differing moneyness behave differently due to their different sensitivi-
ties to risk factors (i.e. the Greeks) and due to liquidity differences.

Call option traded prices are graphed separately by option moneyness in Fig. 2. 
It is observed, as expected, that the ITM (in the money) options in Fig. 2a are more 
expensive compared with ATM (at the money) options in Fig.  2b and OTM (out 
of the money) options in Fig. 2c. The average traded price, average Black–Scholes 
model (BSM) implied volatility and average delta are also given in Table 3 for all 
available call options and for each option segment. In general, in this dataset, the 
ITM options have the highest traded price, highest BSM implied volatility and high-
est delta.

As the underlying price S changes, the moneyness of the option will also 
change. Options that are close to being ATM (where S is approximately equal 
to K) are very sensitive to changes in the underlying price. Furthermore, options 
that are close to the money have deltas (option price sensitivity to the underlying 
price) that are more sensitive to changes in the underlying price. Such options 
are said to have high gamma (option delta sensitivity to the underlying price) and 

Table 2  FTSE 100 index option raw dataset quotation and trading information summary

This table gives the number of quotation/trading records, mean of Q-D/T-V, standard deviation(Std.) of 
Q-D/T-V, mean of Quot./Price and standard deviation(Std.) of Quot./Price for different quotation types 
for call options and put options. Q-D/T-V is Quoted depth for ask and bid quotation type and trading size 
for Trade. The number of records counts quotation updates for bid and ask and trades for Trade. Records 
from wholesale trading type(K, S) are excluded in the following analysis and therefore not reported

Quote Records Mean Q-D/T-
V

Std. Q-D/T-V Mean Quot./
Price

Std. Quot./
Price

Call Put Call Put Call Put Call Put Call Put

Ask 20,837,796 16,969,620 22.0 25.0 23.9 26.2 413.5 251.5 414.9 195.8
Bid 20,852,385 16,878,053 22.3 26.1 24.2 28.0 404.0 243.5 411.3 190.3
Trade 69,926 78,091 17.8 22.5 50.8 62.2 171.5 116.8 244.2 148.6
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require frequent re-hedging by option market makers. Options that are close to 
being ATM are also the most sought after by customers as they provide more lev-
erage than ITM options with a higher probability of finishing in the money than 
OTM options. If options remain close to the money as they approach maturity the 
gamma of the options increase, thus requiring careful monitoring by delta hedg-
ing option market makers. As the time to maturity reduces and the moneyness of 
options change due to the passing of time and the changing price of the underly-
ing asset the option may become more sensitive or less sensitive to changes in 

Table 3  FTSE 100 index 
options average information

This table gives the average option information by option moneyness 
including the average option price, average BSM IV (implied volatil-
ity) and average option delta

Average price Average BSM IV Average delta

All calls 223 0.586 0.453
ITM 676 1.713 0.657
ATM 125 0.332 0.471
OTM 38 0.152 0.189
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Fig. 2  FTSE 100 index call options price. a ITM call options, b ATM call options, c OTM call options, 
d call options. The options prices versus the option Moneyness (S/K) and the option Time to Maturity. 
The different panels depict option separated by option Moneyness, which is calculated as the underlying 
price (S) divided by the option strike price (K). Call options with moneyness less than one are out of the 
money (OTM) options; greater than one are in the money (ITM) options; around one are at the money 
(ATM) options
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the underlying price. Thus, option market makers may require more frequent or 
less frequent rebalancing to maintain delta neutral portfolios. Furthermore, the 
decision to rebalance the hedge will also depend on factors such as volatility and 
liquidity. Hence a dynamic rebalancing strategy may be more suitable than a fixed 
rebalancing strategy.

This study focuses on ATM options, which are the most frequently traded 
options compared with ITM and OTM options shown in Table 4. In the dataset, 
there are 96 ATM option contracts. On average, an ATM option contract has 606 
trading transactions. These transactions are on average in 38 unique trading days 
which are not necessarily consecutive. The average time to maturity is 179 days. 
The option moneyness and the time to maturity (in days) are calculated by the 
data from its first occurrence.

The hedging window for each option contract in the GP training process is 
decided by its first and last transaction time in the dataset. In the majority of 
cases, the first transaction time is close to the first occurrence time and the last 
trade is 1 day or 2 days before its expiry time. Therefore, the length of the hedg-
ing window of each contract is close to the time to maturity, calculated at its first 
occurrence time in the data.

There are two exclusions applied to the call options data. Firstly, we are hedg-
ing the option for its lifetime therefore options with time to maturity of less than 
30 days are not considered. The second exclusion is due to missing data records 
from the data vendor. It is found in this 1 year options dataset there are 11 trading 
days missing and only 243 days where records are available. Call option contracts 
with a hedging window falling in these 11 missing days are excluded in the hedg-
ing tests. There are 29 ATM option contracts available to use in the hedging tests 
after applying these exclusions, 23 of these contracts were used for in-sample 
training and 6 were used for out-of-sample testing.

Under the BSM, option prices are determined by the underlying price, time to 
maturity (current time to contract expiry), strike price, risk-free rate, and volatil-
ity. All of these inputs except for volatility are observable from the market. In this 
paper the Black–Scholes model implied volatilities, extracted from traded option 
prices, were used to estimate an implied volatility surface using the two-dimen-
sional kernel density smoothing method approach from Cont and Da Fonseca 

Table 4  FTSE 100 index call 
option contracts available

This table gives the option information by option moneyness cat-
egory in the dataset including the number of contracts, the average 
trading records, the average unique trading days and the average time 
to maturity

Total 
contracts 
no.

Average 
trading 
records

Average 
unique trading 
days

Average time to 
maturity (days)

ITM 169 183 11 115
ATM 96 606 38 179
OTM 207 244 27 239
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[30]. The estimated volatility surface is a function of an options moneyness and 
time to maturity. During the hedging process, the implied volatility surface for 
time t was estimated from all options traded 1 h before t.

Delta hedging an option contract is performed by trading the underlying securi-
ties. Ideally, the BSM delta and hedging border should be updated every time mar-
ket information changes but to render the updating process computationally feasible, 
we only update BSM delta and the GP hedging border when the underlying price 
moves at least 3 ticks.

3.2  Futures Data

In the Futures dataset, there are in total 26,271,084 observations from different quo-
tation types, ask quotation, bid quotation, trade and other wholesale trade type. The 
records from the wholesale trade type are excluded from this analysis. Details on 
the mean and standard deviations of the quoted asks, quoted bids and traded prices 
are provided in Table 5. There are around 23 million bid and ask quotation updates. 
However, there are only approximately 3 million trading transactions. The aver-
age trading size is 4.1, which is much smaller than the average bid and ask quota-
tion depth of 14.3. The trading time for the FTSE 100 index futures is from 8:00 
to 17:30. From 26,271,084 records, 15,288 of them are outside of this trading time 
period and are therefore deleted.

Compared with the option dataset in Table 2, the futures dataset has fewer quota-
tion updates than the options dataset with 11.8 million updates for ask quotes and 
11.5 million updates for bid quotes. However, the number of trading transactions is 
larger at approximately 3.0 million.

There are in total 26,271,084 transaction records in the FTSE futures dataset. 
Only contracts with a maturity date closest to the next expiry date, which are the 
most actively traded contracts, are included in the spot price calculation. After 
exclusions are applied, there are 2,902,544 trading records included in hedging tests 
to calculate spot prices, which are used in implied volatility and delta calculations.

Figure 3 gives the FTSE 100 futures daily closing traded price. The graph shows 
that from the beginning of 2004 until mid-July the market price trend is quiet flat, 
with the market then showing a slight increase until the end of 2004.

Table 5  FTSE 100 index futures raw dataset quotation and trading information summary

This table gives the summary information of the Futures Raw Dataset including number of quotation 
updates/trading transactions, the mean and standard deviation (Std.) of Q-D/T-V, the mean and standard 
deviation (Std.) of Price for different quotation types. Q-D/T-V is Quoted depth for ask and bid quota-
tions and trading size for Trade. No. counts the quotation updates for bid and ask and transaction number 
for Trade. Records from wholesale trading type(J, K, S, V) are excluded in the following analysis and 
therefore not reported

Quote no. Mean Q-D/T-V Std. Q-D/T-V Mean price Std. price

Ask 11,811,582 14.3 17.9 45,346.9 1383.0
Bid 11,473,181 14.3 24.9 45,336.7 1395.1
Trade 2,957,085 4.1 21.7 45,133.9 1325.7
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The intraday information is given in the graphs below. Figure 4 shows the daily 
average time duration between trade. On the first day, the average trading duration 
is 6 seconds. It is clear that at the beginning and end of the year, the trading dura-
tion is much longer and the average size of price changes is larger reflecting lower 
volumes and larger price impacts as expected around holidays. Figure 5a shows the 
average absolute price change using traded prices. On the first day of the dataset 
(i.e., 2nd January 2004), the average price change is 0.29, which is less than 0.5, the 
tick size. This is because nearly half of the trades have a zero price change relative to 
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Fig. 3  FTSE 100 index futures daily close price
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Fig. 4  FTSE 100 index futures trading duration
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the previous price. Figure 5b gives the same information excluding trades with zero 
change. In this graph the average price change are all above 0.5. On 2nd January 
2004, the average price change is 0.68.

3.3  Futures Bid‑Ask Information

In the hedging tests that follow, bid and ask prices are used for the underlying trad-
ing calculation to consider transaction costs. There are 5,492,171 bid quotations and 
5,455,936 ask quotations falling into the time periods where transactions occurred. 
We only consider these bid-ask quotes in this section. All transaction information is 
sorted by the time stamp. Traded prices and bid-ask prices are linked together within 
the same time stamp. If there is no bid or ask quote for a time stamp trade, the most 
recent bid or ask is used. In most cases, there are multiple bids or asks at one time 
stamp, and here the simple average is used. The statistics of the bid-ask spreads in 
Tables 6 and 7 were calculated based on the raw bid and ask information.

The distribution of the bid-ask spreads is provided in Table  6. We find that 0.05 
percent of bid-ask spreads are negative. This is caused by price mismatch, i.e. at one 
time stamp there are multiple traded/bid/ask prices. We use the most recent bid-ask 
spread for these negative bid-ask spreads time stamps as they are caused by the bid-
ask spread calculation method. This only accounts for a very small percentage of the 
full data therefore the impact on the overall testing results will not be significant. 
The median of the bid-ask spread is 0.5, which is the tick size. It indicates that the 
bid-ask spread is very narrow in this market. The mean and standard deviation in 

02−Jan−2004 02−Apr−2004 02−Jul−2004 01−Oct−2004 31−Dec−2004
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Fig. 5  Average absolute FTSE 100 index futures traded price changes. a gives the average absolute FTSE 
100 futures traded price change. b excludes the trades that have no price changes

Table 6  FTSE 100 index futures bid-ask spreads distribution

This table gives the FTSE 100 Index Futures bid-ask spreads distribution. Bid-ask spreads in the range of 
0.45 to 0.5 take 57.16% of the full dataset

B-A Sp. ≤ 0 0-0.25 0.25-0.35 0.35-0.4 0.4-0.45 0.45-0.5 0.5-0.75 0.75-1 > 1

% Total 0.12 3.16 1.88 1.29 1.26 57.16 14.92 17.24 2.98
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Table  7 show some trading trends across a day. The broadest bid-ask spreads, in 
general, are from the end of the day and are very volatile. After that the lunch time 
bid-ask spread is the second broadest during a day’s trading though its volatility is 
smaller than at opening time.

4  Methodology

In this section we outline the experimental approach taken. Initially we describe 
the time based hedging strategies which are used to benchmark the results from our 
GP-evolved hedging strategies. Next, we describe the GP implementation, including 
choice of terminal set (which is motivated by the finance literature), and definition 
of the fitness function employed.

4.1  Time based strategies

In time based hedging strategies, rebalancing occurs at uniform time intervals. Seven 
rebalancing frequency (level) strategies are examined where re-hedging occurs at: 
5-min, 10-min, 20-min, 30-min, 1-h, 5-h and 1-day intervals. The 5-min interval is 
selected as the minimum rebalancing time interval, as the typical choice for mode-
ling high frequency financial data is 5-min or lower to avoid distortions from market 
microstructure effects (Ait-Sahalia et al. [31]). The FTSE 100 index futures market 
starts at 8:00 and ends at 17:30. For the highest frequency (5-min intervals) there 
are 114 trading opportunities each day. There is only one trading opportunity for the 
lowest frequency 1-day interval as in Table 8.

4.2  GP Implementation

An overview of the general GP process adopted is shown in Fig. 6. In the first step, 
all candidate solutions are encoded to a syntax tree, which is the standard represen-
tation used in GP. In the second step, a population of individuals (trees) is randomly 
created. In the third step, each individual in the population is evaluated by a fitness 
function and assigned a fitness value. The termination conditions are checked in step 
4. If any individual in the current population matches the defined criteria, then the 
GP process terminates. Otherwise it goes to the next step, where parents are selected 
from the current population based on their fitness measurement. There are three par-
allel processes in step 6, crossover, mutation and reproduction which produce child 

Table 7  FTSE 100 index futures bid-ask spread statistics by trading hour

This table gives the mean and standard deviation of bid-ask spreads by trading hour

Hour interval 8 9 10 11 12 13 14 15 16 17

Mean 0.639 0.621 0.623 0.638 0.647 0.63 0.598 0.583 0.602 0.71
Std. 0.295 0.239 0.239 0.252 0.262 0.248 0.217 0.197 0.232 0.362
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individuals for the population in the next generation (i.e., new hedging strategies). 
How many children will be produced from each of these operators is decided by the 
probability set by the user for each operator. In step 7, individuals are selected from 
newly created children to form the new population, which replaces the old popula-
tion. Subsequent generations repeat the process from step three to step seven until 
one of the termination conditions is matched. The best individual (i.e., hedging strat-
egy in this case) in the final population is then returned as the solution to the prob-
lem of interest.

4.2.1  Strategy Structure

In the experiments, GP is used to determine the selection of relevant market infor-
mation as explanatory variables for the hedging strategy, along with model form 
and model parameters. The real-valued output from this strategy rule is then used to 
determine whether to give the instruction to rebalance in order to achieve the desired 
objective of minimising the hedging error during the option hedging window. GP is 
used to explore the functional form of the hedging border. A graphical illustration 
of the output from GP in this study is provided in Fig. 1. Here, the hedging border 
(or band) associated with bid-ask spreads which creates the rebalancing boundary 
around the delta ratio is depicted. The GP-evolved boundary is a non-linear func-
tion of a number of market variables including recent traded price, trading volume, 
implied volatility, and a number of other market attributes listed in Table 10 which 
are used to measure market conditions. When the current hedge ratio moves outside 
the boundary the GP-evolved hedging strategy gives an instruction to rebalance the 
hedged portfolio to bring it back into the transaction region. The flowchart for the 
GP application to the optimal hedging problem is given in Fig. 7.

4.2.2  Parameters

In the experiments the population size is set at 2000, each run consists of 50 genera-
tions, and the experiments are run 30 times during training. A large population size 
is employed in order to avoid corner solutions. To reduce the chances of over fitting, 

Table 8  Time based rehedging 
strategies

This table gives the daily rebalancing number for different time 
based rehedging strategies

Frequency Number of possible 
rehedges per day

Every 5-min 114
Every 10-min 57
Every 20-min 28
Every 30-min 19
Every 1-h 10
Every 5-h 2
Every 1-day 1
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a relatively small maximum tree depth of 5 is selected. The terminal set and function 
set are reported in Tables 9 and 10.

4.2.3  Fitness Function

In this application, GP is used to solve a path dependent minimisation problem. The 
hedging border from the GP, as depicted in Fig. 7, has two important functions dur-
ing the hedging process. First, it instructs when to rebalance, i.e., when the quantity 
of the current underlying held, ϕ , is outside the boundary of BSM delta Δ± hedging 
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band ( β ). Second, it instructs how much to rebalance, i.e. the portfolio is adjusted so 
that the underlying position held is altered to the closest edge of the border, Δ ± β.

Each time the market information updates, the investor’s overall net portfolio value 
changes, due to changes in the value of FTSE 100 index futures or changes in the value 
of FTSE 100 index options held. The portfolio value is also net of accumulated financ-
ing costs. When the short option position is closed out, the hedging process terminates 

Fig. 7  GP based optimal hedging flowchart
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and the position in the underlying futures is sold. The final hedging error is then cal-
culated as the sum of all cash flows, including the positive cash flow from selling the 
final underlying holding, the negative cash flow from closing the option position and 
the accumulated hedging costs that occurred during the whole hedging window. The 
accumulated hedging costs during the full path are from the underlying trading and 
interest charges on financing the trade as in Eq. 1, where ϕ is the number of units in the 
underlying futures contract, s and p are the prices of the underlying futures and option 
contracts respectively, t is the end of the hedging window, 0 is the beginning of the 
hedging window, ϕ

0
 is the initial number of units of the underlying to purchase when 

the option is initially written, given by the BSM Δ at time 0, j indicates the time stamp 
whenever the market information changes in the hedging window, θ is the quantity of 

Table 9  GP terminal set in option delta hedging

This table gives the elements in GP hedging strategy terminal set

Underlying traded price
Dividend yield
Option moneyness
Time to maturity
BSM implied volatility
Risk-free interest rate
Underlying price change duration
Option BSM delta
N

�

(d
1
) : Numerator of BSM Gamma calculation

Option BSM Gamma
Underlying ask price
Underlying bid price
Log of trading volume
Bid-ask spread, the difference of ask and bid price
Bid-ask spread change compared with 1 min ago

Table 10  GP Function Set in Option Delta Hedging

This table gives the elements in GP hedging strategy function set

Addition
Subtraction
Multiplication
Division
Normal cumulative distribution function
Exponential function
Natural log
Square root
Cube root
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the underlying position that needs to be adjusted with a value assigned in Eq. 2 and int 
is the accumulated interest charged daily on accumulated cash balance.

The futures contract price is used in the evaluation of the hedging process as 
opposed to the underlying spot price of the index. This reflects the hedging process 
of options traders more effectively as it would be very costly for the market maker to 
hedge their written option exposure by trading in the basket of 100 stocks that underly 
the FTSE 100 index. On the other hand, trading in futures contracts is a cost-effec-
tive approach to delta hedging written options as the futures price is closely related 
to the spot index price. We adjust the delta of the options to account for the differ-
ence between the spot price and the futures price so no bias is introduced by hedging 
with futures as opposed to hedging with the spot index. Furthermore, we account for 
the transactions costs incurred by delta hedgers using futures contracts. Delta hedgers 
maintain their options portolios delta neutral by purchasing futures contracts at the ask 
price and by selling futures contracts at the bid price hence we assume market makers 
pay the full bid-ask spread in their trading. Although we do not take other trading costs 
such as price impact or trading commissions into account these will be very small in 
the liquid FTSE 100 futures market.

The final hedging error (FHE) is a common measure used to evaluate hedging strat-
egies, for example, Zakamouline [17] uses the same measure labelling it as replica-
tion error. Essentially, it is the profit and loss measure of the hedging strategy, and 
as such can be positive or negative. In this application the objective is to get a solu-
tion, which gives the hedging error as close as possible to zero. Two error measures 
(or norms) that can be used to produce a scalar value from the vector of hedging errors 
for the fitness function are the mean absolute error (MAE) and root mean squared error 
(RMSE). There is no difference between MAE and RMSE when errors in a sample are 
evenly distributed. RMSE is higher than MAE when the sample includes large outlier 
errors. The GP-evolved hedging strategy is expected to derive robust results across all 
option contracts. Hence a strategy that has large outlier in errors needs to be penalised. 
Therefore the fitness function is chosen to be RMSE as in Eq. 3 below, where, FHEi is 
the final hedging error from the ith option contract as calculated in Eq. 1 and n, is the 
option contract number available in the training dataset.

where

(1)FHEi = ϕt × st − pt +

(
p
0
− ϕ

0
× s

0
+

t−1∑
j=1

(θ × sj + int)

)

(2)θ =

⎧⎪⎨⎪⎩

Δ − β − ϕ ϕ < Δ − β

0 if Δ − β ≤ ϕ ≤ Δ + β

Δ + β − ϕ ϕ > Δ + β

(3)fitness function =

�∑n

i=1
FHE2

i

n
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A smaller fitness function means the market maker is taking on less risk as the 
written option is closely replicated by the position in the futures contract at all times 
in the rebalancing process. Hence this fitness function is considered an appropriate 
fitness function to use in optimising the rebalancing decisions of the market maker.

5  Results

In assessing the results of the GP-evolved hedging strategy, we benchmark it against 
seven time based exogenous delta hedging strategies, across all 29 ATM call option 
contracts. Following Martellini and Priaulet [32] and Zakamouline [17], this study 
compares the performance of alternative hedging strategies in a mean-variance 
framework. The mean and standard deviations of each hedging strategy are reported 
for all strategies (averaged over the 29 contracts) in Table 11. For the GP-evolved 
strategy there are in-sample training results and out-of-sample results and we pro-
vide comparative results for both the full sample (including training and testing) and 
the out-of-sample dataset separately.

The performance for seven time based strategies from the full dataset is illus-
trated in Fig. 8, where the left vertical axis is the mean hedging error, the right verti-
cal axis is the standard deviation of the hedging error and the horizontal axis is the 
hedging frequency. On the horizontal axis, the frequency increases from right to left. 
Therefore we expect to see the mean and volatility (standard deviation) of the hedg-
ing error to reduce as the hedging frequency decreases from right to left.
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Fig. 8  Hedging errors from time based strategies. The horizontal axis is the rehedging frequency: 1 is 
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ard deviation. The linear trend is given in each figure. The mean hedging error and its trend line are in 
Red; the standard deviation and its trend line are in black (Color figure online)
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The trend lines in Fig. 8 show that the relationship between the average hedg-
ing error and the rebalancing frequency is as expected for the category of ATM 
call options. That is when the rebalancing frequency increases the hedging error 
(indicated by the trend line of the mean hedging error) and risk (indicated by 
the trend line of the standard deviations) decrease. The usual risk-reward trade-
off exists also as delta hedged returns increase with the risk of the delta hedged 
portfolio, albeit this relationship is not monotonic (e.g. between rebalancing fre-
quency 4 and 5) which could be explained by market microstructure frictions.

In the mean-variance framework the minimum variance hedging strategy 
should give the lowest hedging error mean and standard deviation. In Table 11 the 
mean hedging error for the GP-evolved strategy gives the lowest of all the hedg-
ing errors with a value of 21.78 using the out-of-sample data. The performance 
of the seven time based strategies are similar to each other with the lowest hedg-
ing error (within the time based strategies) being 36.00 using a 5-min frequency. 
The GP-evolved strategy reduces the hedging error of the 5 min frequency rebal-
ancing strategy by approximately 40%. The t-statistic of the difference in means 
between the GP and 5-min strategies is − 2.39 which is statistically significant 
with a p value of 0.038.

The GP-evolved strategy has the lowest hedging error standard deviation equal to 
104.65 amongst all the strategies considered. The 5-min rebalancing strategy has the 
next lowest hedging error standard deviation at 107.91 which is 3.1 percent higher 
than the GP strategy although not statistically significantly different. Overall, the 
GP-evolved hedging strategy performs better than the time based strategies in terms 
of mean and variance.

The average number of trades and standard deviation of trades from each strategy 
per contract are listed in Table 11. The trading frequency from the GP-evolved strategy 
is higher than the 5 min strategy although it should be noted the bid-ask transaction 

Table 11  Hedging performance

This table gives the rehedging performance for the out-of-sample and the full-sample data based on dif-
ferent time based rehedging strategies and the GP strategy. The performance indicators include the mean 
and standard deviation (STD) of the hedging errors and the number of trades (i.e.  the number of times 
the portfolio was rebalanced)

Strategies Out-of-sample (6 contracts) Full-sample (29 contracts)

Hedging errors Number of trades Hedging errors Number of trades

Mean STD Mean STD Mean STD Mean STD

5-min 36.00 107.91 8075 0 75.51 79.40 8959 0
10-min 39.06 108.41 4038 0 78.90 79.97 4479 0
20-min 39.39 111.49 1983 0 80.96 81.04 2200 0
30-min 42.77 108.78 1346 0 82.33 79.28 1493 0
1-h 40.22 111.35 708 0 82.02 82.77 786 0
5-h 45.30 110.13 142 0 86.97 81.95 157 0
1-day 46.96 116.57 71 0 89.79 85.56 79 0
GP 21.78 104.65 9557 4920 63.92 78.39 10981 4912
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cost has been taken into account in these tests so higher frequency strategies have been 
penalised appropriately.

Table 12 demonstrates that the GP-evolved strategy trades more frequently in time 
periods of higher liquidity and less frequently when the market is less liquid. For exam-
ple, there are two option contracts that were hedged from November to December with 
96 trades per day on average from the GP evolved strategy. The daily average trad-
ing duration during this time period is 4.2 s which is the longest of all the other time 
periods considered. Similarly in the November to December time period trading vol-
ume reaches its smallest value and the bid-ask spread is the highest of all the periods 
considered. Finally, the annualised standard deviation of returns suggests the Novem-
ber to December time period was a period of low volatility in comparison to the other 
time periods. In this case the GP-evolved strategy is recognising that in periods of low 
liquidity the portfolio can be rebalanced less often to reduce costs (as lower liquidity 
means higher bid-ask spreads on the futures contracts which makes rebalancing more 
expensive). Furthermore, in periods of lower volatility (as measured by lower annu-
alised standard deviation of returns) the GP strategy hedges less frequently as there 
is less of a requirement to hedge when returns are more stable. In summary, the GP-
evolved strategy successfully identifies periods of lower liquidity and lower volatility 
and exploits this information by rebalancing less frequently in these conditions.

Finally, we look at the form of the evolved hedging strategy. The control variable 
referred to as the hedging border (HB) takes a GP tree form as given in Fig. 9. The 
mathematical form of the GP is given in Eq. 4 where N(⋅) denotes the normal cumula-
tive distribution function (CDF). The three variables selected by GP to model the hedg-
ing border (above or below which rebalancing takes place) are trading duration (s7), the 
logarithm of trading volume (s13) and the futures contract bid-ask spread (s14). These 
three factors are related to specific volatility and liquidity dimensions of the FTSE 100 
market and concord with features identified in the financial literature. 

(4)HB = (es13−s7)
2

×
N(s13 − s7)

2es14

Fig. 9  Function form of Hedg-
ing band (HB). s7: the trading 
durations; s13: the logarithm 
trading volume; s14 the bid-ask 
spread
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The first term in the hedging border (HB) equation (Eq. 4) depends on the expo-
nential of the difference between the logarithm of the trading volume and trading 
duration. The HB increases as the trading volume increases relative to trading dura-
tion. When trading volume is high and trading duration is low this is indicative of a 
decrease in information asymmetry. In this lower risk environment the HB increases 
and the GP reduces the resulting rebalancing frequency. The second term in the HB 
depends on the ratio of the normal CDF of the difference between the logarithm of 
trading volume and trading duration relative to the exponential of the bid-ask spread 
in the futures contracts. This term captures the importance of measuring the dif-
ference in trading volume and duration relative to the bid-ask spread rather than in 
an absolute fashion. The bid-ask spread is increasing in illiquidity and risk. A pos-
sible interpretation of this term is that as the volume duration difference falls after 
adjusting by liquidity and risk, this may also justify a reduction of the HB, as the 
position becomes more dynamic (lower volume and higher trading frequency) and 
therefore, requires more frequent rebalancing. The use of the normal CDF results in 
the HB responding quickly to non-extreme values of the volume duration difference 
(i.e. when the difference is between plus or minus 2) but responding less sensitively 
to extreme values of the volume duration difference.

6  Conclusions

Effective hedging of derivative securities is of paramount importance to derivatives 
investors and to market makers. Although the standard delta hedging approach is 
widely used, there is no simple way to determine when rebalancing should occur 
with market participants often using simple, deterministic, strategies to update the 
hedge. In this study we develop a rebalancing trigger based on the output from a GP-
evolved hedging strategy that rebalances the portfolio based on dynamic, non-linear, 
factors related to market conditions, derived from the theoretical literature, including 
a number of liquidity and volatility factors. We use high-frequency intra-daily data 
from the UK market which incorporates realistic transaction costs associated with 
rebalancing the hedged portfolio to evaluate hedging performance. The performance 
of the GP evolved strategy is evaluated against a number of time-based deterministic 
hedging strategies ranging from 5 min to 1 day.

The GP-evolved hedging strategy that conditions rebalancing on factors related to 
the liquidity and volatility of the market is found to produce statistically significantly 
better performance than the time based strategies that rebalance in a determinis-
tic manner. The GP strategy trades more frequently during time periods of higher 
liquidity and less often when the market is less liquid. Similarly, the GP strategy 
hedges less frequently during periods of lower volatility. Returning to our research 
question, it appears that GP has the potential to optimise hedging performance when 
realistic transaction costs are incorporated. Overall, our analysis supports the con-
tention that GP provides a useful approach to improve risk management in the non-
linear, dynamic and data intensive environment of high frequency options trading.
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There is considerable scope for further research in this area. A useful area for 
future work could focus on using a GP-based hedging strategy with a joint objective 
function of maximising delta hedged returns whilst minimizing delta hedged risk.
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