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Overview

Genetic Programming: Syntax & Semantics

1. Setting the Stage

» What is Natural Computing?
» What is Evolutionary Computation?
> An Introduction to Genetic Programming (GP)

2. Grammar-based GP

3. Semantic methods & Open Issues in GP
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Semantic Methods & Open Issues in GP
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Sema ds

v

Over dependence on fitness (single point)

v

Credit Assignment

v

Semantic analysis of evolving populations

v

Semantic-aware program construction

» Semantic-aware search operators




0¢‘.

H UCD CASL Natural Computing

8 Complex &.adaptive systems Laboratory and Optimisation

. &

Attribute Grammars - Adding Semantics to Solution Construction

maximise ZPJ'XJ‘ (1)
=

n
subject to Z wiixj < ¢, i=1...m (2)

=
x; € {0,1}, j=1...n (3)

items

K lim(K) = lim(S) @
K—1 weight(K) = weight(K) + weight(I)
Condition : if(usage(K) + weight(I) <= lim(K))
items(K) = items(K) + item(I)

Ki—1K:  weight(K:) = weight(K1) + weight(I)
items(K) = items(K;) + item(I)
usage(K;) = usage(K:) + weight(I)

Condition : if(usage(K1) < lim(K:))
lim(K2) = lim(K:)
usage(K>) = usage(K1)
items(K) = items(K1)

items

lim | 10

wsage |(1040)= 10
[weigh 3| &

item _id

weight| (0+0)= 0

I—i item(I) = “i,”
Condition : i (notinknapsack?(i1))
weight(I) = weight(ix)

lems | "i3"4+7id"+i6

I—in item(I) = “i,”
Condition : i (notinknapsack?(iy))
weight(I) = weight(in)

i6=0

Where, p; refers to the profit, or worth of item j, X; refers to the item j, wj; refers to the relative-weight of
item j, with respect to knapsack i, and c; refers to the capacity, or weight-constraint of knapsack i. There: are
present j=1...n items,and i =1 m knapsacks.
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» Crossover
» Mutation

» Semantic Locality & Diversity
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emantic Similarity Crossover

Algorithm 1: Semantic Similarity based Crossover

select Parent 1 Py;
select Parent 2 Py;
Count=0;
while Count<Max Trial do
choose a random crossover point Subtree; in Py;
choose a random crossover point Subtree; in Py;
generate a number of random points (P) on the problem domain;
calculate the SSD between Subtree; and Subtree; on P
if Subtree, is similar to Subtree, then

execute crossover;

add the children to the new population;

return true;

else
L Count=Count+1;

if Count=Max _Trail then

choose a random crossover point Subtree; in P;;
choose a random crossover point Subtree; in Py;
execute Crossover;

return true;
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mpling Semantic Distance

Based on SS, we define a Sampling Semantic Distance (SSD) between two sub-
trees. It differs from that in [24] in using the mean absolute difference in SS values,
rather than (as before) the sum of absolute differences. Let U = (u1,u2,...,un) and
V = (v1,v2,...,vn) represent the SSs of two subtrees, S1 and S; then the SSD between
Sy and S; is defined in equation 1:

. &

N, Ui — Vi
SSD(SI,Sz):Ei‘”'N’ ! o

We follow [24] in defining a semantic relationship, Semantic Similarity (SSi), on
the basis that the exchange of subtrees is most likely to be beneficial if they are not se-
mantically identical, but also not too different. Two subtrees are semantically similar if
their SSD lies within a positive interval. The formal definition of SSi between subtrees
§1 and §; is given in the following equation:

SSi(S1,52) = TruthValue(a < SSD(S1,52) < B)

where o and B are two predefined constants, the lower and upper bounds for semantics
sensitivity. In general, the best values for these semantic sensitivity bounds are problem
dependent. In this work we set o = 10~* and several values of § were tested.

Functions Training Data Testing Data

Fi=x*+x*4+x*+x 20 random points C [-1,1] 30 points C[0:0.05:1.5]
F=x*-x*—x—1 20 random points C [-1,I] 30 points C[0:0.05:1.5]

F3 = arcsin(x) 20 random points C [-1,0] 30 points C[-1:0.67:1]
Fy= \/} 20 random points C [0,2] 30 points C[0:0.1:3]
Fs5 = 0.3sin(2mx) 20 random points C [-1,1] 30 points C[0:0.05:1.5]

Fs = cos(3x) 20 random points C [-1,1] 30 points C[0:0.05:1.5]
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Table 3. Comparison of the effects of SC, SSC and SySC on GP performance (mean of
the best fitness). The values are scaled by 102.

Xovers A 12 F Fy Fs Fs

SC 1.51 3.07 0.37 0.96 436 148
SySC6 1.63 3.20 0.46 1.06 442 1.46
SySC8 1.49 3.50 043 099 436 1.98
SySC10 1.56 3.08 0.39 1.18 441 2.04
SSCo04 0.78 1.30 0.20 0.58 336 0.67
SSCO05 0.85 1.40 021 061 328 0.81
SSC06 0.87 1.70 0.22 0.38 344 0.92
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Open Issues

Identifying appropriate representations for GP
Fitness landscapes & problem difficulty in GP
Static vs. Dynamic Problems

The influence of biology on GP

Open-ended evolution in GP

Generalisation in GP

GP Benchmarks

GP and Modularity

The Complexity of GP
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Open Issues

10 Miscellaneous issues:

The Halting Problem

How much Domain Knowledge?
GP Theory

Constants in GP

Bloat

Distributed GP

The Elephant in the Room!
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