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Abstract— Accurate, real time, continuous ocean wave height
measurements are required for the initialisation of ocean wave
forecast models, model hindcasting, and climate studies. These
measurements are usually obtained using in situ ocean buoys
or by satellite altimetry, but are sometimes incomplete due
to instrument failure or routine network upgrades. In such
situations, a reliable gap filling technique is desirable to provide
a continuous and accurate ocean wave field record. Recorded
on a land based seismic network are continuous seismic signals
known as microseisms. These microseisms are generated by the
interactions of ocean waves and will be used in the estimation
of ocean wave heights. Grammatical Evolution is applied in
this study to generate symbolic models that best estimate ocean
wave height from terrestrial seismic data, and the best model
is validated against an Artificial Neural Network. Both models
are tested over a five month period of 2013, and an analysis of
the results obtained indicates that the approach is robust and
that it is possible to estimate ocean wave heights from land
based seismic data.

I. INTRODUCTION

Significant wave height (SWH) is a commonly used ocean
wave parameter, regarded as a good representation of the
ocean wave state for a given time period. Accurate and
continuous records of SWH are important as they are often
used when initialising ocean wave forecast models or in
generating accurate hindcasts, both necessary to a broad
range of industries. Current methods suffer from spatial and
temporal resolution issues as well as discontinuities due to
equipment failure and maintenance.

The data used in the development of the models presented
here are from Ireland and the Northeast Atlantic Ocean.
Microseism data is recorded on land based seismic stations
throughout Ireland and SWH is recorded offshore at buoy
K4 located off the Northwest coast, (see Fig.1 for locations).
Given the record wave heights that have been measured off
the coast of Ireland in recent years there is particular interest
in assessing the wave record for climate studies and energy
studies looking to harness this energy. These studies require a
continuous, high resolution dataset and the method presented
here is a step towards this.

In this study, the Grammatical Evolution system [1] was
used to generate predictors of wave height quantification,
using land-based seismic data. The obtained models were
validated against a Neural Network approach. Both systems
generate accurate wave height models, with Grammatical
Evolution generating compact symbolic models, which can
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be analysed and potentially further optimised. The results
obtained show the potential of the application of evolutionary
methods to this problem domain.

The structure of this paper is as follows. Section II
provides an introduction to the domain of Wave Height Quan-
tification, including an introduction to the use of microseisms
as wave height predictors, and an overview of previous
work. Section III presents the evolutionary system used, with
Section IV presenting the experimental methodology of this
study. Finally, Section V presents and analyses the results
obtained, and Section VI concludes and presents future work
directions.

II. WAVE HEIGHT QUANTIFICATION

Ocean gravity waves are surface waves that occur on
the interface between oceans and the atmosphere. They are
generated by wind blowing over stretches of water and can
range in size from centimetres to tens of meters high. Typical
ocean wave periods range from 1-30 sec. Ocean wavelengths
range from 1.5m to 1.5km and wave velocity from 1.5m/s
to 48m/s, with an 8 second ocean wave capable of travelling
up to 45km/hr in deep waters. Deep water is defined as
water depths greater than one half of the wavelength of the
wave. They are directly influenced by changes in atmospheric
conditions with the largest ocean waves corresponding to the
strongest winds.

The Northeast Atlantic Ocean off the west coast of Ireland
has one of the most energetic wave climates in the world with
average annual significant wave heights (SWH), the average
of the highest one third of waves recorded, between 2.5-
3m. This average is significantly higher in winter months,
with the current ocean buoy network in Ireland recording
the largest SWH of 20.4 m to date in December 2011.
Many industries, from fishing to coastal engineering and
climate studies, rely on accurate sea state condition forecasts,
in particular when the environment can be very rough and
changeable. In terms of climate studies, analysis often needs
to be done on the longest time series available. In order to
provide accurate and reliable wavefield measurements and
marine forecasts, continuous, high-resolution measurements
of the sea state are needed.

At present ocean wave heights are measured using in
situ ocean buoys, passively using satellite altimetry, and
numerically using ocean wave models. Ocean buoys provide
a good temporal resolution, off the west coast of Ireland, with
SWH being transmitted once per hour, but have a poor spatial
resolution with up to hundreds of kilometres between buoys
(Fig 1). Also, due to the harsh conditions in the NE Atlantic,
these buoys can often experience technical difficulties which
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can take time to repair, leading to data gaps and missing
wave height information. Satellite altimetry on the other hand
provides excellent spatial resolution covering entire areas of
the ocean at a time, with accuracy of a few centimetres
and homogeneous measurements with 1 measurement per
second every 7 km in all weather conditions [2]. This method
however, suffers from extremely poor temporal resolution for
measuring ocean wave heights in real time, with the return
period passes ranging from 10 days to 35 days [2], [3].
Satellite altimetry can be used to track large storm cells as
they evolve and move along a storm path since they occur
over long time periods, but cannot be used as a real time
ocean wave height monitoring tool.
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Fig. 1. Buoy and seismometer networks in Ireland.

There have been significant improvements in numerical
wave models in recent years with the introduction of coastal
reflection and associated effects [4]. As with any numerical
model, there are associated errors due to incomplete under-
standing of the physics of the medium.

Taking the benefits and limitations of the current methods
for measuring ocean wave height into account, we attempt
to develop a method for estimating ocean wave heights at
multiple locations using seismic waves, recorded on land,
that are directly associated to the ocean wavefield.

A. Seismic Data

Ocean gravity waves exert a vertical pressure profile in the
water column beneath them. If this wave is a propagating or
travelling wave, its pressure profile drops off exponentially
with depth [5]. For such a wave, if the water depth is
shallow enough, less than half the wavelength of the ocean
wave, the pressure exerted vertically downwards by the
wave can transfer energy into the subsurface. This usually
occurs as the wave interacts with the sloping seafloor near
coastlines as waves break [5]. When energy is transferred into
the subsurface it generates very small, continuous, ground
vibrations, known as microseisms.

In the case of a standing or partial-standing wave, where
two opposing propagating ocean waves interact with almost
the same frequency, the pressure profile of the standing ocean
wave does not decay with depth, due to second order non-
linear effects [5], and is constant from sea surface to sea floor.
The energy transferred into the subsurface by the pressure
fluctuations generated by a (partial-) standing wave is much
greater and the resulting microseisms are much stronger and
are the main focus of this study. This transfer of energy is
independent of depth.

When generated by a propagating wave, the resulting
microseisms are known as primary or single frequency
microseisms, and they have the same period as the causative
ocean wave. The typical period of primary microseisms
is between 10-20 seconds. Secondary or double-frequency
microseisms are generated by standing waves and have
approximately half the period of the causative ocean wave,
with a typical range of 3-10 seconds. Microseisms travel
primarily as Rayleigh waves, with a retrograde ellipsoidal
motion and a propagation speed of 3000 ms~! [5], and are
detectable at seismic stations on land and can be observed
throughout the world. The signals vary in space and time
as the ocean wavefield conditions are constantly changing,
driven by atmospheric forcings.

Inversion of secondary microseism amplitudes for ocean
wave height estimation has been done before but never from
an evolutionary approach. Both Bromirski [6] and Ardhuin et
al. [7] determined ocean wave heights at a buoy located off
the Californian coast using seismic data from a single inland
station quite successfully. Empirical methods were used [6]
for this inversion which required time series information for
the buoy including directional properties of the ocean wave
field and microseism source location.

B. Previous Work

Evolutionary approaches have been used before in wave
studies. Artificial Neural Networks have been used for real
time wave forecasting [8], improving wave predictions [9],
the hindcasting of storm waves [10] and estimating ocean
wave parameters from wave spectra [11]. Understanding the
interrelationship between wave parameters has also been
investigated [12]. Genetic programming has been used in real
time wave forecasting [13] and the estimation of ocean wave
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heights, with wind information as the input [14] which was
quite successful over the 50 day period presented.

More recently a model of microseism noise generation
and propagation was introduced to determine possible source
locations and, using empirical methods to retrieve the ocean
wavefield frequency spectrum from seismic noise spectrum
it is possible to estimate SWH at that buoy location [7].

These methods require more information than is currently
available to us, and so an evolutionary approach has been
adopted which was entirely data driven, with source location
undefined and limited buoy data (one SWH measurement per
hour), with no access to time series information. The success
of the method thus depends entirely on the correlation and
consistency of the data collected and used for training and
testing.

The methods applied in this study attempt to estimate
SWH at a buoy located off the Northwest coast of Ireland,
using seismic data from multiple seismic stations distributed
throughout Ireland (Fig. 1).

III. EVOLUTIONARY APPROACH

Grammatical Evolution (GE) [15], [1] is a grammar-
based form of Genetic Programming (GP) [16], [17], which
specifies the syntax of potential solutions in a grammar;
this grammar is used to map evolved genotypic strings into
syntactically correct, functional phenotype strings.

GE exhibits similar performance to GP on the symbolic
regression domain [1], while its grammar provides extra
control over the syntax of evolved programs, both in terms of
biases [18], [19] and data-structures used. This allows GE to
be applied to a multitude of domains, such as the evolution
of interpolating models of CO? flux [20], Financial Mod-
elling [21], horse gait optimisation [22], and optimisation of
controllers for video-games [23].

One of the main advantages of using symbolic manipu-
lation techniques is that they create human-readable struc-
tures. These can then be further analysed (and potentially
optimised) by domain experts, thus providing an advantage
over other black-box machine learning methods.

A. Mapping Process

GE is typically applied in a modular process. A variable-
length Genetic Algorithm (GA) creates/evolves binary or
decimal strings; these strings then go through a mapping
process, using a grammar, which creates syntactically correct
solutions. These solutions can then be evaluated in the
problem domain, and their performance measure returned to
the GA.

Grammars in GE are typically represented in a Backus-
Naur Format (BNF). To illustrate the mapping process,
consider the BNF grammar shown in Fig. 2. This grammar
is composed of three non-terminal symbols (<e>, <o>
and <v>) and six terminal symbols (+, -, *, /, x and
1.0). Given a genotype string composed of the sequence
of integers (4, 5, 8, 4, 3, 1, 9, 7), a program
(phenotype) can be constructed, which respects the syntax
specified in the grammar.

<e> <e> <o> <e>

<v>
<o> e B
<v> =x | 1.0
Fig. 2. Example GE Grammar.

This process works by using each integer to choose
productions from the grammar, mapping a given start symbol
(typically, the first non-terminal symbol defined in the gram-
mar) to a sequence of terminal symbols. In this example,
the first integer (4) is used to choose one of the two
productions of the start symbol <e>, through the formula
4%2 = 0, i.e. the remainder of the division (modulus) of the
integer value by the number of productions of the symbol
<e>. This means that the first (0**) production is chosen,
transforming <e> into <e> <o> <e>, which becomes the
mapping string under construction.

The following integer (5) is then used with the leftmost
unmapped symbol in the mapping string, so through the
formula 5%2 = 1 the first symbol <e> is replaced by <v>,
and thus the mapping string becomes <v> <o> <e>.

The mapping process continues in this fashion, so in the
next step the mapping string becomes x <o> <e> through
the formula 8%2 = 0, then x + <e> through 4%4 = 0, and
x + <v> through 3%2 = 1. Finally, the remaining non-
terminal symbol is mapped with 1%2 = 1, and the final
expression becomes x + 1.0, which can then be evaluated.

IV. EXPERIMENTS
A. Input Data

Microseism theory states that the amplitude of displace-
ment is proportional to the square of the causative ocean
wave [5]; in this case, the height of the (partial-) standing
wave. There is a clear relationship between the amplitude of
the microseisms recorded on land and ocean wave heights,
as seen in Fig. 3 (top and bottom panels).

In order to show the relationship between seismic data and
buoy data, the seismic data is averaged in the same way as
the raw buoy data, before being transmitted and stored as the
hourly SWH. The hourly microseism data is then bounded
between an upper and lower limit, to exclude effects due to
anthropogenic and non-oceanic processes. The data is then
median filtered over three points. Each input is then scaled
by a factor of 1 x 105, making the relationship between the
two datasets easier to see, as illustrated in Fig. 3 (middle and
bottom panels).

Inputs to the evolutionary methods are in the form of
hourly microseism amplitude, from five seismic stations dis-
tributed across Ireland (VAL, IAP07, IA004, DSB and IDGL,
see Fig. 1), and the output is in the form of significant wave
height recorded at buoy K4. The period of data collection was
from 1% September 2011 to 30" June 2013, approximately
638 days; however, due to discontinuous data at times, from
both the seismometers and the buoy, approximately 610 days
(14640 samples) of data are used.
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Top panel: microseism amplitude recorded on land at station IDGL. Middle panel: resampled and scaled seismic amplitudes from all five buoys.

Bottom panel: SWH measured at UK buoy K4. Data collection was from 8" to 19t* May 2012.

SWH data is seasonal, in that in winter and summer
months, the wave climate is expected to be at its most and
least energetic (respectively). As such, the day of the year
was also used as an input variable. In order to reduce the
linear cumulative numerical weight of this variable, it was
transformed into a fuzzy value (as seen in previous studies
[20]); Fig. 4 shows the transformation used.

Fuzzy Day of Year Transformation
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0.8 |
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0.6 |
05|
0.4
03 |
0.2

Fday
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Day

Fig. 4. Fuzzy day of year transformation.

B. Evolutionary Setup

Table I shows the parameters used for this study; these
are standard GE parameters [1], and no attempt was made
to optimise them. The initial genotypic strings were created
using a reverse mapping process called Sensible Initialisation
[24]; artificial non-mapping sections (tails) were appended
to these (as per previous studies [25]). A “fair” tournament
selection was used, where every individual participates at
least in one tournament event. Finally, genetic operators were
applied only to mapping regions of chromosomes.

TABLE I
EVOLUTIONARY SETUP
Population Size 500
Generations 50
Derivation-tree Max Depth (for initialisation) 10
Tail Ratio (for initialisation) 50%
Selection Tournament Size 1%
Elitism (for generational replacement) 10%
Crossover Ratio 50%
Average Mutation Events per Individual 1

All five buoy inputs, along with the day of year fuzzy
transformation, were used in the GE grammar (see Fig. 5).
Note that this grammar was automatically transformed, such
that the bias of choice between recursive and non-recursive
grammar productions became the same [19], [25]. The result-
ing grammar specifies the exact same syntax. Also notice the
use of a reduced number of non-terminal symbols, as this has
been shown [18] to improve the performance of GE.
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<e> + <e>
- <e>
* <e>
/ <e>
VAL[1]

e <e>
|
|
|
|
| IAPO7[i]
|
|
|
|
|
|

<e>
<e>
<e>

[i
TA004[1]
DSB[1i]
IDGL[1]
FuzzyDay[i]
<d><d>.<d>
o1 11 2|
51 6 | 7|

<d>

Fig. 5. BNF grammar used for the experiments.

C. Control Experiment

In order to validate the results obtained with GE, a
Supervised Feed-Forward Backpropagation Artificial Neural
Network (ANN) was used in this study. A three-layered
neural network was applied, consisting of an input layer,
a single hidden layer, and an output layer. The Levenberg-
Marquardt optimisation algorithm was chosen for training.
There were five inputs: amplitude at the specified seismic
stations throughout Ireland, and a single output, SWH at buoy
K4.

D. Measuring Performance

Both methods used a training period from 15¢ September
2011 to the 31°¢ January 2013, using the Mean Squared Error
(MSE) as a fitness measure. Once models were derived for
this period, they were tested in a period of unseen data, from
the 1%* February until the 30"" June 2013, comprising of
3387 datapoints. This allowed us to measure the degree of
learning of the applied methods, and to monitor potential
overfitting of the models to the training period.

V. RESULTS & ANALYSIS

100 independent runs were performed with GE; Fig. 6
plots the mean best individual per generation, both in seen
(training) and unseen (test) data. It shows that on average,
GE runs continuously reduce the training error, with a good
correlation to test error. Although there are clear signs of
overfitting occurring, the main trend is of test performance
improvement.

For the ANN, training stopped after 12 iterations with
a best validation performance of 1.0143 at epoch 6 and a
gradient of 0.01712 at epoch 12 with 6 validation checks.
Table II shows error measures (MSE and RMSE) and corre-
lation value and coefficients for both methods. It shows that
the ANN exhibits slightly better training performance, at the
expense of test performance, where the best GE model is
slightly better. The differences are quite small, thus validating
both approaches.

Fig. 7 plots the SWH estimates of GE and the ANN, for the
test period. It shows that both models agree quite well with

GE Model Evolution
Mean Best Train and Test Error

2.4 ‘ . .
Test
22 k
2 -
18}
®
2 18}
1.4 p
12 E
" ‘ ‘ . ‘
0 10 20 30 40 50
Generations
Fig. 6. Training and test performance for the mean best individual per

generation (averaged across 50 runs).

the data measured at buoy K4. The estimates produced follow
the overall trend of the ocean wavefield climate for this test
period, and produce correlation coefficients of r = 0.7895
and » = 0.7714 for GE and the ANN, respectively.

When analysed more closely, there are times at which
both models significantly under- or overestimate the SWH
recorded. The training data contains wave heights up to 12-
13m so the underestimations in the second half of March,
April and May are not due to this. For the 15m SWH
in February, the ANN was never trained on such large
waveheights and given the limited extrapolation capabilities
of ANNs it is possible that this is a result of insufficient
training; the GE model does slightly better in this aspect.
There is a notable overestimation of SWH at the beginning
of March, with estimations following the trend of the wave
record but overestimating by approximately 1.5m over the
entire wave event. Also, if we look at the end of May and
June we can see that the estimate is not in phase with the
measured data.

These approaches are entirely data driven, and so input
data dictates the quality of the estimate produced. For times
when we know that the network is sufficiently trained, in
this case on waveheights up to between 12 and 13m, and the
estimate is an under- or overestimation of the measure SWH
we must look at the input test data. It is possible that the
SWHs recorded at the ocean buoy, the output, are not the
exact ones which generated the secondary microseisms, the
inputs, due to the spatio-temporal variability of the micro-
seism sources. In this case neither model will be capable of
resolving the SWH at the buoy because they are not directly
related to the inputs. It is for this reason that data selection
is so important. Another example can be seen in June 2013
when the estimates produced are out of phase with the target
wave heights. Again, this is a result of the causative ocean
waves and the ocean buoys not being spatially local. Until
more is understood about the exact cause of these delays, it
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TABLE I
ERROR AND CORRELATION MEASURES FOR THE GE AND ANN APPROACHES

Train Period Test Period
MSE | RMSE | MSE | RMSE r m C
GE | 0.8577 | 0.9261 | 1.1289 | 1.0625 | 0.7895 | 0.6307 | 1.0985
ANN | 0.732 | 0.8586 | 1.2040 | 1.0973 | 0.7714 | 0.6559 | 1.1476

A Comparison of Sig. Wave Heights Estimated from GE and ANN
and measured at buoy K4. Feb 1 - Jun 30, 2013
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Fig. 7. Measured and estimated SWH with the GE and ANN approaches.

will limit the predictive capability and real time estimation
of ocean waves.

When there is no delay between the ocean wave height
and microseism amplitude, and their correlation is high, the
resulting estimates are in good agreement with the measured
wave heights. This can be seen for much of the month of
March, at all wave heights, with a correlation coefficient from
March 12th to 31st of » = 0.8240 for GE, and of » = 0.8446
for the ANN. Given these high correlation values, it is clear
that it is possible to use microseism amplitudes to estimate
ocean wave heights from an evolutionary approach.

One of the advantages of using symbolic combination
models, such as GE, is that they are capable of producing
human-readable models, which can be further analysed:
equation 1 shows the best evolved model. It is interesting to
see that only data from the IDGL, VAL and IAPO7 sensors is
used; from Fig. 1, one can see that these are respectively the
northernmost and southernmost sensors, showing that their
different amplitudes and distances to the source location are
exploited by the model, with IDGL (the northernmost sensor,
and closest to the source) being the principal variable. Also

interesting is the use of the fuzzy day of year input, to
dampen the summer estimates.

VAL
2+ IDGL + %45 — Fyie

SWH, = L

ey

Fig. 8 plots the correlation between the measured and
estimated SWH for both methods. There appears to be
saturation in the estimates produced by the ANN, with no
estimation greater than approximately 7.5m produced. This
could be due to the training phase of the network develop-
ment. The frequency of the larger SWH is much lower than
smaller SWH and could result in the network considering
SWH beyond a particular range, outliers, applying a bias
to a damped estimate. Ideally the network would be trained
equally across the entire range of output values but this is
not always possible.

The GE model also exhibits a slight saturation, but around
the 9m value. This saturation is however entirely data driven,
highlighting once again the importance of the quality of the
source data.
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Test Data Correlation for GE (left) and ANN (right) for Feb 1 - Jun 30 2013
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VI. CONCLUSIONS

One of the main benefits of the approach presented is the
ease of the data collection. It is approximately one order
of magnitude cheaper to maintain a terrestrial network of
microseism sensors than it is to maintain a network of in
situ ocean buoys, and if there is a problem with one of the
stations, it is much easier to fix or replace.

Considering the limited information available on micro-
seism source location, the estimations obtained through GE
and ANN models are quite good. There are clear improve-
ments in the correlation coefficient between estimation and
measured SWH when the correlation between test inputs and
outputs are high, and there is no phase delay between them.
If a delay exists, the ability of the network to estimate real
time SWH is hindered. As information becomes available on
source location of the microseisms, only time periods when
microseisms are being generated by SWH recorded at or near
a buoy will be used for testing of the model. In practice, a
model is required for each of the buoy locations (Fig.1), in
order to improve full wavefield estimations. Once trained,
information regarding source location will be considered to
determine which model is suitable and which ocean waves
may be estimated at that time period.

There are many possible avenues of future work to explore.
The grammar used with GE is specifically constrained to
generate coarse constants, in order to minimise constant over-
fitting and improve learning; the constants in the generated
models can thus be further optimised (no effort has been
done to achieve this, in this study).

The evolutionary process with GE still showed signs of

Correlation plots for GE (left) and the ANN (right), for the test period.

improving, beyond the pre-determined number of gener-
ations. It will be interesting to investigate how far can
evolution go, while keeping the resulting models compact
and understandable. Also, to avoid overfitting occurring, a
three-set methodology (train, validation and test) will be
used.

Future work will also include a similar model development
for each of the buoy locations, and utilisation of microseism
source location to determine suitability of these models in
real time, for accurate, continuous SWH estimates in the
Northeast Atlantic.

One of the main incentives towards using a land based
monitoring system for the estimation of ocean wave param-
eters can be clearly seen this winter 2013, with storms in
the Northeast Atlantic, so severe that they caused significant
damage to the ocean buoy infrastructure. Now, rather than a
gap in the ocean wavefield record for these buoy locations,
one can apply the method presented here and reconstruct with
confidence the ocean wave height parameters at that time.
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