
OPTIMISING OFFENSIVE MOVES IN TORIBASH USING A

GENETIC ALGORITHM

Jonathan Byrne, Michael O’Neill, Anthony Brabazon

University College Dublin
Natural Computing and Research Applications Group

Complex and Adaptive Systems Lab
University College Dublin

jonathanbyrn@gmail.com,m.oneill@ucd.ie,anthony.brabazon@ucd.ie

Abstract: Game AI is a collection of techniques that imitate human intelligence in non-player characters (NPC).
The conventional approach to game AI is to implement a specific intelligence for a specific game environment.
In this paper we evaluate an adaptive approach that creates components for game AI. Evolutionary algorithms
(EA) have shown their capability for developing successful strategies on a wide variety of problems. This paper
details the application of a genetic algorithm (GA) to evolve opening moves for the turn-based fighting game,
Toribash. The aim of this paper is to show the applicability of an evolutionary algorithm for game AI and how
its adaptive nature allows it to be applied to a wide variety of game environments. This work also highlights the
suitability of Toribash as a testbed for further EA research.

Keywords: Genetic Algorithms, Artificial Intelligence, Games

1 Introduction

Developing AI for games is normally a bespoke affair. Instead of the striving for a generalised AI like other
fields of machine learning, the settings in which it has to operate i.e., the game environment, is highly restricted.
This means most implementations only exhibit specific intelligence for a particular game. Although this means
that the problems facing the machine learning algorithms is dramatically reduced, it also results in brittle game
behaviour; any change to the game environment can result in the game AI functioning poorly. One solution to
this is to use a machine learning approach to create the AI for the game. Our aim is to implement a GA capable
of producing realistic AI behaviour. This adaptive approach means that changes to the game environment can
be accommodated by allowing the algorithm to adjust the AI, thus minimising human intervention. The direct
benefits from this approach are increased game playability and a reduction in development time. This is an
area of growing interest as users expect to see both realistic and unpredictable behaviours in game agents.

One area that has only seen limited AI development is fighting games. Fighting games involve a one-on-one
engagement with an opponent in real time. The game environment is highly confined, it is normally a small
arena that allows only 2 dimensional movement, and the selection of moves is limited to a small set for each
player.The result is that the computer characters only require limited AI, such as a finite state machine or a
decision tree, to match human performance [10]. Toribash is different. It is a turn based fighting game that
allows you to create your own moves instead of selecting predefined moves. There is also an active community
that create new game environments that are known as mods. The open nature of Toribash and continuous
additions of new game modes makes it a difficult challenge for any single machine learning technique to produce
consistently good results.

Evolutionary algorithms use an iterative process that incorporates variation, selection and inheritance. The
algorithm creates a ‘population’ of possible solutions, selecting the best individuals to create the next generation.
The process is driven by a fitness function, which is used to evaluate the solutions. The fitness function only
specifies how to evaluate the output, not how to accomplish it. By allowing EA’s to explore the problem space,
they are capable of creating novel solutions. EA’s are suited to open ended problems like Toribash as they are
capable of creating innovative solutions with no advanced knowledge of the game environment. Our intention
is to apply a genetic algorithm to Toribash and observe whether it is capable of evolving high scoring moves in
different game environments.

This paper is organised as follows, Section 2 summarises previous applications of adaptive learning tech-
niques. Section 3 describes the game play of Toribash and reasons for investigating it. Section 3.1 discusses our
experimental settings, our choice of fitness function and why we think a genetic algorithm is suitable for this
problem. Section 4.3 and 4.4 describe the experiments carried out on Toribash. Finally, in Section 5 and 6 we
discuss our conclusions and future work.



2 Related Research

Game AI has existed since the first generation of video games. The earliest examples of game AI were arcade
games such as Pac-Man, Space Invaders, Donkey Kong and Joust. These used basic rules and scripted sequences
combined with randomisation, to generate simplistic behaviours. From these modest beginnings a rich and varied
level of different AI types have developed but it is only recently that adaptive learning techniques have been used.
One of the first commercially successful applications was the game Creatures by Stephen Grand [7]. Creatures
used neural networks to govern the behaviour of the in-game characters called Norns. During the course of the
game the Norns would procreate and their offspring would inherit their parents behaviour.Black and White [9]
also used Neural Networks for the AI of their in-game agents. Black and White is a real-time strategy game that
features a unique element, an agent that you can raise and train to do you bidding. This was a very successful
example of machine learning algorithms operating during the execution of the game. Another example of a
combination of Neural Network and EA is also seen in Galactic Arms Race [8]. Galactic Arms Race uses the
cgNEAT algorithm to create game contents such as weaponry based on the players preferences. Currently game
AI tends to focus on tried and tested methods such as Finite State Machines and decision trees [10] because
of their speed but there has been a move towards more stochastic techniques to elicit more realistic behaviours
from opponents. Evolutionary Algorithms have been applied to every level of agent behaviour [4] [10]. GA’s
are used to weight an individual agent’s actions in first person shooters [5] and Genetic Programming (GP) has
been used to evolve high level squad coordination behaviours between agents [6]. The customer demand for
realistic yet unpredictable computer AI means that this is an area of growing interest.

3 Toribash

Toribash [2] is a turn based fighting game that was originally created by Hampus Söderström. It differs from
traditional fighting games as it does not have moves specified in advance for the user. Instead, the game uses
a rag-doll physics engine that allow the user to specify the state of the rag-doll’s joints. In single player mode
the user’s name is Tori and the opponent is called Uke. Each joint can be either extended, contracted, relaxed
or held. The user changes the state of the rag-doll’s joints after a specified number of time steps and the match
finishes after the total number of time steps has been reached. The winner is the player who inflicted the most
damage on their opponent while avoiding being disqualified. Disqualification occurs when a player comes in
contact with the ground with any limb other than their hands or feet, or when the player leaves the designated
arena.

The game has been freeware on both PC and Macintosh since 2007. The game is capable of running additional
game environments called mods. It has a large and active modding community and an open framework for
creating both mods and scripts for player behaviour in the Lua programming language. Different game settings
can be specified by the mods, such as altering the number of times steps in a round, the size of the arena, and
the initial starting distance between players. The mods can also completely change the game mode. There are
mods that alter the player size and shape, add weapons, change the games physics and add objects to the arena.
Some examples of this are shown in Figure 1. The game currently comes with over 1100 mods implementing
various game styles such as; free running, acrobatics, skating, jousting, karate, frictionless environments and
sword fighting.

Access to the game events and settings is through the game API, which is available on the website. The
API allows you to get information on the game state, the joint states and character information. There are also
hooks that allow you to interrupt game play and execute your script after different game events. Toribash poses
an interesting problem for any machine learning algorithm. There is an upper bound on the possible player
configurations but the game play itself is open ended. There are feedback mechanisms such as player position
and player scores and there is an abundance of game environments, each with a different fitness landscape. For
these reasons we find Toribash a flexible testbed for our experiments.

3.1 Application of a Genetic Algorithm to Toribash

At its most basic level, Toribash is a combinatorial problem. There are 20 joints with 4 possible arrangements
and 2 joints with 2 possible arrangements, as shown in Figure 2. For a single move there are 4.4 trillion possible
combinations. To investigate every move would take an unreasonable amount of time. A better approach is
to use a genetic algorithm. A GA samples the search space and then explores the areas that produce the best
results. While it may not find the global optimal solution it is often capable of finding a satisfactory solution.
It is this ability to hone in on effective solutions that make it suitable for Toribash. There are such a plethora of
game types that no single approach could work for all of them. Training bots have been hand coded for certain
game types but they lack generality and even small changes to the game rules can cause them to malfunction.



Figure 1: Different game environments: standard, sword fighting, and bar room brawl

An evolutionary approach avoids this problem by making no assumptions about the game framework. The EA
learns each game type through trial and error which should allow it to adapt to any game setting. This is what
we hope to show in our experiments.

Figure 2: Tori’s joint positions

4 Experiments and Results

Our intention in applying a GA to Toribash is to examine whether it is capable of obtaining a high score in a
sample of different game environments. A secondary goal is to explore how the GA traverses the search space
and if it is capable of developing rich and varied AI behaviour. In this section we describe how we set up our
experiments, the experiments that were carried out and the results we obtained.

4.1 Experimental Setup

The experiment was carried out by a GA implemented in Lua. The source code for the GA may be downloaded
from the forum [3]. The Toribash scripting interface executed the GA to generate moves. Each move consisted
of a chromosome with 22 integer codons. Each codon specified a particular joints current state, whether it
was extended, contracted, held or relaxed. The joint positions were not grouped in any particular order and
instead used the configuration that was originally specified by the Toribash API as shown in Table 1. In all
our experiments the behaviour of the Uke bot is kept static. The GA evolved a population of size 50 over 50
generations. Thirty trial runs were carried out for each experiment. Generational replacement was used with
an elite size of 2. A one-point crossover operator was used in conjunction with standard integer mutation.

4.2 Fitness Function

The fitness function is what makes selection possible for an EA. A poorly chosen fitness function means that the
algorithm will generate good fitness values but poor results, or in this case, poor behaviour. We have published



Table 1: Configuration values for Toribash Joints, values 3 and 4 always represent hold and relax respectively.

Number Joint Contract/Left/Raise Extend/Right/Lower
0 neck 2 1
1 chest 2 1
2 lumbar 2 1
3 abdomen 1 2
4 right pectoral 2 1
5 right shoulder 2 1
6 right elbow 2 1
7 left pectoral 2 1
8 left shoulder 2 1
9 left elbow 2 1
10 right wrist 2 1
11 left wrist 2 1
12 right glute 1 2
13 left glute 1 2
14 right hip 1 2
15 left hip 1 2
16 right knee 2 1
17 left knee 2 1
18 right ankle 1 2
19 left ankle 1 2
20 left hand NA NA
21 right hand NA NA

our code for the GA on the Toribash forums and this has resulted in a large amount of user feedback about
the fitness function [3]. There has also been significant development of different fitness functions for the GA.
Despite this input, we are using the most basic fitness function for the experiment. The reason is that we want
to reduce the confounding effect of additional fitness parameters and so that it may be used as a baseline for
future fitness function development. The fitness function we use for the algorithm is the score Tori obtains
minus the score Uke obtains. If a player was disqualified then their fitness was set to zero.

4.3 Developing Opening Moves

In this experiment, we compared differing rates of mutation and crossover when applied to both the standard
game mod and the katana sword mod. One of the goals of this experiment is to discover if there is a truly
‘optimal’ move in a static environment with only one time step. The different experimental settings are shown
in Table 2. The results obtained were compared against randomly created individuals. Elitism was used to
store the best randomly generated individual over a run.

Table 2: Experimental settings

Setting Mutation Rate Crossover rate
Standard 10% 70%

Low Mutation 1% 70%
No Crossover 10% 0%

4.3.1 Normal Game Mode Results

The results for the experiment carried out using the normal game mode are shown in Figures 3 and 4. A
one-way ANOVA test was performed to test statistical significance of the results. The results showed that low
mutation with crossover performed no better than randomly generated individuals. While standard mutation
with crossover clearly outperformed randomly generated individuals, it did not outperform the algorithm that
used mutation exclusively. These results would suggest that standard one-point crossover on the current move
representation does not have a beneficial effect. Figure 4 shows that low mutation with crossover is less destruc-
tive on the general population as they have a statistically significant higher average but this did not translate
into better individuals being evolved. At this point we investigated what moves the Tori was actually making.



Samples of Toribash behaviour may be viewed on the NCRA website [1]. The large majority where either head
grapples or direct blows to the head, as shown in Figure 5. This shows that for a single move in the standard
game mode, there is indeed an optimal move. It also suggests a points multiplier for blows to the head, a factor
that could be taken into account in the fitness function. These results show that the GA was capable of evolving
fighting behaviours better than a random search but also that the effect of crossover was minimal.

0 10 20 30 40 50

0
20

00
0

40
00

0
60

00
0

80
00

0
10

00
00

12
00

00
14

00
00

Best Fitness with disqualification

generation

fit
ne

ss

Standard
Low Mutation
No Crossover
Random

Figure 3: Best Fitness for a Single Move

0 10 20 30 40 50

0
10

00
0

20
00

0
30

00
0

40
00

0
50

00
0

60
00

0

Average Fitness with disqualification

generation

fit
ne

ss

Standard
Low Mutation
No Crossover
Random

Figure 4: Average Fitness for a Single Move

Figure 5: Examples from Standard Moves

4.3.2 Sword Game Mode Results

The results for the experiment carried out using the sword game mode are shown in Figures 6 and 7. The
results were similar to the results for the normal game mode. The one-way ANOVA again showed that standard
and no crossover were statistically similar and that low mutation performed similarly to random, although the
addition of weapons has dramatically increased both the score and the variance. Upon investigation of the
moves Tori was making, a far greater range of attacks were found than in the standard game mode. Every
best move generated involved the Tori using the sword. This shows that the GA is capable of learning to use
objects in the environment. While there was no single dominant move, the moves predominantly cut either
vertically through or across the midriff, thus maximising the number of joints severed, as shown in Figure 8. In
conclusion, the GA was capable of using objects in the environment and adjusting its strategy to accommodate
these objects.



0 10 20 30 40 50

0e
+

00
2e

+
09

4e
+

09
6e

+
09

Best Fitness with disqualification

generation

fit
ne

ss

Standard
Low Mutation
No Crossover
Random

Figure 6: Best Fitness with Sword

0 10 20 30 40 50

0e
+

00
2e

+
08

4e
+

08
6e

+
08

8e
+

08

Average Fitness with disqualification

generation

fit
ne

ss

Standard
Low Mutation
No Crossover
Random

Figure 7: Average Fitness with Sword

Figure 8: Example of Sword Moves

4.4 Developing Move Combinations

In this section we investigate whether it is possible for a GA to evolve a coherent sequence of moves. To
accomplish this goal we increased the size of the chromosome so that it could encode for the new moves. We
allowed the GA to evolve 3 move combinations. The experiments were carried out with the same settings as
shown in Table 2. As we have increased the chromosome size to accommodate additional moves, the application
of single point crossover might not be adequate to explore the search space. To take advantage of the move
representation and increase the crossover rate we devised new crossover operators. This section describes in
detail the operation of three new crossover operators we created for evolving move combinations.

4.4.1 Multiple Point Crossover

The multiple point crossover operator selects a point within each move of an individual and then exchanges the
codons up to that point with the other individual. The crossover probability is used to calculate the likelihood
of whether each point is swapped. The repeated application of the probability means there is an increase that
more than one crossover event will occur.

chromosome A

chromosome B

move 1 move 2 move 3

crossover point

Figure 9: Single point crossover

chromosome A

chromosome B

move 1 move 2 move 3

point A point B point C

Figure 10: multiple point crossover



4.4.2 Move Preserving Crossover

Move preserving crossover is similar to multiple point crossover except that the points are always on the
boundary of a move. By swapping whole moves, this operator maintains the integrity of contiguous blocks of
codons. The moves are always swapped with moves of the same sequential order. This operator uses the same
crossover probability technique as multiple point crossover so the is an increase in the probability of a single
mutation event occurring

chromosome A

chromosome B

move 1 move 2 move 3

move 4 move 5 move 6

chromosome A

chromosome B

move 4 move 2 move 6

move 1 move 5 move 3

Figure 11: Move preserving crossover

chromosome A

chromosome B

move 1 move 2 move 3

move 4 move 5 move 6

chromosome A

chromosome B

move 6 move 4 move 5

move 2 move 3 move 1

Figure 12: Move shuffling crossover

4.4.3 Move Shuffling Crossover

Move shuffling crossover takes all the moves in their entirety, reorders them and then recombines them to create
new combinations from the moves. Unlike the previous operators, it is an all or nothing approach. It uses the
crossover probability to decided whether to shuffle the moves or not.

4.5 Move Combination Results

The results for the different crossover operators are shown in Figures 13 and 14. The graphs show a comparison
between a single move and the different crossover operators. A one-way ANOVA was performed on the data and
it showed that allowing for move combinations added a statistically significant (albeit very small) improvement
to the overall fitness. As regards the crossover operators, one-point crossover and move preserving crossover
performed as well as each other, this was followed by multiple point crossover. Move shuffling crossover per-
formed the worst, with results only slightly better than randomly generated results. The average fitness for
multiple point and move shuffling crossover is far below that of the others which implies that these crossover
operators had a destructive effect on the population.

These results would lead us to conclude that the additional moves did not add significant benefit but this is
true only as regards the fitness function. One of the ways we can examine if it uses the additional chromosomes
is by looking at the moves themselves. What we discovered is that approximately 60% of the moves involve a
direct hit or grapple followed by additional blows [1], but in several instances it is clear the Tori is using the
additional moves to his advantage. We have added links to videos showing several examples of this behaviour [1].
This evidence would lead us to believe that if we selected for move chaining in the fitness function then we could
obtain this behaviour more readily.

5 Discussion

Our experiments showed that an evolutionary algorithm was capable of evolving good results for Toribash but
also showed that crossover had either a negligible or destructive effect. This could have been caused by the
representation we chose for the moves. We used the given ordering for moves as shown in Table 1. With the
exception of the pectoral,shoulder and elbow grouping, the limb order moves from the top to the bottom of
Tori. As groups of limbs were not ordered sequentially in the chromosome, this meant that there was no clearly
defined ’building blocks’. The effect of crossover could be dramatically improved if it was possible to choose a
better representation. We also hope to examine if better results can be obtained by using simpler methods such
as a hill climbing algorithm or one that uses mutation exclusively, such as an evolutionary strategy.

6 Conclusion & Future work

In this paper, we set out to examine whether a Genetic algorithm was capable of evolving moves for a selection
of game modes in Toribash. Our results showed that the GA was capable of evolving behaviour for both the
default game mode and the katana sword mod. While crossover did not have a significant impact, our results
showed it greatly outperformed random search. We continued our investigation by allowing additional moves
and creating specialised crossover operators for multiple move evolution. We found that despite the overall
result only being a slight improvement on single moves, that there were several instances where Tori used the
additional moves to his advantage. We conclude that the genetic algorithm has shown that it is possible to evolve



0 10 20 30 40 50

0
50

00
0

10
00

00
15

00
00

20
00

00
Best Fitness for Move Combination

generation

fit
ne

ss

single point
multi point
move preserve
move shuffle
Single Move

Figure 13: Best Fitness for a Move Combination

0 10 20 30 40 50

0
10

00
0

20
00

0
30

00
0

40
00

0
50

00
0

60
00

0

Average Fitness for Move Combination

generation

fit
ne

ss

single point
multi point
move preserve
move shuffle
Single Move

Figure 14: Avr. Fitness for a Move Combination

complex behaviours for Toribash. In our future work, we will compare our current approach with other search
methods such as hill climbing and EDAs. We intend to develop the move representation so that crossover has a
beneficial impact. Once this has been accomplished we hope to use Toribash as a testbed for the coevolution of
bots. This will allow us to compare different machine learning techniques and examine the generic qualities of
their behaviours. We can then test the bots on-line to examine if they are truly comparable to human playing.

7 Acknowledgments

We would like to thank Keith Begley for drawing our attention to this problem, Erik Hemberg for his invaluable
feedback on this paper and Aidan Molloy for his unceasing help and support. We would also like to thank
our funding agency, Science Foundation Ireland. This research is based upon works supported by the Science
Foundation Ireland under Grant No. 08/IN.1/I1868.

References

[1] Link to videos demonstrating Toribash behaviour. http://ncra.ucd.ie/members/byrnej.html.

[2] Toribash. http://www.toribash.com.

[3] Toribash GA. http://forums.toribash.com/showthread.php?t=17010.

[4] M. Buckland and P. Publishing. AI techniques for game programming. Course Technology, 2002.

[5] N. Cole, S. Louis, and C. Miles. Using a genetic algorithm to tune first-person shooter bots. In Proceedings
of the International Congress on Evolutionary Computation, volume 1, pages 139–145, 2004.

[6] Darren Doherty and Colm O’Riordan. Effects of shared perception on the evolution of squad behaviours.
IEEE Transactions on Computational Intelligence and Games, 1(1):50–62, march 2009.

[7] S. Grand and D. Cliff. Creatures: Entertainment software agents with artificial life. Autonomous Agents
and Multi-Agent Systems, 1(1):39–57, 1998.

[8] E.J. Hastings, R.K. Guha, and K.O. Stanley. Evolving content in the galactic arms race video game. In
Proceedings of the IEEE Symposium on Computational Intelligence and Games, 2009.

[9] P. Molyneux. Postmortem: Lionhead Studios Black & White. Game Developer, 2001.

[10] Steve Rabin. AI Game Programming Wisdom. Charles River Media, Inc., Rockland, MA, USA, 2002.


