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Abstract

One of the fundamental challenges in applying evo-
lutionary computation to creative applications such as
music composition is in the design of a suitable fitness
function. This paper proposes a new method of exam-
ining fitness, not from an inherent musical aspect of the
individual but from the degree to which a given indi-
vidual conforms to the popular opinion of its peers. A
cyclical system is presented that uses an initial corpus
of melodies to evolve a fitness ‘Critic’ which in turn is
used to create a new melody. This new melody is then
input into the original corpus to continue the cycle of
Critics creating melodies that in turn are used to cre-
ate Critics. A diversity measure of the changing corpus
over evolutionary cycles shows that the corpus becomes
less diverse as more of the melodies are created by the
system. The system creates melodies in a method that is
not random but that is unpredictable to the programmer.

Introduction

This paper proposes an algorithmic music composition sys-
tem based on Evolutionary Computational (EC) methods to
investigate the creation of a fitness measure based on popu-
larity within the population rather than on an inherent mea-
sure of the individual. Instead of using a numerical property
belonging solely to each individual to assess its value, we
attribute fitness to the individual according to how much it
conforms to the dominant opinion of the population. The
‘opinion’ of each individual is not pre-defined but is taken
as the numerical output of that individual. We do not tell
the individuals what to like, we do not define what is good,
we merely take a consensus of what the population chooses
and evolve individuals according to how well they conform
to the rest of the population. In this manner, the judgement
of an individual is not random, not predetermined and not
from a human observer but it is defensible as any computa-
tional preference should be (Cook and Colton, 2015). The
final evolved individual — our Popular Critic — can then
be used as a fitness function in a compositional run to evolve
new music.

This paper describes an EC compositional system focus-
ing on the fitness function. In aesthetic applications of EC,
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defining a succinct and meaningful method of measuring fit-
ness is extremely problematic — what makes one melody
‘better’ than the next? Generally, this problem is addressed
using a pre-determined numerical measure, a random choice
or a human observer. Using a deterministic measure is not
particularly creative, as taking an objective, numerical mea-
sure of how good one melody is over another is not likely to
genuinely describe any aesthetic or subjective quality. Like-
wise, pure random choice is not creative; selecting one piece
over another at random does not acknowledge any measure
of merit — musical or otherwise — between them. The em-
ployment of a human observer, known as Interactive EC, is
often used but must be considered less computational than
autonomous methods as this is ultimately being driven by
human choice. Hence, systems that employ any of these
choices in their fitness functions are less computationally
creative than the true definition of the term. The purpose
of this system is to examine the question: what kind of mea-
sures can one use within an EC system that do not rely on
predefined musical knowledge, music theory rules, similar-
ity to given style of music or a human observer? What could
a system learn to like if we did not tell it what to like?

The following section discusses previous work in the area
of evolutionary music and non-deterministic fitness mea-
surements. The remainder of the paper discusses the meth-
ods used throughout the various stages of the system, the ex-
periments carried out and the results and conclusions drawn
from these experiments.

Previous Work

This section focusses on EC methods applied to music com-
position. A comprehensive survey of other computational
methods applied to composition is given in Ferndndez and
Vico (2013). Details of the EC systems described can be
found in Brabazon, O’Neill, and McGarraghy (2015).

Evolutionary Music

Various EC methods have been applied to the problem of al-
gorithmic composition. Genetic Algorithms (GA) have been
applied in the systems GenJam to evolve real-time jazz solos
(Biles, 2013), GenNotator to manipulate musical composi-
tions using a hierarchical grammar (Thywissen, 1999) and
more recently to create four-part harmony from music the-
ory (Goksu, Pigg, and Dixit, 2005). An adaptive memetic



search combined a GA with local search methods to inves-
tigate human virtuosity in composing with unfigured bass
(Munoz et al., 2016).

Genetic Programming (GP) has been used to recursively
describe binary trees as genetic representation for the evo-
lution of musical scores. The recursive mechanism of this
representation allowed the generation of expressive perfor-
mances and gestures along with musical notation (Dahlst-
edt, 2007). Interactive Grammatical Evolution (GE) has
been used for musical composition with promising results
(Shao et al., 2010). GE has also been used recently with
autonomous fitness functions based on statistical measures
of tonality and the Zipf’s distribution of musical attributes
(Loughran, McDermott, and O’Neill, 2015b,a). These stud-
ies found that the representation of the music created by the
grammar and the combination of individuals from the fi-
nal population could be as important as the fitness function.
The combination of such individuals was further explored
by using a distance metric between individual segments of a
melody as a fitness measure to drive the melodic evolution
(Loughran, McDermott, and O’Neill, 2016).

The various attributes used in the evaluation of melodies
based on pitch and rhythm measurements were discussed
in de Freitas, Guimaraes, and Barbosa (2012). It was con-
cluded that previous approaches to formalise a fitness func-
tion for melodies have not comprehensively incorporated all
measures. Some studies have addressed the problematic is-
sue of determining musical subjective fitness by removing
it from the evolutionary process entirely. GenDash was an
early developed autonomous composition system that used
random selection to drive the evolution (Waschka II, 2007).
Others used only highly fit individuals within the population
from initialisation and then used the whole population to cre-
ate melodies (Biles, 2013; Eigenfeldt and Pasquier, 2012).

Search Without Fitness

It has been proposed that using a pre-specified objective is
not necessarily the best approach to searching. This the-
ory suggests that searching for novelty is a better method
when considering a problem, that good solutions can be
found when looking for a different solution or when search-
ing for no particular solution at all (Lehman and Stanley,
2010; Stanley and Lehman, 2015). Such a theory fits very
well in searching any creative space. A musician may not
know exactly what piece of music they are trying to cre-
ate when they start, they work through ideas, changing their
process and hence their output as they observe what they
are creating. We propose that for an automated evolution-
ary system to be truly creative there cannot be a pre-defined
objective — the fitness function should be a measure of the
progress of the system.

A notable recent study demonstrated that in Computation-
ally Creative Evolutionary systems, it is only important that
the decision of fitness need be defensible; what makes one
creative item better than another may not be what a human
would choose but it must be a sensible, defensible and repro-
duceable choice by the computer program. In other words
there must be a logical and explainable method in assigning
fitness measures. This was investigated using the the idea of

a preference function by measuring qualities such as speci-
ficity, transivity and reflexivity to determine the choice of a
system in a number of subjective tasks (Cook and Colton,
2015). Such a measure may not agree with what a human
may choose as the best but, most importantly, it agrees with
itself. This preference function chooses one item over an-
other due to a logical system of comparing between items
and determining a decisive preference. We try to build on
this idea in the system proposed.

The system and terminology proposed in this study may
also be reminiscent of the evaluation framework proposed
in Pearce and Wiggins (2007). The proposed study differs
in a number of important ways. This study does not attempt
to conform to any particular style or genre of music but in-
stead attempts to create an opinion among naive agents or
‘Critics’. No indication as to whether the original melodies
are good or bad is given. Furthermore, the proposed system
is cyclical in nature, whereby the output is input back into
the system for a dynamic evolution of further critics. Finally
we do not include human evaluation or discrimination tests
in our evaluation of the results, but instead focus on the di-
versity of the melodies produced. There is no aim towards
human mimicry or trickery within this system.

The consensus of the population idea proposed here
also shares conceptual similarities with the method in Mi-
randa (2003), which co-evolved agents with repertoires of
melodies according to a measured ‘sociability’. This so-
ciability was measured in terms of similarity of the agent’s
repertoires; individual melodies survived or were altered
depending on reinforcement feedback between co-evolving
agents. This fitness differs from our proposed method as it
is the correlation of a individual’s opinion to that of the (sin-
gle) population that is measured in this system rather than a
direct similarity measure between melodies.

Contribution of this Work

Earlier versions of the proposed system studied the musical
representation resultant from the grammar used and the ef-
fect of the combination of the individuals in the final popula-
tion more so than examining the fitness measures driving the
evolution (Loughran, McDermott, and O’Neill, 2015b,a).
The proposed paper is intended to extend this work fur-
ther into the ‘meta’ domain of musical creation by attempt-
ing to discover new and autonomous ways of driving EC
systems with novel ideas for fitness measures. The objective
of this study is not to create ‘better’ music but to observe
the behaviour of melody creation when the fitness function
is dynamically evolved to be Popular. Our ‘Popular Critic’
is adjudicated as to how much it agrees with the population
rather than any inherent quality within itself. The term Critic
was chosen to convey the sense of adjudication or preference
implied by its output. It is proposed that this method mir-
rors the typical social exposure of music in the real world;
whether we like to admit it or not, we are exposed to certain
music more than others throughout the course of our lives
and this exposure has a profound effect on our musical taste.
If we choose to go with the crowd or against it, musical ex-
posure and our perception of what is popular influences the
music we choose to listen to, resulting in a cyclical system



of further exposure and judgement. This paper proposes a
framework to mimic this cycle through an evolutionary sys-
tem of creating Critics that agree with the popular choice of
music that in turn are used to evolve new music that in turn
is used to create new Critics.

Method
There are three distinct phases to this compositional system:
e The evolution of an initial musical corpus using GE

e The evolution of a Critic that conforms to the population’s
opinion as to which are the best melodies

o The evolution of novel music using this evolved Critic as
a fitness measure which then replaces one of the original
melodies in the corpus

As the method is heavily based on GE, a brief introduction
is given below.

Grammatical Evolution

GE is a grammar based algorithm based on Darwin’s the-
ory of evolution. As with other evolutionary algorithms, the
benefit of GE as a search process results from its operation
on a population of solutions rather than a single solution.
From an initial population of random genotypes, GE per-
forms a series of operations such as selection, mutation and
crossover over a number of generations to search for the op-
timal solution to a given problem. A grammar is used to
map each genotype to a phenotype that can represent the
specified problem. The success or ‘fitness’ of each individ-
ual can be assessed as a measure of how well this phenotype
solves the problem. Successful or highly fit individuals re-
produce and survive to successive generations while weaker
individuals are weaned out. Such grammar-based generative
methods can be particularly suitable to generating music as
it is an integer genome that is being manipulated rather than
the music itself. This allows the method to generate an out-
put with a level of complexity far greater than the original
input. This added complexity generation is helpful in cre-
ating interesting and diverse pieces of music. In the system
proposed, the grammar defines the search domain — the al-
lowed notes and musical events in each composition. Suc-
cessful melodies are then chosen by traversing this search
space according to the defined fitness function.

We exploit the representational capabilities of GE result-
ing from the design of a grammar that defines the given
search domain. GE maps the genotype to a phenotype —
typically some form of program code. This phenotype can
then be interpreted by the user in a predetermined manner.
In these experiments, the programs created are written in a
command language based on integer strings to represent se-
quences of MIDI notes. We design a grammar to create this
command language which is in turn used to play music. An
overview of the GE process including the mapping of the
grammar to MIDI notes is shown in Figure 1.

Experimental Setup

This section describes the implementation of GE in all
phases of the system. A graphical overview of the sys-
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tem depicting the flow between the phases of the process
is shown in Figure 2.

Creating the Musical Corpus

Our Popular Critic is evolved according to its agreement
with a population of its peers on their opinion of a selection
of melodies. At initialisation, an initial corpus of 40 MIDI
melodies was created using a previously developed system
for composing short melodies with GE. A full description
of this method and the results obtained can be found in
Loughran, McDermott, and O’Neill (2015b). The follow-
ing is an overview of the grammar and fitness measure used
in the system. The grammar used is based on:

<piece>::=<event>|<piece><event>

| <piece><event><event>

| <piece><event><event><event>
<event>::=<style>, <oct>, <pitch>, <dur>
<style>::=<note>|<note>|<note>|<note>

| <note>|<note>|<note>|<note>

| <chord> | <chord>|<chord>

| <chord>|<turn>|<arp>
<turn>::=<dir>,<len>,<dir>,<len>, <stepD>
<len>::=<step>|<step>,<step>

| <step>, <step>, <step>
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Figure 3: Application of Melody Grammar to integer Geno-
type through to representational Phenotype that can be inter-
preted into music.

|<step>,<step>,<step>,<step>
<dir>::=down|up
<step>::=1[1111111121212|2]2]2|2|2]|3
<stepD>::=1[2|212|212|214141414|4|4
<oct>::=314141414|5|5/5/5|61|6
<pitch>::=0]1|2[3|415|6171819]10]|11
<dur>::=1111112|21214141418|8]16]16]|32

This grammar creates a melody <piece> containing a
number of notes with specified pitch and duration. Each
<event> can either be a single note, a chord, a turn or an
arpeggio. A single note is described by a given pitch, du-
ration and octave value. A chord is given these values but
also either one, two or three notes played above the given
note at specified intervals. A turn results in a series of notes
proceeding in the direction up or down or a combination of
both. Each step in a turn is limited to either one, two or three
semitones. An arpeggio is similar to a turn except it allows
larger intervals and longer durations. The application of this
grammar results in a series of notes each with a given pitch
and duration. The inclusion of turns and arpeggios allows a
variation in the number of notes that are played, depending
on the production rules chosen by the grammar.

This grammar is combined with the genotype to create the
given phenotype — which can now be interpreted into MIDI
note values. An example of this genotype to phenotype map-
ping for a short phrase is shown in Figure 3. This illustrates
how a series of integer values can be transformed and inter-
preted in to a series of notes of specified pitch and duration.
The selection of melodies into future generations is based on
the defined fitness function. For this initial corpus the fitness
is taken as a measure of the length of the melody combined
with a statistical measure of prevalent tones within the piece.
This is used to encourage the emergence of a pseudo-tonality
(in that numerous pitches are repeated more often than oth-
ers) but it does not enforce a key signature on any of the
melodies. Initially the fitness is measured as:

fitnessinitiat = (Len — 200)% + 1 (1

where Len is the length of the current phenotype.
For an emergent tonality one pitch should be the most fre-
quently played within the melody, with an unequal distribu-
tion of the remaining pitches. In the fitness the primary is

defined as the pitch value with most instances and the sec-
ondary as that with the second highest number of instances.
Thus for a good (low) fitness the number of primary pitches
must be significantly higher than the number of secondary
pitches. Furthermore, the number of instances of the seven
most frequently played notes as Top7 and the number of in-
stances of the top nine notes as Top9.
If any of the following inequalities hold:

# instances of primary

- < 1.3 2
# instances of secondary @
Top7
< 0.75 3
Total number of played notes )
Top9

Total number of played notes <095 @)
the fitness is multiplied by 1.3. This enforces the primary
tone to have significantly more instances than the secondary
and encourages most of the notes played to be within the top
seven or top nine notes. These limits of 0.75 and 0.95 en-
force more tonality than 12 tone serialism but will not create
a melody with typical Western tonality. For these experi-
ments, the top four melodies in the final population are con-
catenated together to encourage the emergence of themes
within the final compositions. This grammar and fitness
function create the corpus of 40 MIDI melody compositions
which is then used to evolve the musical Critics.

Evolving the Critic

The purpose of this experiment is to dynamically design a
new fitness function for adjudicating melodies that is not
known to the programmer at the outset of the experiment.
Our Critic is evolved to become the fitness measure to adju-
dicate the evolution of future melodies. This Critic (i.e. the
fitness function) is itself evolved in the second phase of the
experiment. GE is used to create this Critic as a specified
linear combination of the content of the melodies.

The ‘Popular Critic’ is evolved by creating a population
of individuals (or Critics), each of which gives a numeri-
cal ‘opinion’ of each of the melodies in the corpus. The
melodies are represented as the number of times each de-
gree of the scale and each note duration is played within the
melody. Thus every melody is reduced to a list of 18 in-
teger values. These instances are incorporated with a new
grammar in GE shown below:

<expr> ::= <O><TI1><0O><T2><0><T3><0><T4>
<O><TH5><0O><T6H><O><TT7><0O><T8><0O><T9>
<O><T10><0O><T11><0O><T12><0><D1><0>
<D2><0><D4><0><D8><0><D16><0><D32>

<0> ::= <op><scalar>
<op> ::=+ | — | x%
<scalar> ::=1 | 2 | 3 | 4 | 5

This very simple grammar takes each of the 12 tonal and
6 duration instances, multiplies each by a value 1-5 and then
either adds, subtracts or multiplies it by the previous values.
This outputs a scalar value resulting from a linear combi-
nation of the 18 given values. Each individual in the popu-
lation results in a numerical value for each of the 40 given



Table 1: Scores and Rankings of each piece by each person

Scores M| T |J|R| U2
Ann 214 1513 7
Barry 3051210 3
Ciara -1 3 (41 0
Donal 2 110(141]0]-50
Rankings M | T |J | R | U2
Ann 1 31413 5
Barry 1 51312 4
Ciara 1 4 1513 2
Donal 3 5 14| 2 1

melodies. This is currently a meaningless adjudication of
the melody — there is nothing to say that 11 is better than 5
— it is merely a unitless numerical assignment.

In this experiment, however, we attribute ‘preference’ to
this numerical output. The melodies are ranked 1-40 ac-
cording to this numerical value, calculated by the given in-
dividual (the current Critic). These rankings are averaged
across all individuals in the population and the overall rank-
ing of the melodies across the population (of all Critics) is
found. This overall ranking of all 40 melodies is taken as the
popularity consensus of the population. The fitness of each
individual Ceritic is then calculated according to how closely
it correlates with this overall popularity, hence the fitness of
the individual Critic is aligned with how much it conforms
to the consensus of the population of Critics. The Kendall-
Rank Correlation is used to calculate this fitness. Selection,
Crossover and Mutation are then performed over successive
generations to evolve one best ‘Popular Critic’ as with typi-
cal EC methods. The best evolved Popular Critic is saved to
be used to evolve new music in the final phase of the system.

This section is the crux of the proposed experiment. To il-
lustrate the workings of this section, consider the following
scenario: Ann, Barry, Ciara and Donal are all given 5 pieces
of music to listen to — a Melody (M), Tune (T), Jig (J), Reel
(R) and a U2 song (U2). They are asked to give a numeri-
cal value of how much they like each piece — the larger the
number, the more they liked it. We note the ranking of their
choices. These scores and calculated rankings are shown in
Table 1. The absolute values of the scores does not mat-
ter, only the overall ranking of the 5 is noted. From this we
calculate the preferred ranking across the four people for all
the music [M T J R U2] as [1 5 4 2 3]. We measure the
fitness of each person as how close their own choice corre-
lates with this overall opinion — finding that Barry’s choices
come closest. In this scenario Barry would be chosen as our
Popular Critic.

Creating New Music with the Critic

The best evolved Critic can be used as the fitness function
in a new GE run to evolve new music. The grammar used
is similar to that used to create the original corpus. As be-
fore, in each generation a population of melodies is created
from this grammar. The fitness of each melody is measured
as the numerical output of the Critic on the given melody.
A minimising fitness function is used resulting in melodies

Table 2: EC parameters common to each evolutionary phase

Parameter Value
Population Size 100

No. Generations 50
Selection Tournament (size 2)
Crossover Rate 0.7
Mutation Rate 0.01

Initial Genome Length 100

Elite Size 1

with smaller Critic outputs being favoured for selection over
those with higher outputs.

As explained above, each Critic is comprised of a combi-
nation of the 18 instance values. Each instance can be com-
bined using the prefix +, - or x . This means that
the range of output results for the evolved melody can vary
widely depending on the Critic used. A Critic that contains
a large number of negative terms will result in more small,
negative outputs for melody fitness than one with mostly
positive terms. In the extreme, a Critic with mostly neg-
ative terms combined with multiplication terms can result
in highly negative values whereas one with purely positive
terms will minimise to zero. Thus, certain Critics can re-
sult in extreme negative results by increasing the length of
the melody, resulting in an unwanted bias towards longer
melodies for these Critics. To combat this, the length of the
melody is controlled within the fitness calculation. If the
melody is less than 100 in measured duration, the fitness is
calculated as the output of the Critic applied to that given
melody. If the melody is longer than this the fitness is:

fitness = Critic(melody) + (Len — 100)? (5)

This results in a heavy penalty on longer compositions.
To prevent overly long compositions escaping this inequal-
ity, an added constraint of minimum fitness is added to
this phase. Thus the evolutionary run stops after either the
specified number of generations has passed or if the fitness
reaches -1000.

This method is used to repopulate the original corpus of
melodies with melodies created by the system. After a new
melody has been created it replaces one original melody
from the corpus and the entire process is run again. When
this is repeated 40 times, the original corpus has been re-
placed by melodies created by the system. In this way, the
system loops around by itself, creating new melodies from
Critics that have learned from the previous output of the sys-
tem. Each of the evolutionary phases within the experiment
were run with the common parameters shown in Table 2.

Results

This section describes the outputs of the phases of the sys-
tem. A selection of the final created melodies can be
found at http://ncra.ucd.ie/Site/loughranr/
music.html.
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Figure 4: Average number of instances of each of the 18
tonal and duration values in the 40 initial melodies.

Initial Corpus

As detailed above, each melody is represented as a linear
combination of the number of instances of each degree of
the scale and each duration of note within the melody. Fig-
ure 4 displays the average value for each of these measures
across the initial corpus. This shows that by far the two most
prevalent values are the number of semiquavers (D2) and the
number of quavers (D4) in the melodies. This is unsurpris-
ing as due to the grammar used, several of these notes are
introduced every time a run or arpeggio is played resulting
in these being the most common duration values. There ap-
pears to be no bias towards specific pitch values. Again, this
is as expected as no key signature has been specified and the
grammar did not favour any pitch over any other.

Evolving the Critic

Fitness Evolution For any evolutionary run to be deemed
successful, the best achieved fitness must improve over suc-
cessive generations. To investigate this, the Critic Evolution
phase of the system was run 40 times (independently) and
the average improvement of the system over successive gen-
erations was noted. A plot of this fitness improvement is
shown in Figure 5. As can be seen, both the best and av-
erage fitness display a dramatic improvement in the first 10
generations. This improvement gradually tapers off in the
following 10 generations and remains approximately stable
thereafter. As described earlier this fitness is taken as a mea-
sure of the correlation between the individual and the most
popular opinion of the overall population. Over successive
generations, we would expect the best fitness to improve as
the population converges on a ‘most popular’ vote and one
individual manages to approximate it. Hence, as expected
the best and average fitness is seen to improve, but as the
crossover and mutation operators are used until the final gen-
eration the population does not converge completely.

Diversity Among the Critics Each ‘best’ Critic is evolved
over 50 generations in accordance to how well it agrees with
the population in its judgement of the corpus. As the corpus
of melodies does not change over generations, we would ex-
pect the population of Critics to develop some similarities
over generations as the critics begin to converge on what
they agrees to be ‘good’ melodies. This hypothesis was
tested by examining the diversity of the Critics over a series
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Figure 5: Average and best fitness over 50 generations aver-
aged across 40 independent evolutionary runs.
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Figure 6: Average diversity of the Critics evolved over 50
generations across 40 independent evolutionary runs.

of independent runs. The population diversity was measured
as the sum of the Levenshtein edit distance between the phe-
notypes of each pair of Critics. A plot of the average and
standard deviation of this diversity measure averaged across
all 40 runs is shown in Figure 6. This shows a marked de-
crease in the average diversity in the first 10 generations.
This reduction in diversity correlates with the observed de-
crease in fitness displayed in Figure 5. This demonstrates
that, as expected, a decrease in fitness results in a corre-
sponding decrease in diversity in the population. As the pop-
ulation converges, the better Critics move towards a general
consensus in their ‘opinion’ of the corpus of music.

Melody Creation

Once the best Critic has been evolved, it can be used in a
further evolutionary run to create new music. For these ex-
periments the Critic is used as a minimising fitness function;
melodies that result in a smaller output from the given Critic
are deemed ‘more fit’ than those with a higher resultant out-
put. This is an arbitrary choice, maximising or evolving to-
wards a constant could be used instead, but minimising was
chosen in keeping with the minimising of the fitness results
in earlier phases of the system. The grammar used is the
same as that used to create the original corpus. A population
of 100 melodies is evolved, the best four of which are com-



13600

13400

13200

ity

13000

N
N
*
=3
=3

12600

Melodic Diversi

12400
12200

12000
13 5 7 9 111315171921 23252729 313335373941

Evolutionary Cycles

Figure 7: Diversity within the corpus as the Critic replaces
the melodies over 40 evolutionary runs.

bined to create the resultant melody. At the end of each run,
this resultant best melody replaces a melody in the original
corpus and the cycle starts again.

When this cycle is repeated 40 times, the initial corpus of
melodies has been completely replaced by melodies created
by the system. To consider the change in the corpus over the
course of the run, we compared the diversity of the melodies
present in the corpus as the corpus was re-filled by evolved
melodies. The diversity of the given corpus was measured
as the sum of the Levenshtein distances between the repre-
sentation of each pair of melodies in the corpus. The change
in this diversity across 40 runs is shown in Figure 7. This
shows that for approximately 10 evolutionary cycles, the di-
versity does not change dramatically from that of the initial
corpus, but after 15 cycles, as the corpus is filled by newly
evolved melodies there is a steady decrease in this measured
diversity. The decrease is small, but nevertheless displays a
definite trend. This shows that the process is having a di-
rected effect on the melodies being produced. The origi-
nal corpus was created without any preference from a Critic.
This diversity reduction shows a move towards similarity in
melodies created by the evolved Critics.

Discussion

As stated from the outset, this system was not created di-
rectly to produce ‘better’ melodies, but to look to ways of en-
couraging an autonomous system to determine its own pref-
erence for one melody over another. We must again stress
that the individual Popular Critic has not been evolved to
make a specific knowledgable judgement of a melody. The
numerical value of the Critic as it itself is being evolved does
not have meaning on its own, it only has merit in relation to
the numerical outputs of all other Critics in the population.
This system cannot and does not evolve music in any known
‘human’ musical way; the purpose of the system is to inves-
tigate other ways of adjudication.

Such a system is a way of searching for new ideas in an
unpredictable way, as in the stepping stone method proposed
in the myth of the objective (Stanley and Lehman, 2015). In
listening to the melodies, we can hear aspects of the gram-
mar such as runs, arpeggios, chords and single notes. The

repetition of themes within the compositions indicate that
the top individuals in the final population are similar (but
not identical). This indicates that the evolved Critics are ca-
pable of traversing the melodic search space to converge on
a good idea. From the selection of melodies, it is evident that
the system is capable of creating a wide variety of melodies.
Melody16 for example is full of fast runs whereas Melody37
contains barely any notes at all. This is because the number
of notes was not specified at any time during the process, the
genotype-phenotype mapping created by the grammar pro-
vides a rich musical domain in which the system can search.

This idea of evolving music according to popularity can
somewhat crudely mirror the manner in which music is sub-
ject to popular opinion in real life. Popularity is not always
predictable, it is formed from the consensus of many differ-
ent individuals. Popularity is not necessarily an objective
measure of goodness or merit. This is true for this system as
it is true in the real world; just because a particular melody
happens to have a good numerical measure from more Crit-
ics than another does not mean it would be deemed better
by a human. Music appreciation in general can suffer from
similar problems however. We may like to say we decide
ourselves as to music we like and don’t like, it is naive to
state that our cumulative exposure to music over the years
has not had a direct effect (negative or positive) on any such
choices we make. We propose this system may explore and
exploit this type of exposure we are subjected to as a society.

In recent years, a number of tests have been proposed to
evaluate creative systems (Ariza, 2009). One such measure
used to test for the presence of creativity is the Lovelace
Test (Bringsjord, Bello, and Ferrucci, 2003). This test states
that in order for creativity to be present the output of a sys-
tem must be one which the programmer could not explain
or predict. The grammar used in this system may dictate the
search space available for composing these melodies but in
no way can the programmer predict what melodies will be
composed by this system, or even which tone or duration in-
stances will be most important for this decision. Generally,
the fitness function is what drives any evolutionary process,
but in this system the programmer does not directly control
the creation of this fitness function either — it is created as a
process of population convergence or social agreement. The
programmer does not control what is good or what survives
to future generations. In this way, we feel that this system
brings the application of EC methods in aesthetic domains
such as music a step closer to true computational creativity.

Admittedly, at the moment, the evolution of the Crit-
ics is not entirely independent from human defined judge-
ment; the Critics are originally asked to judge melodies that
were themselves created by a human-defined fitness func-
tion. Changing the original corpus (or the fitness function
used in creating it) will have an effect on the final result,
so it would be erroneous of us to claim that this system is
completely autonomous and free from human interference
at this point. It is difficult to get the workings of the system
to decouple from this initialisation (or ‘Creation’). After ini-
tialisation however, the system runs without any form of hu-
man judgement, replacing the originally created melodies.
We hope to develop this system towards complete autonomy



— if we could observe autonomous creation not just in the
cycling of the system but in the initialisation we could inves-
tigate the possibilities of observing true artificial creation.

Conclusion

This paper describes a new system for using EC methods
to evolve melodies by creating a fitness function based on
the popularity of a population of critics. This method does
not try to define a numerical measure of what is aestheti-
cally ‘good’ but merely proposes that popularity, consensus
or agreement among a population of generated individuals
can be used to drive an evolutionary system to create new
melodies. Such melodies are not randomly generated, but
are also not predictable from the outset of the experiment.

We believe that there are many exciting possibilities in
developing this framework. At the moment, the melodies
possible from the system are heavily dependent on and con-
stricted by the grammar used. Furthermore, the represen-
tation of the melodies is very constricting in the measure-
ment of the melodies. Our next immediate step is to use
this system to create more interesting and appealing music
while expanding this representation to depict more meaning
within the melodies produced. We would like to develop this
system to be able to represent and learn from ‘real-world’
melodies. Could a development of this system learn to ap-
preciate and therefore reproduce style? If we populated the
initial corpus with lullabies, could it reproduce a new lul-
laby? At the extreme, if we could populate the corpus with
the top 40 pop songs could we evolve a Popular Critic to
quantify this popularity in such a way as to produce a new
successful pop song? This may seem far-fetched at the mo-
ment but we hope that evolutionary creative methods such
as this will help develop towards such a system.
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