Tackling Overfitting in Evolutionary-driven
Financial Model Induction

Cliodhna Tuite, Alexandros Agapitos, Michael O’Neill, Anthony Brabazon

Financial Mathematics and Computation Cluster
Natural Computing Research and Applications Group
Complex and Adaptive Systems Laboratory
University College Dublin, Ireland
cliodhna.tuite@gmail.com, alexandros.agapitos@ucd.ie, m.oneill@ucd.ie,
anthony.brabazonQucd.ie

Summary This chapter explores the issue of overfitting in grammar-based
Genetic Programming. Tools such as Genetic Programming are well suited
to problems in finance where we seek to learn or induce a model from the
data. Models that overfit the data upon which they are trained prevent
model generalisation, which is an important goal of learning algorithms.
Early stopping is a technique that is frequently used to counteract overfit-
ting, but this technique often fails to identify the optimal point at which to
stop training. In this chapter, we implement four classes of stopping criteria,
which attempt to stop training when the generalisation of the evolved model
is maximised. In this way, we hope to increase the generalisation of trading
rules in buy/sell prediction problems.

We show promising results using, in particular, one novel class of criteria,
which measured the correlation between the training and validation fitness
at each generation. These criteria determined whether or not to stop training
depending on the measurement of this correlation - they had a high proba-
bility of being the best among a suite of potential criteria to be used during
a run. This meant that they often found the lowest validation set error for
the entire run, and did so faster than other criteria.

1 Introduction

Overfitting is a commonly studied problem which arises in machine learning tech-
niques such as Genetic Programming (GP). A model is described as overfitting the
training data if, despite having a high fit on the training examples, there exists
another model which has better fitness on the data as a whole, despite not fitting
the training data as well [15].

1.1 Causes of Overfitting

There are different reasons why overfitting can occur. For example, the existence of
noise in training samples can cause a model to be fit to the data which is more com-
plex than the true underlying model [19]. For symbolic regression, an example would
be fitting a high order polynomial to noisy data, which happens to pass through all
training points, when the true function is in fact a lower order polynomial. Another
cause of overfitting is bias in the training data. Overfitting is more likely to occur
when the training sample size is small. The more data available to train on, the
more likely we are to discover the true underlying model, and the less likely we are
to settle on a spurious result. Overfitting is also more likely to occur with complex
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hypotheses [19]. Learning algorithms that are run for a long time are more likely to
trigger overfitting, than if they had been run for a shorter time period [3].

Overfitting is a symptom of experimental setups which produce results that
fail to generalise beyond the specific environment in which they were trained. While
generalisation has traditionally been underexplored in the Genetic Programming lit-
erature, there have been a number of recent papers exploring this important issue,
including in its applications to computational finance [3,6,9, 11,19, 22, 25]. Among
the techniques proposed to counteract overfitting, popular examples include the
use of parsimony constraints, and the use of a validation set to prematurely cut
off search. Parsimony contraints are inspired by Occam’s Razor and the minimum
description length (MDL) principle. The MDL principle claims that the most prefer-
able solution is the one that minimizes the information required to encode it [25].
However, the direct link between parsimony and better generalisation is disputed in
[8]. Domingos [8] notes that overfitting is an unwanted side-effect not of complexity
itself, but of considering a large number of potential models. This results in a high
chance of discovering a model with a high fitness on the training data purely by
chance. Evaluating a smaller number of more complex models has a lower chance
of causing overfitting than evaluating a larger number of simpler models [8].

1.2 Chapter Outline

Early stopping is a popular technique that can be used to prematurely cut off search.
When using this technique, generalisation is typically measured by observing the
fitness of the evolved model on a validation data set, which is separate from the
training data set. Training is stopped if the generalisation of the model on this
validation set degrades. In this paper, we choose to focus on early stopping in order
to illustrate its usefulness as a technique to boost generalisation. Furthermore, we
propose some extensions to early stopping as it has traditionally applied, via the
inclusion of criteria to determine a more intelligent stopping point. These criteria
are inspired by work previously carried out in the neural networks literature [21].

The next section provides some background to the issues explored in this chapter,
including a brief review of some of the work on generalisation to date. Section 3
moves on to work through and explain some examples of overfitting as observed
in symbolic regression problems tackled using Grammatical Evolution, a form of
grammar-based Genetic Programming. Section 4 first introduces stopping criteria
which can be used to enhance the technique of early stopping, which is used to
avoid overfitting. Section 5 applies these criteria to trading rule problems tackled
using an alternative form of grammar-based Genetic Programming. Finally, section
6 concludes the chapter.

2 Background

Genetic Programming (GP) is a stochastic search and optimisation technique. It
operates by first generating a “population” of random solutions, composed from
elements of a function and terminal set. The terminal set is composed of a list of
external inputs (typically variables), and constants that can appear in the solution.
It may also contain functions with no arguments - an example would be a function
which returns a different random number with each invocation. The contents of the
function set vary between problem domains - an example of such operators in a
simple numeric problem are arithmetic operators. Solutions are iteratively refined
over a period of some number of pre-specified generations, using the concept of a



Tackling Overfitting in Evolutionary-driven Financial Model Induction 3

fitness function to guide search, and the operators of crossover and mutation to
transition across the search space. Crossover works by combining elements of two
“parent” solutions, in order to further explore the search space. Mutation randomly
alters a part of a randomly selected solution among the population of solutions,
in order to promote diversity in the population, and thus explore new areas of the
search space. For a more detailed introduction to Genetic Programming, see [20] or

2].

2.1 Previous Attempts to Tackle Overfitting in Genetic Programming

Two Data Sets Methodology In a 2002 paper, [11] highlights the importance of
using a separate testing set alongside a training set when evolving solutions to learn-
ing problems. The author also advocates the use of formal guidelines when selecting
the training and testing cases. Such guidelines might stipulate rules for selecting
training and testing instances to ensure the representativeness of the training cases,
and to determine the degree of overlap between the two data sets [11]. In a case
of simulated learning (the Sante Fe ant trail), it is shown that training on a given
trail by no means guarantees the generalisation of the solution to other trails using
the same primitives and rules for trail construction. In order to produce results
that generalise to a particular class of trails, [11] conducted experiments using 30
training trails and 70 testing trails, with fitness being evaluated by counting the
number of pieces of food gathered over each of the 30 training trails.

Validation Sets and Parsimony In [22], Thomas and Sycara use a GP-based
system to discover trading rules for the Dollar/Yen and Dollar/DM markets. They
reserved a particular concern for the aspects of the system that allowed them to
fight overfitting, given the abundance of noise in financial markets. They exam-
ined the interactions between overfitting, and both rule complexity and validation
methodologies. Excess returns were used as a measure of fitness. The success of the
evolved model on the test set was calculated after training had completed. The use
of the test set was important given that the focus of this work was on generalizaton.

The authors thought that while controlling the size of trees could negatively
impact on the representational capability of the generated rules, it could also reduce
the potential for overfitting, and wished to test this hypothesis. Results showed that
between trees with maximum tree-depths of 2, 3 and 5, trees of maximum-depth 2
produced superior excess returns, particularly in the dollar/yen case [22].

The authors used a validation set to determine when to cut off search in all
experiments - evolution was stopped when the average rule fitness on the validation
set started to decrease. In later experiments they used the validation set in two
additional ways. After search had stopped, the best rule on the training set was
identified and was kept if it produced positive returns on the validation set. If not,
it was discarded and search resumed from scratch. A second approach examined
the fitness of every rule from the population on the validation set after search had
been stopped, keeping those that produced positive returns.

These two additional approaches did not increase the percentage of excess re-
turns on the test set after training stopped, which the authors found surprising.
They attributed this to a lack of correlation between the training and test per-
formances. It is interesting that the authors examined the correlation between the
training and test performances as an ex-post diagnostic tool. Below, we describe
measuring the correlation between training and walidation fitnesses, but we use it
instead as a potential stimulus to prematurely halt our search. The authors con-
cluded that using the validation methods they described was not providing adaquate
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improvements to excess returns, as evaluated on the test set. They felt that addi-
tional criteria needed to be investigated in order to identify a cut-off point for search
[22].

Gagné and co-authors [9] also investigate the use of three datasets (training
data, validation data, and test data). They evolve solutions to binary classification
problems using Genetic Programming. The inclusion of a validation set, to period-
ically check the evolved a model for a loss of generalisation, reduces the amount
of data used to train the model. This reduction in the data reserved for training
means that the training algorithm has less information with which to fit a model,
and increases the possibility that the model produced will not be representative of
the true underlying model. The trade-off between the inclusion of validation data
on the one hand, and the reduction in training data on the other hand, is examined
by the authors.

Simple solutions are sometimes postulated to both reduce the effect of bloat (an
uncontrolled increase in the average size of individuals evolved by GP [13]), and
produce solutions without overfitting. The direct link between parsimony on the
one hand, and solutions that don’t overfit the data on the other hand, has been
disputed in [8], as noted in Section 1.1. Results that contradict this - for example
those results described in [22] and summarised above, have meant that researchers
have continued to pursue parsimonious solutions, albeit with an awareness of the
challenge made against their effectiveness (for example, in [3]).

Gagné and co-authors [9] also investigate the use of lexicographic parsimony
pressure to reduce the complexity of the evolved models. Lexicographic parsimony
pressure [12] involves minimizing the error rate on the entire training set, and using
the size as a second measure to compare when the error rates are exactly the same.
The best individual of a run is the individual who exhibits the lowest error rate on
the training set, and the smallest individual is selected in the case of a tie. They
establish that while there is no clear advantage in terms of test set accuracy from
using a validation set and parsimony pressure, the inclusion of a validation set and
parsimony pressure does lower the variance of the test set error on the evolved
model across 100 runs. They express a desire to develop new stopping criteria in
future work, which would be based on the difference between training and validation
fitness.

2.2 Early Stopping

Early stopping is a method used to counteract overfitting, whereby training is
stopped when overfitting begins to take place. In order to enable early stopping,
the data is split into three subsections: training data, validation data, and testing
data. Initially, a model is fitted to the training data. At regular intervals as the
model fitting proceeds, the fitness of the model on the validation data (which has
not been used to train the model) is examined for disimprovement. The ability of
the evolved model to generalise beyond the training examples is therefore measured
while the run is in progress, the assumption being that if the learned model is gener-
alising well, it should exhibit high fitness on both the training data, and the unseen
validation data. When a disimprovement is observed in the fitness of the evolved
model on the validation data (or is observed for a specified number of consecutive
generations or iterations) training is stopped. The model with the lowest validation
error prior to training having been stopped, is used as the output of the run [10].

A More Robust Way to Determine When to Stop Training This simple
early stopping technique has been critisized by Prechelt in [21], where he examines
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the use of early stopping when training a neural network. Prechelt states that the
validation set error, in most cases, fluctuates throughout the course of the run.
He describes how the validation set error rarely monotonically improves during the
early stage of the run, before monotonically disimproving after overfitting has begun
to take place. He states that real validation error curves almost always have more
than one local minimum. The question then becomes, when should early stopping
take place? He goes on to propose three classes of stopping criteria, with the aim
of developing criteria which lead to both lower generalisation error, and exhibit a
reasonable trade-off between training time and improved generalisation.

2.3 Model Induction

The underlying data generating process is unknown in many real-world financial
applications. Hence, the task is often to deduce or “recover” an underlying model
from the data. This usually isn’t an easy task since both the model structure and
associated parameters must be uncovered. Most theoretical financial asset pricing
models make strong assumptions which are often not satisfied in real-world asset
markets. They are therefore good candidates for the application of model induction
tools, such as grammar-based Genetic Programming [14], which are used to recover
the underlying data generating processes [4]. Of course to use a model induction
method effectively, that is, to ensure that the evolved models generalise beyond the
training dataset, we must pay attention to overfitting, which has been identified as
an important open issue in the field of Genetic Programming [18].

2.4 Grammatical Evolution: A Brief Introduction

Grammatical evolution (GE) [17,7] is a form of grammar-based Genetic Program-
ming [14]. A particular strength of GE is the use of a grammar to incorporate domain
knowledge about the problem we are attempting to solve. In GE, the process of evo-
lution first involves the generation of a population of randomly generated binary
(or integer) strings, the genotype. In the case of binary genomes, each set of B bits
(where traditionally B=8) is converted into its equivalent integer representation.
These integer strings are then mapped to a phenotype, or high-level program or
solution, using a grammar, which encompasses domain knowledge about the nature
of the solution. Therefore, a GE genome effectively contains the instructions of how
to build a sentence in the language specified by the input grammar. Grammatical
Evolution has been applied to a broad range of problems, including many successful
examples in financial modelling [5].

The grammar used in the first set of experiments we performed can be found in
Fig. 1. The grammar is composed of non-terminal and terminal symbols. Terminals
(for example arithmetic operators) appear in the solution, whereas non-terminals
can be further expanded into terminals and non-terminals. Here we can see the
syntax of the solution (that will be constructed from arithmetic operators, mathe-
matical functions, variables and constants) is encoded in the grammar.

The mapping process involves the use of an integer from the genotype to choose
a production rule from the choices available to the non-terminal currently being
mapped. This process proceeds as follows. The first integer from the integer rep-
resentation of the genotype is divided by the number of rules in the start symbol
(<expr> in our example). The remainder from this division is used to select a rule
from the grammar:
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<prog> ::= <expr>

<expr> ::= <expr> <op> <expr> (0)
| ( <expr> <op> <expr> ) (1
| <pre-op> ( <expr> ) (2)
| <protected-op> (3)
| <var> (4)
<op> ::= + 0)
| * 1)
| - (2)

<protected-op> ::= div( <expr>, <expr>)
<pre-op> ::= sin 0)
| cos (D)
| exp (2)
| inv (3
| log (4)
<var> ::= X 0
| 1.0 1)

Fig. 1. Grammar used in Symbolic Regressions

rule = (Codon integer value)
MOD

(Number of rules for the current non — terminal)

Groups of production rules are indexed from zero, so if the result of division
leaves a remainder of 0, the production rule with an index value of zero will be
chosen. For example, given there are 5 choices of production rule available to map
from <expr>, if the first integer in the integer-representation of the genotype was
8, then

8 MOD 5 =3

and so the third rule (indexing from zero), which is <protected-op>,
would be selected. <protected-op> only contains one possible mapping -
div(<expr>,<expr>). This means there is no need to read an integer from the
genotype to determine which rule will be chosen to map from <protected-op>,
since there is no choice to be made. The next integer in the genotype would then
need to be read in order to map between the leftmost <expr> and one of its con-
stituent rules. Let’s assume this next integer had value 39. Once again, there are
five choices available to map from <expr>, so

39 MOD 5 =4

would select the fourth production rule for <expr>, which counting from 0, is
<var>. The third integer in the genotype would next be used to map between <var>
and one of its constituent rules. This process continues until either all integers in the
genotype have been used up, or our mapping process has resulted in the production
of a phenotype (that is a structure comprised of only terminal symbols) [17].
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3 Some Experiments to Illustrate Overfitting in Symbolic
Regression Problems

3.1 Setup

In order to clearly illustrate the problem of overfitting in model induction using Ge-
netic Programming, we show what happens when three symbolic regression func-
tions are fit using Grammatical Evolution [17] in a range that biases the output
towards an overfit model. This exposition is based on work we carried out in [23].
Equations 1 through 3 show the target functions. The training dataset, validation
data set, and test datasets were all comprised of 10 randomly generated points.
The test dataset was not used to train the model, and was comprised of points
solely outside the training range in order to specifically focus on the extrapolation
capabilities of the evolved model.
Target Function 1:

Y =0.6X3+5X% — 10X — 25 (1)

Training dataset range: [ -5, 5].
Validation data set range: [ -5, 5.
Test dataset ranges: [ -10, -5] and [ 5, 10].

Target Function 2:
Y =0.3X xsin2X (2)

Training dataset range: [ -1, 1].
Validation dataset range: [ -1, 1].
Test dataset ranges: [ -2, -1] and [ 1, 2].

Target Function 3:
Y =expX —2X (3)

Training dataset range: [ -2, 2].
Validation dataset range: [ -2, 2].
Test dataset ranges: [ -4, -2] and [ 2, 4].

These functions and ranges were chosen so that the target function would be
trained using a biased sample. The bias resulted from training in a range in which
the target function closely resembled an alternative function. Over a wider range
than that from which the training data was drawn, the target function looked quite
different from this alternative (for example, function 2 is a sine function as we can
see from the target function given above. However, if examined only in the training
range of between minus one and one, it resembled a quadratic function, (see Fig. 6)).
In this way, we engineered a situation in which overfitting was likely to take place. In
each case, Grammatical Evolution was run on a population size of 100 individuals,
for 51 generations, using Grammatical Evolution in Java [16]. The grammar used
is shown in Fig. 1.

Fitness was evaluated by computing the mean squared error of the training
points when evaluated on each individual (therefore the lower the fitness value, the
better the evolved function fitted the training data).

MSE — S |targetY — phenotypeY |?

(4)

n
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Fig. 2. Target Function 1
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Fig. 3. Target Function 2, Example 1

3.2 Results

Figs. 2(a) through 5(b) are plots of the fitness of the best individual at each gener-
ation as evaluated on the training data, against the fitness of the best individual at
each generation as evaluated on the validation and test datasets, for four illustrative
runs - one run each of target functions 1 and 3, and two runs of target function
2. Table 1 shows results of interest with respect to the fitness as evaluated on the
validation and test dataset, for 9 runs. It shows that stopping evolution before the
specified number of generations had elapsed, in the majority of cases would have
led to the model extrapolating better beyond the range in which it was trained [23].

Early stopping has been described in Section 2.2. The validation dataset is not
used to train the model, but instead is used to test the fitness of the model every
once in a while (for example each generation, or at five generation intervals). If the
fitness of the best individual as evaluated on the validation dataset disimproves, this
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Fig. 5. Target Function 3

is taken as an indication that the evolved model is overfitting the data, and evolution
is stopped. (Test data is used as before to evaluate the fitness of the evolved model
on out-of-sample data, after evolution has terminated, either prematurely (if early
stopping has been deemed necessary), or after the specified number of generations
has elapsed.)

Since we explicitly chose target functions and ranges with an inherent bias, these
symbolic regressions triggered overfitting, as expected. Using traditional early stop-
ping, training is stopped the first time validation fitness disimproves. The result of
training is taken to be the model produced at the generation immediately before
training is stopped. In the second and third columns of Table 1, we look at the
validation and test fitnesses (respectively), and determine whether or not perform-
ing traditional early stopping would have produced a model with lower validation
(column 2) and test set fitnesses (column 3), than the model produced at the end
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Table 1. Results of Interest: Validation, Test fitnesses.

Target Function|Would Tradi-|Would Tradi-|/Generation of Best Re-
tional Early|tional Early|sult (Test Fitness) be-
Stopping Have|Stopping Have|fore or after the Gen.
Been Useful? -|Been Useful? -|of Result of Training,
Validation Fit. |Test Fitness as per Traditional Early

Stopping?
1 No Yes After
1 No Yes Before or Same Time
1 Yes Yes After
2 No Yes After
2 No No After
2 No Yes After
3 No Yes Before or Same Time
3 No Yes After
3 Yes Yes Before or Same Time

of the run. In eight of the nine runs described, the test fitness was better the gener-
ation immediately before the validation fitness first disimproved, than at the end of
the run (column 3). Had we stopped evolution the first time the validation fitness
disimproved, we would have produced a model that extrapolated better beyond the
training range, than that produced at the end of the run (remember that the test
set is comprised of points solely outside the training range). We see that in only
two of the nine runs was the validation fitness better the generation before it first
disimproved than at the end of the run. This is not that surprising. The valida-
tion data points are drawn from the same range as the training points. Therefore,
overfitting is less likely to occur in the training/validation range than outside of
this range (given the functions we choose could be easily mistaken for alternative
functional forms outside of the training range).

Prechelt [21] shows that when training artificial neural networks, the first time
the error on the validation set increases is not necessarily the best time to stop
training, as the error on the validation set may increase and decrease after this first
disimprovement. The last column of Table 1 shows for each run, if the best stopping
point came before or after the generation of the result of training as dictated by
traditional early stopping. The best stopping point here refers to the earliest gen-
eration of lowest test error. We examine the eight runs where the model that we
would have evolved using traditional early stopping had better test fitness than the
model that would have been evolved at the end of the run. In five out of these eight
runs, the optimal generation at which to stop (as measured by test fitness) came
later than the generation of the result of training using traditional early stopping
[23].

In order to give further insight into the evolutionary process that underlie the
changes in fitness observed for the training and test data sets, the phenotype was
plotted against the target function in the entire data set range (that is, throughout
the range of training, validation and test data), at each generation. Fig. 6 shows a
selection of these generational graphs for the first run of function 2.

Comparing Figs. 6 and 3(b), we can clearly see the correspondences between
changes in the graphed phenotype over the generations and changes in the fitness
as evaluated on the test data. Between generations 1 and 22, the test fitness is
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either disimproving, or not improving by much. At generation 23 (Fig. 6(d)) fitness
improves significantly, and at generation 38 (Fig. 6(e)), an extremely fit individual
has been evolved, both with respect to the training and test set. In Fig. 3(b) we
see that the error on the test data is extremely low at generation 38. The model
extrapolates well. However, come generation 44 (Fig. 6(f)), a much less fit function
has been evolved. It’s fitness on the training data has improved, but it’s fitness on
the test data has drastically disimproved. In Fig. 3(b) we can see an explosion in
the test error towards the end of the run [23], which contrasts with the low value of
the training error.

4 Solutions to Prevent Overfitting - Stopping Criteria

In [21], Prechelt implements three classes of stopping criteria, which determine
when to stop training to preserve the generalisability of the evolved model. Each
class of criteria assumes we are evaluating the fitness of a model by examining the
error of the model on the training and validation datasets. Validation set error is
used to measure how well the model is generalising beyond the training examples.
Generalisation loss is measured by dividing the validation set error at the current
epoch (E,,), by the minimum validation set error observed up until the current
epoch (E,p;). In percentage terms, the generalisation loss (GL) at epoch ¢ is given
by:

2= 1) 5)

opt

GL(t) = 100 x (

First Class of Stopping Criteria - Stop when the Generalisation Loss
Exceeds a Threshold The first class of stopping criteria measures the loss of
generalisation of the trained model at each epoch, and stops training if the general-
isation loss is observed to have crossed a predefined threshold (denoted here by «).
In [21] the class GL, is defined as follows:

GL, : stop after first epoch ¢ with GL(t) > « (6)

While stopping once the generalisation loss passes a certain threshold appears
to be a good rule of thumb, it may be useful to add a caveat to that. Before
applying early training stopping, we may wish to check whether or not training
is still progressing rapidly. The training progress is examined over k generations. It
measures how much the average training error during the strip of length &, was larger
than the minimum training error during the strip. It is given (in per thousand) by:

Stmiis Burlt) 1)

(7)

Py (t) = 1000 x
k( ) (k X mini/:t,;ﬁl Etr(t/)

where Eg, (t) is the training error at time ¢.

Second Class of Stopping Criteria - Quotient of Generalisation Loss and
Progress If training is progressing well, then it may be more sensible to wait
until both generalisation loss is high and training progress is low, before stopping.
The intuition behind this lies in the assumption that while training is still rapidly
progressing, generalisation losses have a higher chance to be ‘repaired’.
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A second class of stopping criteria was defined in [21] to use the quotient of
generalisation loss and progress:

GL(t)
Pru(h)

PQ,, : stop at first end—of —strip epoch ¢ with >« (8)

Third Class of Stopping Criteria - Stop Training when the Generalisation
Error Increases in s Successive Strips The third and final class of stopping
criteria identified in [21] approached the problem from a different angle than the
first two. It recorded the sign of the changes in the generalisation error, and stopped
when the generalisation error had increased in a predefined number of successive
strips. The magnitude of the changes was not important, only a persistent trend in
the direction of of those changes. The third class of stopping criteria is defined as:

UP; : stop at epoch t iff UP,_4 stopped at epoch t — k

and Ey, > Eya(t — k)

UP; : stop at first end — of — strip epoch t (9)
with Eya(t) > Eya(t — k)

where s is the number of successive strips.

Stopping criteria decide to stop at some time ¢ during training, and the result
of the training is then the set of weights (in the case of neural networks), or the
evolved model (in the case of Grammatical Evolution) that exhibited the lowest
validation error prior to the time at which training was stopped. The criteria can
also be used if we are trying to maximise a fitness metric, rather than minimise an
error function. In this case the formulae used need to be adjusted to reflect the fact
that we are maximising fitness, not minimising error.

5 Investigations: Stopping Criteria applied to a Financial
Dataset

In section 2 we outlined the contribution of various authors investigating overfitting
and generalisation in GP and neural networks. Some of these [9,21,22] point to
the need for additional criteria to determine the point at which training is stopped
to avoid overfitting. Thus inspired, we present an implementation of the stopping
criteria detailed in section 4 using an alternative form of Grammar-based Genetic
Programming to GE.

These criteria have not, to the best of our knowledge, been applied in a GP
setting before now. This presents a valuable opportunity to apply approaches im-
plemented in the neural networks literature, to the field Genetic Programming. This
work is related to work we carried out using early stopping criteria with symbolic
regression in [24]. We also implement an additional stopping criteria not found in
the work carried out in [21].

Here, technical trading rules are evolved in the form of decision-trees (DTs) for
three trading rule problems, in order to generate signals to take a short or long
position. Our focus is not on constructing optimal risk-adjusted trading rules. We
instead focus on demonstrating the practical application and potential usefulness
of stopping criteria used to enhance the generalization of solutions evolved using
Genetic Programming.
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5.1 Grammar-based Genetic Programming Experimental Setup

The grammar in Fig. 8 presents the grammar adopted for program representation.
Each expression-tree is a collection of if-then-else rules that are represented as
a disjunction of conjunctions of constraints on the values of technical indicators.

Technical Analysis (TA) has been widely applied to analyse financial data and
inform trading decisions. It attempts to identify regularities in the time-series of
price and volume information, by extracting patterns from noisy data [5]. The tech-
nical indicators we used for these experiments are: (a) simple moving average
(MA), (b) trade break out (TBO), (c) filter (FIL), (d) volatility (VOL), and
momentum (MOM). For a good introduction to these, please refer to [5]. TA in-
dicators are parameterised with lag periods, which is the number of past time-steps
that each operator is looking at. Currently, we allow periods from 5 to 200 closing
days, with a step of 5 days. We also include the closing price of the asset at each
time-step.

An example decision tree is given in Fig. 7. Here, arg[0] represents the closing
price. This rule tells us to examine if three-tenths of the Simple Moving Average
over the past fifteen time-steps is greater than one quarter of the closing price. If it
is, we next execute the middle branch of the tree and act accordingly, otherwise we
take a short position. In order to execute the middle branch of the tree, we evaluate
whether or not the momentum over the last 55 time-steps, multiplied by 0.59, is
greater than one quarter of the closing price. If it is, we take a short position -
otherwise we take a long position.

The GP algorithm employs a panmictic, generational, elitist Genetic Algorithm.
The algorithm uses tournament selection. The population size is set to 500, and
evolution continues for 50 generations. Ramped-half-and-half tree creation with a
maximum depth of 5 is used to perform a random sampling of DTs during run
initialisation. Throughout evolution, expression-trees are allowed to grow up to a
depth of 10. The evolutionary search employs a variation scheme that combines
mutation with standard subtree crossover. A probability governs their application,
set to 0.7 in favour of mutation. No reproduction was used. The maximisation
problem employs a fitness function that takes the form of average daily return
(ADR) generated by the rule’s trading signals over a training period.

5.2 Financial Time-series and Trading Methodology

The datasets used are daily prices for a number of financial assets. These are the
foreign exchange rate of EUR/USD, the Nikkei 255 index, and and S&P 500 index,
for the period of 01/01/1990 to 31/03/2010. The first 2,500 trading days are used
for training, and the remaining 2,729 are equally divided between validation and
test sets, both with size of 1,364 days.

Each evolved rule outputs two values, 1 and -1, interpreted as a long and short
position respectively. The average return of a rule (Average Daily Return (ADR))
is generated as follows. Let r; be the daily return of the index at time ¢, calculated
using (vs — v4—1)/vs—1, where v; and v;_; are the values of the time-series at time
t and t — 1 respectively. Also, let s;_1 be the trading signal generated by the rule
at time ¢ — 1. Then d; = s;_17; is the realised return at time t. Using a back-test
period, an average of d; can be induced; to annualise this we simply multiply it by
200 trading days. Trading, slippage and interest costs are not considered.
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5.3 Results and Discussion

The thresholds used for the GL, PQ and UP criteria were closely mirrored on those
used in [21], with a few minor changes. The strip length used was also taken from
[21], and was set to 5, for both the UP and PQ classes of criteria.

As noted in Section 5.1, the evolution of trading rules is governed by a fitness
function that maximises the average daily return (ADR) generated over a period.
One point to note here is that the formulae have been re-written in terms of the
fitness being maximised, rather than the equivalent form of the error being min-
imised. It is worth pointing out, in order to avoid confusion, that instead of stopping
when the generalisation error increased for some number of successive strips, when
dealing with fitness maximisation, the ‘UP’ criteria stopped when the generalisation
error decreased for some number of successive strips.

Tables 2, 3 and 4 examine the performance of the GL, PQ and UP stopping
criteria on the datasets from the EUR/USD, Nikkei 255, and S&P 500 indices. In
addition, a new class of criteria were added, which depended on the correlation
between the training and validation fitnesses. To the best of our knowledge, these
criteria have not been implemented in the same way before. They caused training
to be stopped if the Pearson’s correlation coefficient between the training set fitness
and the validation set fitness, fell below a predefined threshold. The correlation cri-
teria were evaluated at every generation during the run, until a stopping generation
was identified. The thresholds used for the correlation criteria were 0.8, 0.6, 0.4,
0.2, 0, —0.2, —0.4 and —0.8.

We experimented with a wide range of correlation values, from values describing
strong positive correlation to strong negative correlation. It is important to keep
in mind that these values represented thresholds, which if crossed, would trigger
an end to training. As such, examining whether or not weaker (negative) as well as
stronger (positive) thresholds would prove a useful stimulus to stop training merited
investigation. As can be seen in tables 2 to 4, this exploration proved worthwhile.

For each criteria, any run for which the criteria’s threshold is not breached, is
discarded from the analysis of the performance of the criteria. In examining the
usefulness of the stopping criteria when applied to these financial data sets, we are
only concerned with the performance of the criteria when a stopping generation is
identified. We therefore don’t know if this would have been the optimal stopping
point in the context of the run completing its 50 generations. The final column in
each of Tables 2, 3 and 4, entitled ‘Prob Halting’, displays the proportion of all 50
runs in which a stopping generation was identified by the criterion in question (the
values in the ‘Prob Halting’ column are scaled between 0 and 1). To calculate the
number of runs each criterion acted upon, multiply the probability of halting by 50.

Analysing Performance Some notation, which will be used below, is defined
here. The time at which training was stopped (the stopping generation) is denoted
by ts. The test fitness at the generation of the result which is produced by applying
criterion C, is E(C).

Prechelt [21] defines a criterion as being good, if it is among those that find
the lowest validation set error for the entire run. The best criterion of each run,
is defined as a good criterion which has an earlier stopping generation than other
good criteria. That is, among all the criteria that find the best validation fitness,
the best criterion of all is that which stopped training quickest [21].

We analysed the performance of the stopping criteria on each of the three bench-
mark financial data sets[1]. Three performance metrics were defined. The ‘slowness’
of a criterion C' in a run, relative to the best criterion z, is defined as
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S (C) = ts(C)/ts ().

The “generalisability” of a criterion C in a run, relative to the best criterion
z, is defined [21] as

By (C) = Eye(C)/Ete (7).

The ‘generalisability’ of a criterion therefore measures how well the result it
produces generalises beyond the training and validation sets, relative to the best
criterion. Tables 2, 3 and 4 show the average values for slowness and generalisability
over all the runs in which halting took place, for each criterion. Standard deviations
are shown in brackets.

The third and final metric measures the probability that a particular cri-
terion will be the best criterion for a run. This is calculated as follows. The
number of times a particular criterion was chosen as the best criterion of a run is
counted. The number of times the criterion was best is divided by the number of
runs in which halting took place for the criterion. This gives the average number of
times the criterion is chosen as the best criterion. This average is used to measure
the probability that the criterion will be the best criterion.

The correlation criteria come out very well in terms of having a high probability
of being judged the best criterion of a run in Tables 2, 3 and 4. This is a very
interesting and potentially useful result. For the S&P 500 dataset, the correlation
criteria have better generalisation performance than all other criteria (averaging
performance values across all criteria in a particular class). Their generalisation
performance is marginally worse than the UP criteria for the Nikkei 255 dataset,
but they outperform the other classes of criteria. They perform worse than all classes
of criteria for the Euro/USD dataset, in terms of generalisation. The GL criteria are
the fastest criteria at identifying a stopping point in two out of the three datasets,
and second best in the Euro/USD dataset. The correlation criteria are always slower
than both the GL and UP criteria, across all three datasets (once again, taking the
average performance across all criteria for each class). The correlation criteria may
still be a superior choice than the other three classes of criteria, unless training time
is a constraint.

6 Conclusions

In this chapter, we focused on the techniques to counteract overfitting in evolu-
tionary driven financial model induction, first providing some background to the
problem. In order to clearly illustrate overfitting, we showed the existence of over-
fitting in evolved solutions to symbolic regression problems using grammar-based
Genetic Programming, using diagrams as visual aids. After noting other authors
observations that traditional early stopping techniques, which usually stop train-
ing when validation fitness first disimproves, were often insufficient in increasing
generalisation [22,21], we implemented four early stopping criteria to buy /sell trad-
ing rule problems using grammar-based Genetic Programming. Three of these had
previously been implemented in neural network training [21]. The fourth class of
criteria, which measured the correlation between the training and validation fitness
at each generation and stopped training once the correlation dropped below a pre-
defined threshold (such as 0.6), proved very successful. This class of criteria had a
high probability of being a best criterion of a run, meaning that it would stop sooner
than any other criteria after the global maximum validation set fitness had been
observed. It also usually had adequate generalisation performance with respect to
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Table 2. Criteria Performance on Euro/USD: Averages and (Standard Deviations) Over

50 Runs

Criterion[ Slowness [Generalisability[Prob Best Crit[Prob Halting

GLy
GLs
GLj
GLs
PQo.s
PQo.75
PO
PQ>
PQs
UP,
UPs
UPy
CORy s
CORp 6
CORoy.4
CORp.2
CORy
COR_p.2
COR_0.4
COR_os

3.37 (2.7)
3.39 (2.69)
3.41 (2.68)
3.41 (2.68)
4.08 (4.49)
4.28 (4.56)
4.45 (4.61)
4.8 (4.77)
5.02 (4.85)
3.29 (4.22)
3 (3.56)
3.67 (3.51)
3.62 (4.53)
3.98 (4.66)
4.31 (4.75)
4.73 (4.56)
5.03 (4.77)
5.73 (5.16)
5.43 (4.62)
5.25 (5.55)

1.13 (0.78)
1.13 (0.79)
1.14 (0.78)
1.14 (0.78)
1.02 (1.76)
1.03 (1.81)
1.05 (1.84)
1.01 (1.77)
0.94 (0.54)
1.39 (3.6)
1.19 (0.41)
1.34 (0.58)
0.76 (3.62)
0.83 (3.18)
0.88 (2.84)
0.97 (2.28)
0.93 (1.16)
0.94 (0.94)
0.95 (1.06)
0.58 (2.44)

o o
o0 o0000000O0O0

[\S]

0.18
0.2
0.06
0.06
0.02
0.02
0.04

0.3
0.28
0.26
0.26
0.86
0.86
0.82

0.8

0.8
0.56
0.24
0.06

1

1
0.98
0.94

0.9
0.76
0.66
0.32

Table 3. Criteria Performance on Nikkei 255

50 Runs

: Averages and (Standard Deviations) Over

Criterion[ Slowness [Generalisabihty[Prob Best Crit[Prob Halting

GlLq
GLo
GLs
GLs
PQo.s
PQo.7s
P
PQ2
PQs
UP;
UPs
UPy
CORp.s
CORp 6
CORp.4
CORyp.2
CORy
COR_y.2
COR 0.4
COR_o.3

0.88 (0.98)
0.93 (0.98)
0.97 (0.99)
0.99 (0.99)
8.41 (11.03)
8.59 (11.11)
8.89 (11.27)
9.71 (11.74)
10.57 (12.17)
7.56 (10.75)
5.44 (9.71)
4.36 (5.26)
7.42 (10.44)
8.05 (10.72)
8.86 (11.08)
9.84 (11.56)
10.69 (12.07)
10.07 (10.86)
9.69 (10.13)
9.14 (10.43)

0.77 (0.6)
0.77 (0.6)
0.76 (0.6)
0.76 (0.6)
0.95 (0.43)
0.94 (0.43)
0.96 (0.39)
0.95 (0.39)
0.95 (0.37)
0.96 (0.25)
0.96 (0.16)
0.99 (0.02)
0.91 (0.53)
0.93 (0.47)
0.95 (0.39)
0.98 (0.29)
0.99 (0.2)
0.98 (0.2)
0.98 (0.23)
0.99 (0.36)

0.12
0.12
0.12
0.12
0.98
0.98
0.98
0.98
0.98
0.86
0.32
0.18
1
1
0.98
0.92
0.86
0.78
0.72
0.54

independent test data, that had neither been used for training, nor to determine

stopping points.
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Table 4. Criteria Performance on S&P500: Averages and (Standard Deviations) Over 50
Runs

Criterion[ Slowness [Generalisability[Prob Best Crit[Prob Halting

GL, 6 5 (819) | 0.74 (0.33) 0 0.08
GL, 5(8.19) | 0.74 (0.33) 0 0.08
GLs 5(8.19) | 0.74 (0.33) 0 0.08
GLs 5(8.19) | 0.74 (0.33) 0 0.08
PQos |7 79 (11.13) | 0.79 (1.12) 0.02 1
PQors | 8.15 (11.35) | 0.76 (0.97) 0.02 1
PQ, |852(11.59)| 0.76 (0.95) 0.02 1
PQ, |9.45 (12.26) | 0.74 (0.9) 0.02 0.98
PQs [10.13 (12.75)| 0.74 (0.86) 0 0.98
UP, |7.07(10.21)| 0.64 (0.8) 0 0.74
UP; |9.24 (11.47) | 0.59 (0.9) 0 0.44
UP, 7 (5.95) 0.48 (1.02) 0 0.12
CORys | 7.21 (10.78) | 0.76 (1.28) 0.18 1
CORo |8.04 (11.24) | 0.8 (1.25) 0.26 0.98
CORy.4 | 8.76 (11.67) 079( ) 0.04 0.96
CORy.» | 9.56 (12.07) 8 (1.3 0.1 0.9
COR, [10.58 (12.61) 0. 92 (1.2 ) 0.04 0.88
COR_o5|10.76 (12.7) | 0.96 (1.28) 0.08 0.88
COR_.4/10.98 (12.97)| 0.97 (1.49) 0.02 0.82
COR_og| 2.24 (3.62) | 0.68 (2.26) 0.2 0.64

As for the other classes of criteria, the UP criteria stopped after a persistent
disimprovement had been observed in the validation fitness over consecutive time
periods. UP criteria generalise well - they display the best results for generalisation
on the Euro/USD and Nikkei 225 dataset. They are by no means slow to stop either
- being fastest at identifying a stopping point on the Euro/USD dataset, and second
fastest on both the Nikkei 225 and S & P 500 datasets. If a low training time is
important, then the GL criteria are the best option - however, the UP criteria are a
very attractive alternative, given they also display good generalisation performance.

For future work, we are planning on evolving general purpose stopping criteria
by combining the different classes of low-level stopping criteria studied in this paper.
There is a ample interest to optimise various aspects of this approach. A promising
area will be to allow for the stopping thresholds to be evolved. In addition, it will
be useful to determine the classes of low-level criteria that can act complementarily
to devise early stopping rules that generalise well across a diverse set of training
data.
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Fig. 7. An example Decision Tree
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<prog> ::= <if>
<if> ::= <predicate> <expr> <expr>
<expr> ::= <if>
<signal>
<signal> ::= -1
[ 1
<predicate> ::= <tiexpr> <comp> <arithexpr>
<tiexpr> ::= <arithexpr> <arithop> <tiexpr>

| <tiexpr> <arithop> <tiexpr>

| <coeff> * <ti>

| <coeff> * <ti> + <coeff> * <ti>
I

<ti>
<arithexpr> ::= <val> <arithop> <val>
| <val>
<valA> ::= <coeff>
| closingprice
<coeff> ::= <const> <arithop> <const>
| <const>
<comp> ::= <
>
<arithop> ::= +
| -
| *
|/
<ti> ::=MA (5)
|
| MA ( 200 )
| TBO ( 5 )
| ...
| TBO ( 200 )
| FIL ( 5 )
| ...
| FIL ( 200 )
| MOM ( 5 )
[ ... MOM ( 200 )
| voL ( 5 )
| . VoL ( 200 )
<const> ::= random constant in [-1.0, 1.0]

Fig. 8. Grammar used on Financial Datasets



