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Abstract— In this paper we investigate the application of
tree-adjunct grammars to grammatical evolution. The standard
type of grammar used by grammatical evolution, context-free
grammars, produce a subset of the languages that tree-adjunct
grammars can produce, making tree-adjunct grammars, ex-
pressively, more powerful. In this study we shed some light on
the effects of tree-adjunct grammars on grammatical evolution,
or tree-adjunct grammatical evolution. We perform an analytic
comparison of the performance of both setups, i.e., grammatical
evolution and tree-adjunct grammatical evolution, across a
number of classic genetic programming benchmarking prob-
lems. The results firmly indicate that tree-adjunct grammatical
evolution has a better overall performance (measured in terms
of finding the global optima).

I. INTRODUCTION

Grammatical evolution (GE) [21], [2], since its inception,
has had much success. A large proportion of this success
can be attributed to how easily GE can be extended. Many
different grammars have been explored with GE, includ-
ing shape grammars[22], attribute grammars[1] and logic
grammars[14]. In this paper we explore the utility of tree-
adjunct grammars (TAGs) in GE.

The goal of this study is to introduce tree-adjunct gram-
matical evolution (TAGE), which extends standard GE by
incorporating TAGs in its operation. We show how the
incorporation of TAGs in GE translates into a more effective
GE to find solutions on a number of problems with very
different landscape features.

As outlined in [13], the set of languages produced by
context-free grammars (CFGs), known as context-free lan-
guages (CFLs), are strictly included in the set of languages
produced by TAGs, known as tree-adjunct languages (TALs),
which in turn are strictly included in indexed languages,
which are finally strictly included in context-sensitive lan-
guages. Consequently, this indicates that TAGs are the next
step for GE in terms of choice of grammar type.

The rest of the paper is structured as follows. A brief
overview of GE and it’s genotype to phenotype mapping
process is given in the following section, including an
introduction into TAGs. The approach taken in this study
to utilise TAGs in GE is outlined in Section III. The paper
continues by describing the experimental setup in Section IV.
The results and discussion are presented in Section V, before
closing with some conclusions and future work in Section VI.
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II. BACKGROUND

A. Grammatical Evolution

GE is a grammar-based approach to genetic programming
(GP) [15], [24]. GE combines principles from genetics and
molecular biology, the genotype to phenotype mapping, with
the representational power of formal grammars, the ability to
change the behaviour of the algorithm by simply changing
the structure of the grammar. The grammar, a CFG which is
usually written in Backus-Naur form, can be easily modified
to output programs of an arbitrary language, something that
is not a trivial task in other forms of GP. In addition to
this, GE’s genotype to phenotype mapping means that search
operators can be applied to the genotype (usually an integer
or binary chromosome), as well as the ability to apply
standard GP search operations to the phenotype as well,
therefore extending the search capabilities of standard GP.

1) Genotype to Phenotype Map: GE’s genotype to phe-
notype mapping constructs a derivation tree using a chromo-
some and a grammar; it operates as follows (see Figure 1
for the grammar and chromosome used for this example):
Mapping begins with the start symbol, usually the first
symbol declared in the grammar, <e>. The first codon (or
integer value) is read from the chromosome, in this case
it is the value 12. The number of production rules for the
start symbol are counted, 2, <e><o><e> and <v>. Which
rule to choose is decided according to the mapping function
i mod c, where i is the value of the codon read from
the chromosome and c is the number of choices available,
e.g, 12 mod 2 = 0, therefore we chose the zero-th rule
and <e> is expanded to <e><o><e>. This expansion forms
a partial derivation tree with the start symbol as the root,
attaching each of the new symbols as child nodes of this
root. The next symbol to expand is the first non-terminal
leaf node discovered while traversing the tree in a depth first
manner. However, it should be noted that there is on-going
study into variations on the method used to choose which
node to expand next [18], [19]. In standard GE this will be
the left-most <e> in the tree. The next codon is read and has
a value of 3, expanding this <e> to <v> and growing the
tree further. The next symbol is the <v> previously expanded
and the next codon has a value of 7, 7 mod 2 = 1, so the
rule at index 1, Y, is chosen, and so on.

This continues until either there are no more non-terminal
leaf nodes left to expand, or until there are no codons left to
read, i.e., the end of the chromosome has been reached. If
there are no codons left to read and derivation is not com-
plete, with non-terminal leaf nodes still in the derivation tree,
derivation can proceed in one of a few different manners. For
example, assign a bad fitness to the individual, so it is highly
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Grammar:
<e> ::= <e> <o> <e> | <v>
<o> ::= + | -
<v> ::= X | Y

Chromosome: 12,3,7,15,9,10,14

Fig. 1. Example context-free grammar and integer chromosome.
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Fig. 2. GE derivation tree - The nodes are labeled with symbols from the
grammar and the edges are labeled with the order of expansion.

unlikely that this individual will survive the selection process
to the next generation. Another approach can be the use of
wrapping. The chromosome maybe reused for a predefined
number of times or wrappings. If after the wrapping limit
is reached and we still have an invalid individual, we could
then assign it a bad fitness.

It should be noted that other approaches might be em-
ployed, such as choosing only those rules which produce
terminals from the grammar when a specific derivation tree
depth [4] or number of wrappings has been reached. Ensuring
that the individuals are valid, i.e., they have no non-terminal
leaf nodes. The complete derivation tree for this example is
shown in Figure 2.

B. Tree-Adjunct Grammars

TAGs, which were introduced first in [12], are a tree gen-
erating system. Originally making use of only one compo-
sition operation, adjunction, TAGs have since been renamed
as tree-adjoining grammars and extended to use a second
composition operation, substitution. TAGs have been utilised
with much success (see [11], [16] and more recently [13]).
In particular, in the field of GP in the form of TAG3P [6],
[7], [9], [17], [5], [8]. It should be noted that TAGs (only
adjunction) and tree-adjoining grammars (substitution also)
are, formally, as powerful as each other, that is to say, they
produce the same set of languages [6]. The inclusion of
substitution allows for a more compact formalism, i.e., less
trees [13].

This paper is concerned primarily with the original def-
inition of TAGs as outlined in [12], with adjunction as the
only composition operation. With this in mind, married with
the clearer definition of tree-adjoining grammars presented
in [13], we present the following definition of TAGs.
A TAG is defined by a quintuple (T,N, I, A, S) where:

1) T is a finite set of terminal symbols;
2) N is a finite set of non-terminal symbols: T ∩N = ∅;
3) S is the start symbol: S ∈ N ;

<v>

X

<e>

(a) α0

<e>

<e> <o> <e>*

<v> -

Y

(b) β7

<v>

X

<e>

<e> <o> <e>

<v> -

Y

(c) Derived Tree

Fig. 3. Composition operation: Adjunction. β7 is adjoined to α0 at α0’s
root node, or address 0.

4) I is a finite set of finite trees. The trees in I are
called initial trees (or α trees). An initial tree has the
following properties:

• the root node of the tree is labelled with S;
• the interior nodes are labeled with non-terminal

symbols;
• the leaf nodes, or the nodes along the frontier are

labeled with terminal symbols;
5) A is a finite set of finite trees. The trees in A are called

auxiliary trees (or β trees). An auxiliary tree has the
following properties:

• the interior nodes are labeled with non-terminal
symbols;

• the leaf nodes, or the nodes along the frontier
are all labeled with terminal symbols apart from
one node; this node is labeled with the same non-
terminal symbol as the root node and is known
as the foot node; the convention outlined in [13]
is followed and foot nodes are marked with an
asterisk (*).

An initial tree is meant to represent a minimal non-recursive
structure or derivation tree produced by the grammar, i.e.,
it contains no recursive non-terminal symbols. Inversely,
an auxiliary tree of type X represents a minimal recursive
structure, which allows recursion upon the non-terminal X
during derivation [16]. The set of initial trees and the set of
auxiliary trees together form the set of elementary trees, E;
where I ∩A = ∅ and I ∪A = E.

During derivation, composition operations are used to join
elementary trees together. The adjunction operation takes an
initial or derived tree a, creating a new derived tree, d by
combining a with an auxiliary tree, b. A subtree, c is selected
from a. The type of the subtree (the symbol at its root), X ,
is used to select an auxiliary tree, b, of the same type. c is
removed temporarily from a. b is then attached to a as a sub-
tree in place of c and c is attached to b by replacing c’s root
with b’s foot node (Figure 3 depicts this idea). An example
of TAG derivation is provided in Section III.

III. TREE-ADJUNCT GRAMMATICAL EVOLUTION

TAGs are more powerful than CFGs [13] which are
currently used in standard GE since the set of languages
produced by TAGs, TALs, is a super-set of CFLs, those



produced by CFGs [13]. Unlike CFGs, TAGs can also gen-
erate some context-sensitive languages [6], [13]. In addition
to this, it has been shown that for every CFG there is a
TAG that is both weakly and strongly equivalent to it[10]. A
grammar is weakly equivalent to another if it can produce the
same language as the other, whereas a grammar is strongly
equivalent only if it can represent each of the words in
that language using the same structures as the other, i.e.,
derivation trees.

In order to incorporate the power of TAGs into GE, TAGE
was developed. A number of steps were to be taken in order
to achieve this. The first was to translate current CFGs used
by GE into TAGs which could be used by TAGE. Secondly,
an algorithm for derivation had to be developed in order to
successfully map from genotype to phenotype using a TAG.

A. CFG to TAG

There is a special type of TAG called a lexicalised TAG
(LTAG). A lexicalised grammar has two defining properties:

• it consists of a finite set of structures, each with at least
one terminal symbol, known as the anchor;

• it has at least one operation for composing the structures
together.

The TAGs referenced in this study are LTAGs since all the
leaf nodes of the elementary trees are labeled with terminal
symbols (apart from the foot nodes). The phrases TAGs and
LTAGs will be inter-changeable throughout the remainder of
this paper and will both represent lexicalised tree-adjunct
grammars.

In [13], Joshi and Schabes state that for a “finitely
ambiguous CFG1 which does not generate the empty string,
there is a lexicalised tree-adjunct grammar generating the
same language and tree set as that CFG”. Joshi and Schabes
also provided an algorithm for generating such a TAG. This
algorithm is outlined below.

Take a finitely ambiguous CFG, G = {N,T, P, S}, where:
N is the set of non-terminal symbols; T is the set of terminal
symbols; P is the set of production rules; and S is the start
symbol. Construct a directed graph, g, from G, where the
nodes of the graph are labeled with symbols from N and
the edges of the graph are labeled with the productions from
P which map between them. Then find the set of minimal
cycles, c, in the graph such that they contain no other cycles
within them. The productions in P must then be divided into
two separate sets; R is the set of recursive productions (a
production is recursive if it is part of a cycle, ci); and NR
is the set of non-recursive productions in the grammar.

Using S as the root node, create the set of all possible
derivation trees using only the productions in NR. This is
the set of initial trees, I . Then create A, the set of auxiliary
tree, as an empty set. A = ∅.

For each node nj , in each of the cycles ci, if there is a tree
in I ∪ A that contains a node which has the same label as
nj , create the set of all possible derivation trees, using only

1A grammar is said to be finitely ambiguous if all finite length sentences
produced by that grammar cannot be analysed in an infinite number of ways.

Algorithm 1 Generating a TAG from a CFG

Require: G = {N,T, P, S}
g = createDiGraph(G);
c = findBaseCycles(g);
R = getRecursiveProductions(P, g);
NR = P − R;
I = generateInitialT rees(S,NR);
A = ∅
for all ci in c do

for all nj in ci do
E = I ∪A;
if a tree in E has a node labeled the same as nj then
A = A ∪ generateAuxiliaryT rees(nj, ci, NR)

end if
end for

end for

the productions in NR and the current cycle, where the nj

is the root node, and the leaf node which has the same label,
as the foot node. Add this set of trees to A. See Algorithm 1
for a summary of this algorithm.

An example of a TAG produced by Algorithm 1 can be
seen in Figure 4, and was generated from the CFG shown in
Figure 1.

B. Derivation in TAGE

Derivation in TAGE is different from derivation in GE in
that it is a two step process, first a derivation tree is formed,
and from that the derived tree is produced. The derivation
tree is different to that of standard GE, as it is a tree where
each node itself is representative of an elementary tree. The
edges of this derivation tree are labeled with node addresses.
These addresses lead to nodes in the elementary trees which
label the tail nodes of the edges. It is on these nodes that
composition operations are to be applied using the trees
represented by the head nodes of the edges. The derived tree
in TAGE is the same as standard GE’s derivation tree. It is
the tree of symbols resulting from the composition operations
listed in the derivation tree. Examples of both types of trees
can be seen in Figure 5.

The derivation tree in TAGE, the tree of trees, is important
when dealing with TAGs if you intend to do any operations
on the tree itself. For example, sub-tree crossover on the de-
rived tree could result in altering an elementary tree, the most
basic structure in a TAG. These operations should instead be
used on the derivation tree, allowing whole elementary trees
to be moved.

1) Example Derivation: An example of derivation in
TAGE follows. It is similar to the algorithm used in [7].
Given the TAG G, where
T = {x, y,+,−}, N = {< e >,< o >,< v >}, S =< e >
and I and A are shown Figure 4, derivation proceeds using
the chromosome from Figure 1 and operates as follows. First
an initial tree must be chosen to start the derivation. The first
codon value is read, 12, and is used to choose an initial tree
based on the number of trees in I using the same mapping
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Fig. 4. I (α) and A (β) sets of the TAG produced from the CFG shown in Figure 1 using Algorithm 1 described previously.

function as GE, i mod c. From I , the set of α trees, 12
mod 2 = 0, the zero-th tree is chosen, α0, and set as the
root node of tree, t, the derivation tree, see Figure 5(a).

Next we enter the main stage of the algorithm. A location
to perform adjunction must be chosen. The set N is created of
the adjunctable addresses2 available within all nodes(trees)
contained within t. In this case N = {α00}, so a codon
is read and an address is selected from N, 2 mod 1 = 0
indicates which address to choose, N[0]. Adjunction will be
performed at α00, or index 0 of tree α0, <e>. An auxiliary
tree is now chosen from the set of trees in A that are of the
type l, i.e., the label of their root node is l, where l is the
label of the node adjunction is being performed at. In this
case l = <e>. Since there are 8 such trees in A, 3 mod
8 = 3, β3 is chosen. This is added to t as a child of the
tree being adjoining to, labeling the edge with the address
0, see Figure 5(b). The adjunctable addresses in β3 will be
added to N on the next pass of the algorithm. This process,
the main part of the algorithm, is repeated until all remaining
codons have been read. The resulting derivation and derived
trees from each stage of this process can be seen in Figure 5.

If the end of the chromosome is reached mid-execution,
the operation is aborted and the individual is marked as valid
since the derived tree has no non-terminal leaf nodes and the
resulting program can always be evaluated.

IV. EXPERIMENTAL SETUP

The focus of this study is to compare the performance of
standard GE to TAGE, and to analyse the results in order
to discover whether TAGs affect the ability of GE to find
correct solutions.

The GEVA v1.1 software [20] was used to conduct the
experiments for this study. It was extended to allow the
use of TAGs. The evolutionary parameters adopted for all
the benchmark problems described below are presented in
Table I. A short initial chromosome length was selected (15
was a randomly selected value) due to TAGE’s use of the
entire chromosome during derivation, unlike standard GE
where the amount of the chromosome used varies. This
provides TAGE with the ability to attempt to find short
solutions to the problems if they exist. Each run was evolved
for 200 generations, enabling longer solutions to be explored

2An adjunctable address in a tree is the breadth first traversal index of a
node labeled with a non-terminal symbol, of which there is an auxiliary tree
of that type, and that there is currently no auxiliary tree already adjoined to
the tree at that index

TABLE I

GE PARAMETERS ADOPTED FOR EACH OF THE BENCHMARK PROBLEMS.

Parameter Value
Generations 200

Population Size 100
Initialisation Random

Initial Chromosome Size 15
Max Chromosome Wraps 0

Replacement Strategy Generational
Elitism 10 Individuals

Selection Operation Tournament
Tournament Size 3

One Point Crossover Probability 0.9
Integer Mutation Probability 0.02

if needed through chromosome growth by means of single-
point crossover. Wrapping, as described in Section II-A, was
disabled for all experiments.

A. Benchmark Problems

Standard GE was compared to TAGE using five classic
benchmark problems taken from specialised GP literature.
100 independent runs were performed for each of the
problems listed below using each setup. The CFGs used
in standard GE and in TAGE to generate TAGs for each
problem are shown in Figure 6.

Even-5-parity: This problem attempts to evolve the
five input even-parity boolean function, in which the best
fitness is obtained when the correct output is returned for
each of the 25 test cases.

Santa Fe ant trail: In this problem a control program
is evolved to control the movements of an artificial ant on
a 32x32 toroidal grid. The ant has use of several operations
to collect 89 pieces of food located along a broken trail:
foodAhead(), enabling the ant to check if there is food in the
tile directly facing it, as well as right(), left() and move().
The latter three operations consume one unit of energy.

Symbolic Regression: The objective is to evolve the
classic quartic function, x + x2 + x3 + x4. Fitness is
measured by the sum of the error across 20 test cases drawn
from the range [−1, 1]. A successful solution is where the
error is less than a certain threshold, or hits criterion, as
described in [15]. In our study, we set this threshold at 0.01.
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Fig. 5. The derivation tree and corresponding derived tree at each stage of derivation in TAGE. The shaded areas indicate the new content added to the
tree at each step.

Six Multiplexer: This classic GP boolean function problem in
which evolution attempts to find correct two input and four
output line boolean function. A perfect solution generates the
correct output for a given input for all 64 test cases. Fitness
is measured by how many test cases generate correct outputs.

Max: This problem, as described in [3], aims to evolve
a tree whose growth is constrained by a depth limit, that
when the tree’s phenotype is executed, returns the largest
value possible. A function set of addition and multiplication
operators are used as well as a terminal set of {0.5}. A
max tree depth of 8 was used for the purposes of these
experiments.

V. RESULTS AND DISCUSSION

A. Performance

Compared to standard GE, TAGE performs better at find-
ing the global optimum. Table II shows that for four out
of the five problems tested TAGE finds more solutions than
GE which achieve perfect fitness values across the 100 runs.
This is reinforced by the fact that the mean best fitness at
the final generation in each case is lower for TAGE than
GE3. This is reflected in Figure 7, plotting the mean best
fitness values at each generation. TAGE repeatedly shows an
ability to find fitter solutions in fewer generations than GE,
effectively searching the solution space more efficiently.

TAGE fails to improve upon the results found by GE for
the Max problem. The plots in Figure 9 show a repeated
trend across the Even-5 parity, Santa Fe Ant Trail and
Symbolic Regression problems, the Six Multiplexer problem

3It is important to point out that GEVA minimises, so the lower the fitness,
the better.

TABLE II

A COMPARISON OF RESULTS OBTAINED BY GE AND TAGE ACROSS THE

FIVE BENCHMARK PROBLEMS - THE BEST AND AVERAGE FITNESS

VALUES AVERAGED ACROSS 100 RUNS FOR THE FINAL GENERATION.

THE NUMBERS IN BOLD INDICATE THE BEST PERFORMANCE IN TERMS

OF FINDING THE GLOBAL OPTIMUM.

Best Fitness Average Fitness Successes
Mean (SD) Mean (SD) (/100)

Even-5
GE 2.08 (4.57) 6.15 (3.58) 79

TAGE 0.64 (1.90) 13.12 (0.67) 88
Santa Fe

GE 32.42 (10.59) 42.13 (9.76) 3
TAGE 16.53 (10.99) 69.32 (3.96) 12

Sym.Reg.
GE 0.253 (0.394) 8.700 (13.689) 44

TAGE 0.054 (0.171) 29.053 (9.145) 76
6 Multi.

GE 9.14 (4.19) 11.65 (3.69) 6
TAGE 1.77 (2.66) 16.87 (1.83) 63
Max
GE 2.31 (4.22) 199.88 (125.46) 0

TAGE 2.04 (1.52) 579.79 (335.25) 0

was omitted due to space restictions. The derived trees
produced by TAGE are consistently deeper and larger in size
than the derivation trees produced by GE. It is believed that
larger trees are more likely to find a better solution [23]. The
equivalent plots for the Max problem, shown in Figure 8,
display the opposite of this trend, with deeper and larger
trees being produced by GE than those produced by TAGE.
With respect to this, it is not surprising that a similar increase
in performance was not seen for the Max problem as was
for the other four problems.

In addition, TAGE increases the connectivity of the search



Even-5 parity grammar: Santa Fe ant trail grammar: Max grammar:
<prog> ::= <expr> <prog> ::= <code> <prog> ::= <expr>
<expr> ::= <expr> <op> <expr> <code> ::= <line> | <code> <line> <expr> ::= <op> <expr> <expr>

| ( <expr> <op> <expr> ) <line> ::= <condition> | <op> | <var>
| <var> <condition> ::= if(food\_ahead()==1) <op> ::= + | *
| <pre-op> ( <var> ) { <opcode> } <var> ::= 0.5

<pre-op> ::= not else
<op> ::= "|" | & | ˆ { <opcode> }
<var> ::= d0 | d1 | d2 | d3 | d4 <op> ::= left(); | right(); | move();

<opcode> ::= <op> | <opcode> <op>

Symbolic Regression grammar: Six Multiplexer grammar:
<expr> ::= ( <op> <expr> <expr> ) <B> ::= (<B>) &&(<B>)

| <var> | (<B>) "||"(<B>)
<op> ::= + | - | * | !(<B>)
<var> ::= x0 | 1.0 | (<B>) ? (<B>) : (<B>)

| a0 | a1 | d0| d1 | d2 | d3

Fig. 6. Grammars in Backus-Naur form used for all the benchmark problems.

space. Operations applied to the genotype in TAGE, such as
crossover and mutation, affect larger changes in the resulting
phenotype than in GE, since the building blocks employed by
TAGE, elementary trees, are larger than those employed by
GE, individual symbols. As a result of this, TAGE allows
access to new kinds of tree transformations that are not
readily available with standard GE. This is evident when
examining the mean average fitness values in Table II. The
values for TAGE are much larger than those of GE, and
in contrast to GE, they are much further away from their
respective mean best fitness values. This indicates that while
GE begins to converge when a local optimum is found, TAGE
promotes diversity, and as such, deters convergence.

B. Chromosome Length

A common problem with GE is that while the number of
codons used for derivation can remain quite small, the length
of the chromosome, i.e., the total number of codons in the
chromosome, can grow uncontrollably. This can sometimes
cause applications to run out of memory. An unforeseen
result of TAGE is that the chromosome length does not
grow as it does in standard GE. This can be seen in the
chromosome length plots in Figure 8 and Figure 9. One
argument for why this occurs is that derivation in GE might
only use a certain percentage of the chromosome, whereas
derivation in TAGE uses the entire chromosome. As a result
of this, every operation on the chromosome that affects its
length has an effect on the fitness of that individual in TAGE,
but in standard GE this might not always be the case. If the
fitness of an individual is adversely affected by the operation
in TAGE, then evolution might discard this new individual,
preserving the original chromosome length. In standard GE
if the fitness is not affected, i.e., the operation only affects
an unused section of the chromosome, then this individual
will survive on to the next generation where the probability
that a chromosome lengthening operation that will not affect
fitness is increased.

C. Limitations

As a result of making use of adjunction as the only com-
position operation, it was discovered that TAGE could not

operate on complex grammars. During the translation process
from CFG to TAG, the number of elementary trees grows
exponentially with the complexity of the CFG, due to all
possible derivations being explored, see Algorithm 1. With
the introduction of substitution as a composition operation,
this limitation could be overcome, since it allows for a much
more compact grammar.

VI. CONCLUSIONS

This study presents a new form of GE called TAGE, which
adopts TAGs in place of CFGs. It demonstrates that the use
of TAGs in GE has a beneficial effect on GE’s ability to
move through the solution search space and to find successful
solutions.

In [7], [17] TAGs were found to have a positive effect
on the performance of GP, results which are shown by this
study to carry over into the field of GE, with interesting
results and properties of its own, such as minimal growth
of the chromosome, and the increase of connectivity of the
search space which helps TAGE maintain diversity.

Plans for future work include continuing this study by ex-
tending TAGE to work with tree-adjoining grammars and the
substitution composition operation, allowing more complex
grammars and problems to be explored, and to investigate
further the implications of using TAGs in GE and for what
reasons they perform better than CFGs in GE.
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