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Abstract

A novel XML implementation of Grammatical Evolution is developed. This has a

number of interesting features such as the use of XSLT for genetic operators and the

use of reflection to build an object tree from an XML expression tree. This framework

is designed to be used for remote or local evaluation of evolved program structures

and provides a number of abstraction layers for program evaluation and evolution.

A dynamical swarm system is evolved as a special-case function induction problem

to illustrate the application of XMLGE. Particle behaviours are evolved to optimize

colony performance.

A dual process evolutionary algorithm based on the immune system using rich rep-

resentations is developed. A dual process feature detection and feature integration

model is described and the performance shown on benchmark GP problems. An

adaptive feature detection method uses coevolving XPath antibodies to take selective

interest in primary structures. Grammars are used to generate reciprocal binding

structures (antibodies) given any primary domain grammar.

A codon compression algorithm is developed which shows performance improvements

on symbolic regression and multiplexer problems. The algorithm is based on questions

about the information content of a genome. This also exploits information from the

rich representation of XMLGE.
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Chapter 1

Introduction

As a little girl, Agnes used to go for walks with her father, and once

she asked him if he believed in God. Father answered, ”I believe in the

Creator’s computer”. The answer was so peculiar to the child that she

remembered it.”

- Milan Kundera ’ Immortality’

1.1 Overview

Interpreting a Genotype-Phenotype Map refers to the problem of encoding and ex-

tracting information from a representation. To achieve scalability in adaptive evo-

lutionary systems, the artificial genome may not benefit from being considered as a

literal encoding or intentional encoding to be mapped directly onto the phenotype.

A biological system is almost entirely context-orientated. Abstraction-orientated and

algorithmic-centric evolutionary computing contests biological dogma, which is data

and event driven. Within this thesis, a number of rich representations are developed.

13



14 Chapter 1. Introduction

Evolutionary algorithms work by providing a structure that can be perturbed and

evaluating those structures based on a fitness function. The fitness function is the

extent of the environment which allows the algorithm/the structures to adapt or fit.

There are exceptions where multi-objective fitness functions or coevolution are used

to create an enriched environment. Yet one important aspect of biological complexity

is the richness of elements which give rise to the enabling physics and chemistry

exploited by natural organizations.

In nature, a complex system’s environment tends to be more complex than the

system itself. This allows for the system to make redundant observations in its envi-

ronment and utilize signal chords rather than discrete events in adapting - this is a

pervasive and important property.

The evolutionary mechanism in principle is ideal for exploiting events and induc-

ing functional models when not operating in a vacuum. One finds that this issue

is largely overlooked as one sees a need to compensate by explicitly considering rich

representations. In consequence, an XML implementation of Grammatical Evolution

is developed as a framework for investigating rich encodings. Information inherent in

Grammatical Evolution mappings is retained as we consider exploiting it for search

space modeling.

Grammatical evolution, on which the current work is based, exploits an explicit

genotype-phenotype map which is formalized by a grammar. This mapping occupies

an important position in evolutionary computing. Genotypes and phenotypes are

independent structures which have different requirements so to speak. Some repre-

sentations such as tree-based GP couple the survival of both phenotype and genotype

by applying operators directly to the phenotype. It seems reasonable to decouple
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these artifacts to allow for efficient perturbation and reuse of genotype structures.

This mapping is our point of focus as we use rich representations to track and exploit

information from this event.

Complex systems in nature have a number of invariant principles such as consistent

embodiment and structural coupling with their environment. Adaptive systems have

evolved to fit their environment and predict events. Considering adaptive systems as

cognitive and perceptual, we consider how an evolutionary algorithm might employ

features of perceptual systems to be more adaptive. In chapter 5, an algorithm

is developed based on such questions. In the evolutionary computation literature,

problems of perception are addressed predominately from the model building and

modularization perspectives. As such, we construct a model builder and feature

detection method based on the immune system, just one example of a cognitive,

perceptual system. As the immune system ’perceives’ via the mass effect of individual

antibody-antigen binding events, so to might an evolutionary algorithm ’perceive’

by evolving a library of feature detectors. This ’perceptual system’ interprets and

generates genomes. Thus, this first contribution to the interpretation of a genotype-

phenotype map considers the genome to be a rich environment in which a second

coevolving gene interpreter can detect regularities. Meaning is said to evolve as the

genome is both the input and the output of this adaptive perceptual system.

The genome coevolves with an interpreter and implies rather than stores infor-

mation in this context. It contains blocks of information which suggest ’variations’ -

these variations are blocks that may or may not be accommodated. Blocks are con-

sidered non-functional and have low information content. If they are accommodated,

the blocks are assimilated and the genome evolves. This principle is reminiscent of

William James’ ’Great Man’.
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In 1902 William James introduced his Great Man. This Great Man is an anomaly

to his contemporaries. His ideas in retrospect can be considered beneficial. However

society must accept him; if it does, both society and he benefit. If not, then pre-

sumably he was never great. William James was interested in scales of selection and

similarities between perceptual systems at different scales. Evolution might be seen

to be doing what we can appreciate more clearly at the scale of the Great Man.

An important issue when interpreting the artificial genome is that of complexity;

what information is stored or compressed in the genome? As we consider the issue

of complexity, we see it that useful variants survive and are somehow compressed

in the genome. In chapter 6 we consider a compression algorithm that stresses the

agreement of alleles so as to ’interpret’ what information is in a genome. Very often

allele information is lost due to position dependence and loss of contexts, while this

same ’loss’ allows exploration. The proposed algorithm may be one of the closest

algorithms in the EA literature to evolve solutions without exploring variation via

wild ’block shifting and repositioning’, although it does use a random read cursor.

Evolution seems to proceed through codon compression, which is the crystallization

of the exploration delayed expression allows. Position is preserved while variation is

made possible using delayed expression.

1.2 Contribution

The thesis considers a number of information processing perspectives in evolution-

ary algorithms using a novel XML implementation of Grammatical Evolution. Two
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new algorithms are presented (i) a dual process evolutionary algorithm and (ii) a

compression algorithm. Contributions are summarized below;

• The rich representation approach considers tagging information and exploit-

ing the genotype-phenotype map. This allows visualization of the relationship

between genotype and phenotype. This information can also be used to im-

prove search space modeling. This can be seen in both high level algorithms

mentioned above and enables many of the other contributions discussed.

• An XML based implementation of Grammatical Evolution is developed which

uses XSLT in a novel way to implement genetic operators. A pattern for using

reflection is introduced for instantiating object trees from XML trees. This adds

another degree of program langauge independence to Grammatical Evolution.

• The XML framework can be easily distributed, allowing arbitrary ’smart clients’

to participate in performing experiments and perform new roles at runtime.

This has been implemented using XML Web Services.

• A method for generating XPath-based antibodies from grammars is developed.

A mapping grammar allows any grammar to generate a complementary gram-

mar in a domain-neutral manner. XPath queries are regular expressions which

have a selective interest in primary structures. This lock and key relationship be-

tween an XPath query and a reciprocal XML structure is an interesting analogy

to many biological mechanisms and may be conceived as a promising method for

bootstrapping ’perception’ and meaning. This application of grammars allows

for the specification of reciprocal structures at a high level of representation

with implied semantics.
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• An adaptive feature detection mechanism uses associative XPath templets to

select degenerate codon sequences with above average fitness. This aims to

overcome some of the limitations and drawbacks of module encapsulation. The

GE mapping is exploited in order to detect features at the phenotype yet store

them as degenerate sequences that have no explicit context.

• A dual process model considers evolution to be a perceptual system which has

(i) selective interest (feature detection) and (ii) integration capabilities. The

dual process algorithm is an implementation of an artificial immune systems

(AIS).

• A variable length ’chaining operator’ allows fragments to be stacked by fitness in

the genome. This is an effective part of the dual process algorithm and appears

to make important contributions to algorithm performance.

• A compression algorithm demonstrates how rich representations can be used

to significantly improve performance on symbolic regression and make small

improvement on multiplexer. Perhaps more importantly, the algorithm provides

a vehicle for exploring how evolution reduces uncertainty of its environments

and as such increases the complexity of the genome. We outline trends in

compression and divergence during a number of tests.

• An approach to evolving dynamical systems on remote machines using the

XMLGE framework is explained. A novel method for evolving synergy in multi-

particle systems uses a global entropy measure to optimize swarm behaviour.
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1.3 Thesis Layout

In the next chapter, Grammatical Evolution is presented and we discuss some of its

key features and applications. The XML implementation of Grammatical Evolution

developed for the current study is described later in chapter 4.

In chapter 3, we discuss a number of themes in evolutionary computing. We consider

how the genome has been perceived since the early days of the genetic algorithm.

In chapters 5 and 6 the dual process algorithm and compression algorithms are de-

scribed.

Chapter 7 suggests conclusions and future work.





Chapter 2

Grammatical Evolution

The word ”computer” was peculiar and so was the word ”Creator”,

for father would never say ”God” but always ”Creator” as if he wanted to

limit God’s significance to his engineering activity... So she asked father

if he ever prayed. He said ”That would be like praying to edison when the

light bulb burns out.”

- Milan Kundera ’ Immortality’

2.1 Grammatical Evolution

Grammatical Evolution (GE) [O’Neill and Ryan, 2003] is an evolutionary automatic

programming mechanism that can evolve programs in arbitrary languages. It is of the

Genetic Programming (GP) family; the general application of evolutionary computing

to automatic program generation. The following sections provide an overview of GE

while looking at a number of specific GE characteristics and some of its applications.

21



22 Chapter 2. Grammatical Evolution

2.1.1 Overview

GE is characterized as a GP derivative by its use of a linear genome which is read

sequentially and mapped to a phenotype structure using a Backus Naur Form (BNF)

grammar to dictate legal phenotypes. The linear genome can be perturbed in a

number of ways typically using the simple genetic algorithm as a search mechanism.

Particle Swarm Optimization [Kennedy and Eberhart, 2001] has also been used with

GE [O’Neill and Brabazon, 2004].

The mapping is, in the abstract, analogous to the biological DNA-RNA-Protein

mapping. The genome can be represented as binary [O’Neill and Ryan, 2003], integer,

or real valued numbers [O’Neill and Brabazon, 2004]. If the genotype is a binary

string, a transcription phase maps 8 bit codons to codon integer values. Following

this, is the translation phase; as the genome is read, its codon values are used in a

function to select a production rule from the BNF grammar. The BNF grammar, an

example of which is shown below, defines a set of terminal and non-terminal symbols

and their corresponding productions.

Typically, the function used to select productions is the codon value modulus the

number of grammar choices, which yields a legal production. This production is ’ex-

pressed’ in the phenotype thus changing the translation context i.e. the grammar

context. Continuing the mapping, subsequent codons are used in the appropriate

grammar context. The variable length genome can be wrapped up to a specified

threshold allowing the genome to be reused a number of times. Consider the follow-

ing example. A possible symbolic regression BNF grammar is shown below. Three

symbols and their production choices are shown; <expression>, <operator> and

<variable>.
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<expr> ::= <expr><op><expr>

| <var>

<op> ::= + | - | * | /

<var> ::= x | y | z | 1.0 | 2.0

A codon sequence will be read sequentially in the grammar context in order to

develop the phenotype. 1) Starting at the grammar’s start symbol <expr>, the first

codon value modulus the number of production choices (i.e. 2) will give the production

choice between either <expr><op><expr> or <var>. 2) If <var> was chosen, the

mapping would continue to read the next codon in order to choose a terminal value

and then stop. If on the other hand <expr><op><expr> was chosen, the mapping

would continue to expand the left most <expr> as in step 1. In the event that there

are no more codons (and the wrapping threshold as been reached) for either the

expansion of non terminals or writing of terminals, the individual can be considered

invalid and given the lowest possible score. Alternatively a repair strategy can be

adopted to maintain valid genomes [Hemberg and O’Reilly, 2002].

Studies evaluating wrapping show that the wrapping operator is more important

to Santa Fe Ant than for symbolic regression. However in both cases, the number of

individuals being wrapped decreases over a run [O’Neill and Ryan, 2003]. This may

suggest that the wrapping operators is something like a fallback option used while

genetic material is being condensed. It would seem preferable not to add dependencies

to the same codons.

The mapping has a number of interesting consequences. The first is with respect

to neutrality which is discussed in more detail in the next chapter. Briefly, it is

the observation [Kimura, 1983] that many genotypes map to the same phenotypes

and that many phenotypes differ by single point mutations. Neutrality is not simply
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interesting as an analogy but as a possible means to add robustness to evolutionary

algorithms. While it may not be accurate to discuss the GE mapping as neutral at

one scale, it is true to say that the genome values at bit levels and codon mapping

levels may be mapped or mutated in a degenerate fashion. In biology, many codon

values map to the same amino acids. For example, mutating the last position in a

codon triplet does not always code a different amino acid∗. Studies in GE shown

that degeneracy in the genetic code, mapping between 4,6,8,12 and 16 bit codes and

codon values has positive effect on the maintenance of diversity and success rates

[O’Neill and Ryan, 2003].

The degeneracy and intrinsic polymorphism in the GE mapping allow not only for

neutrality but a degree of scalability and material reuse. Overlapping genes observed

in nature [Lewin, 1999] demonstrate how the same genetic material can be used a

number of times to code different functions. This is also exploited by GE for exam-

ple in its use of wrapping and also implicitly in separate mapping contexts i.e. the

same sequence in a different individual, in a different context. In GE, a sequence of

codons is read and used in terms of a ’changing’ grammar context, where the context

changes as the codons are applied to choose productions. In theory, special codon

sequences could code completely different phenotype structures in different parts of

a program. Thus there is degeneracy and the possibility of reuse at a sequence level

as well as the code level. This sequence level property is referred to as intrinsic poly-

morphism and the downstream changes are said to ripple. It is interesting to ask

how much redundancy can be packed into sequences in practice and how this is ef-

fected by grammar complexity? Degenerate sequences may well promote diversity. A

mutation in an upstream codon, modifies the significance of all downstream codons.

∗Crick’s wobble hypothesis
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This means that the significance of genomes can change radically. The flip side is

that the explicit information about a feature can be easily lost. However it seems

this type of ’information’ loss may not be as detrimental as it might first seem. In

biology and a number of artificial abstractions including GE and floating representa-

tions [Wu and Lindsay, 1996], genetic material can be used through alternate reading

frames. In [Wu and Lindsay, 1996], this is considered at a ’building block’ level while

in GE, implicit features or sequences are mapped in given grammar contexts.

2.1.2 Ripple Trees and Crossover

GE genotype-phenotype mapping can be visualized as mapping a genome onto a

derivation tree working on the left most non-terminal; constructing a tree in pre-

order. As such the earlier part of the genome creates what is referred to as the spine

of a tree which is a depth first segment. A crossover event will exchange the reciprocal

of this, leaving the spine with vacant leaf nodes called ripple sites. A donated sequence

from a crossover event will be used to ’rebuild’ the tree along ripple sites in pre-order.

This behaviour is called ripple crossover [Keijzer et al., 2001]. For example see the

derivation tree in Figure 2.1, which has been constructed in pre-order. The line drawn

through the tree indicates where the ripple sites lie.

2.1.3 Application and Variations

We finally look briefly at recent variants of Grammatical Evolution such as Meta-

Grammar GA [O’Neill and Brabazon, 2005], πGE [O’Neill et al., 2004], (GE)2

[O’Neill and Ryan, 2004]. Other variants such as the position-independent GAUGE

and Chorus are discussed in [O’Neill and Ryan, 2003] while Grammatical Swarm
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Figure 2.1: Derivation tree and separation at ripple crossover. During crossover,
ripples sites are exposed and the donor genome segment rebuilds the tree along these
sites.

which uses particle swarm optimization as the evolutionary engine is described in

[O’Neill and Brabazon, 2004].

πGE is a position independent variation of Grammatical Evolution similar to the

GAUGE and CHORUS systems discussed in [O’Neill and Ryan, 2003]. In this case,

the order of derivation sequence steps applied to non-terminals is not predefined as in

the standard GE ordering from left to right. Instead, the mod function, already famil-

iar to GE, is used for a second time to choose which non-terminal will be developed.

In other words, a symbol production is chosen using the mod function based on the

number of production choices. This may yield a production with a number of non-

terminals such as <expr><op><expr> from the grammar above. In GE, these would

have been developed from left to right. However in πGE a second application of the

mod rule will determine which non-terminals to develop first. This is said to provide

a degree of position independence which shows positive performance improvements

over GE on a number of benchmark problems. Position independent representations

are discussed further in the following chapter.
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Grammatical Evolution by Grammatical Evolution (GE)2 [O’Neill and Ryan, 2004]

is in principle a method to evolve the genetic code similar to previous work on the

subject [Keller and Banzhaf, 1999]. This is discussed in the next chapter. In practice

(GE)2 coevolves the grammar that is used in constructing primary structures. The

primary grammar is referred to as the solution grammar while the grammar grammar

is a meta-grammar. The meta-grammar is considered a universal grammar, a term

adopted from linguistics. The solution grammar is dependent on the universal gram-

mar. By adapting the genetic code in this way i.e. the means by which a primary

genome is mapped via an evolved solution grammar, the (GE)2 system can be seen to

be adaptive and suited to dynamic problems. The evolved grammars can be related

to dynamically defined functions as the grammars can store fit composite productions.

This is distinct from the most basic grammars which must be elemental to allow all

expression types. (GE)2 might well be considered a dual process selection algorithm

like the algorithm developed in chapter 5.

Following (GE)2, the meta-Grammar Genetic Algorithm builds on this use of

grammars in an application to modularity and reuse and shows clear performance

advantages on both static and dynamic problems [O’Neill and Brabazon, 2005]. The

cited study describes a number of interesting grammar complexity developments.

The starting point is a grammar (GE) which specifies a fixed length 8 bit sequence

production where each bit can take a binary value. The next level describes a higher

order grammar (GE+BB) where all blocks of multiples of two, which can make up

for example the fixed length 8 bit sequence, are given. This aims to exploit and reuse

useful bit combinations. Further developments allow for the use of meta-grammar to

allow for the evolution of grammars as introduced in (GE)2 [O’Neill and Ryan, 2004]

and exploiting multiple binary sequence modules of different sizes.





Chapter 3

Selected Themes in Evolutionary

Algorithms

Agnes Thought to herself: the Creator loaded a detailed program into

the computer and went away... In his place, there is a program that is

ceaselessly running in his absence, without anyone being able to change

anything whatever.

- Milan Kundera ’ Immortality’

3.1 Introduction

This chapter reviews evolutionary algorithm methodologies that aim to overcome the

scalability problems in the basic evolutionary algorithm abstraction. While the review

is not exhaustive, it provides an overview of a number of relevant issues.

The simple genetic algorithm [Holland, 1992, Goldberg, 1989, De Jong, 1975] in

theory works by combining partial solutions into solutions of higher order. However,

29
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using simple mappings and simple operators it performs poorly on difficult prob-

lems, problems where there is interaction (crosstalk) between variables or features

[Goldberg et al., 1993b]. In such instances, it is difficult to evaluate mutually exclu-

sive features within reasonable time. Consequently these algorithms will converge to

a local minimum when applied to difficult problems. A number of methods that have

tried to resolve this issue are reviewed.

1) Early methods manipulated the representation so as to reduce the likelihood

that building blocks, once found, would be disrupted [D. E. Goldberg and Korb, 1989,

Harik, 1997, Wu and Lindsay, 1996].

2) Later methods attached additional processes to the evolutionary algorithm to

model the search space. These attempted to increase the likelihood that the algorithm

would maintain and successfully recombine features. These include probabilistic mod-

eling techniques [Pelikan et al., 1999, Pelikan and Mühlenbein, 1999, Baluja, 1994],

[Pelikan and Mühlenbein, 1998, Baluja and Caruana, 1995] and explicit feature de-

tection [Wu and Stringer, 2004, Garibay et al., 2003, De Jong and Oates, 2002].

3) Artificial Embryogenies begin to consider the third scale of evolutionary dynam-

ics discussed in the next chapter. They are referred to as developmental in that pheno-

type development has an explicit ontogenetic or embryonic phase [Banzhaf et al., 2003,

Bentley and Kumar, 1999, Bongard and Pfeifer, 2001],[Federici and Roggen, 2004].

Early so-called developmental methods [Banzhaf, 1994] exploited explicit genotype

phenotype mappings as is also the case with GE [O’Neill and Ryan, 2003]. We re-

fer to this methodology simply as gene-expression based. Lately gene expression

based methods have begun to consider alternative mechanisms of gene expression

[Ryan et al., 2002, Wu and Garibay, 2002, Lones, 2004]. As gene expression based

methods become combinatorial [Kuo et al., 2004] the differences between gene ex-
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pression and embryogenesis become blurred in practice. We look briefly at generative

encodings. For an early example, Kitano [Kitano, 1990] ’grew’ neural networks rather

than allow a genome to encode its architecture. As such the genome does not fully

encode the phenotype but describes how it develops.

Each of these three developments tell us something about the artificial genome.

First, attempts were made to protect its integrity. Then, it was used to encode an

external model as opposed to being used in the simple and untamed recombination-

based method of the simple GA. Finally a developmental approach put emphasis

on the development itself rather than allowing the genome to entirely specify the

phenotype. Some methods which could be called generative, use the genome to guide

development transitions.

3.2 Manipulation of Representations

There have been efforts to both engineer good representations and efforts to evolve

good representations. These try to respect linkage or learn linkages, allowing for

building blocks to be preserved with higher probability.

One of the first of these approaches categorized among the competent GAs as ’per-

turbation based’∗ such as the messy GA [D. E. Goldberg and Korb, 1989] or later the

faster variant [Goldberg et al., 1993a]. The messy GA is an iterative algorithm where

each iteration consists of a primordial phase: where building block identification

takes place; and a juxtapositional phase: where building blocks are assembled into

complete solutions. During each iteration, the algorithm attempts to identify and as-

semble higher level building blocks. Candidate solutions are represented by variable

∗While these early perturbation based algorithms where among the first to be called competent,
later competent GAs used other methods such as probabilistic model building.
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length chromosomes consisting of <locus,allele> pairs which allows a non-fixed i.e.

floating representation of alleles. Variable length genomes can be over or under spec-

ified; where a locus is associated with more than one allele, the one which is defined

nearest the left of the chromosome will be used during the solution’s evaluation. If

a solution has no alleles defined for some of its gene loci, values are taken from a

template chromosome. The best solution found within the juxtapositional phase of a

particular iteration is used as the template chromosome for the next iteration. The

aim of the algorithm is for the template chromosome to contain optimal building

blocks up to the current level and form the basis for the discovery of higher level

building blocks in subsequent iterations. The messy GA offers superior performance

to simple GAs on problems with high levels of epistasis. It has been suggested that

this is largely due to position independence [D. E. Goldberg and Korb, 1989]. How-

ever Pollack and Watson suggest that the messyGA has many unique features and

it is difficult to suggest the contribution of these. They argue that the feature that

most distinguished it is partial commitment where individuals commit to specifying

only a subset of the entire gene set. The Incremental Commitment GA is a similar al-

gorithm that does not use floating representations and they report good performance

on hierarchically consistent building block problems with high epitasis and random

genetic linkage [Watson and Pollack, 1999].

The Linkage Learning Genetic Algorithm [Harik, 1997, Harik and Goldberg, 1997],

adopts the floating representation of the messy GA. Chromosomes are arranged as

a ring. Both the position at which interpretation starts and the ordering of the al-

leles determines how the chromosome is interpreted. Different starting locations can

lead to a chromosome being interpreted in different ways. Non-coding regions may

appear on chromosomes which are not evaluated if genes correspond to the same al-
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lele. Because reading can begin at any point, the expression of alleles is probabilistic

[Harik and Goldberg, 1997]. Harik uses the term extended probabilistic expression

(EPE-n) to suggest the number of similar alleles that can be represented on the same

chromosome. Crossover evolves copying a contiguous sequence of <locus,allele>

pairs from a donor chromosome and then grafting it into a recipient chromosome,

removing existing copies of the newly grafted <locus,allele> pairs from the recip-

ient chromosome thus changing both its interpretation and the linkage between its

gene loci. A second child is produced as the donor and recipient roles are swapped.

When selection rate is appropriate, crossover brings genes that constitute building

blocks closer together as linkages are learned. Harik observes the mixing problem

[Goldberg et al., 1993b], that a linkage learning mechanism must evolve linkage faster

then the population converges. Storing and probabilistically selecting from multiple

alleles wins this race against selection [Harik, 1997]

Annie Wu and colleagues studied the significance of non-coding DNA and floating

representations in genetic algorithms [Lindsay and Wu, 1996, Wu and Lindsay, 1996,

Wu and De Jong, 1999]. The use of floating representations is considered at the level

of building blocks. Within this floating representation, there are bits that iden-

tify building blocks and those that encode the value of the block. For example, 8

bits might be used, the first four might identify the block and the remaining four

bits the value. This leads to degenerate coding mechanisms inspired by overlap-

ping genes theory which recognized that there may be insufficient genetic mate-

rial in a genome to map a phenotype therefore genetic material is reused. This

type of reuse is exploited by GE as discussed in the previous section. Similarly,

in the floating representation, over-specification, under-specification and overlapping

can occur due to existence of block defining codes. Studies comparing fixed and
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non-fixed representations showed interesting results for abstract problems and on

symbolic regression. The average population fitness increase faster and levels off

at a higher value using floating representations and diversity was higher. Interest-

ingly while 60% of building blocks survived from one generation to the next, 97%

of those that did not survive, did not survive due to not being selected - while

only 3% did not survive due to disruption [Wu and De Jong, 1999]. This strong

link between selection and building blocks survival leads the authors to suggest that

operators play only a small role in building block disruption. Thus it is possible

to safely increase construction of building blocks by increasing operator’s activity

and absorb the disruptive effects through appropriate tuning of selection pressure

[Wu and Lindsay, 1996, Lindsay and Wu, 1996]. Further work strained the analysis

by reducing the genetic material available to the representations, including negative

blocks and randomizing non-coding segments. Results showed that degeneracy could

be exploited in restricted genotypes. Diversity and robustness to change could be

achieved through degeneracy as blocks were preserved, presumably dissociated from

selective pressure. In particular randomising non-code segments (which may arise

due to broken blocks), which could be detrimental due to loss of memory and reduce

chance of block rediscovery was in fact advantagous as exploration outweighed the

potential disadvantage [Wu and Lindsay, 1996, Lindsay and Wu, 1996]. There was

an increase in the recombination of building blocks. Such work suggests that popula-

tions should maintain as many useful blocks as possible (even if they are not always

expressed) and aim to express them probabilistically (perhaps optimally).
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3.2.1 The Evolution of The Genetic Code

During translation, codons from mRNA are translated into amino acids which are

linked to a growing protein. tRNA (transfer RNA) assists this process by associating

an amino acid to a codon(s). 1) Each tRNA molecule has a three base anticodon

that binds to the matching mRNA codon using complementary matching. 2) It also

carries an amino acid identifier. A tRNA molecule is joined to an amino acid to form

aminoacyl-tRNA. This joining is managed by an enzyme simply called aminoacyl-

tRNA synthetase (ATS), which recognizes the amino acid identifier and joins an

appropriate amino acid. 2) Ribosomes move along the mRNA molecule and allow

tRNA molecules to match each mRNA codon and add the associated amino acid

(from aminoacyl-tRNA complex) to a growing chain. The natural genetic code has

evolved as part of the fit organism. This important process is often overlooked in

evolutionary algorithms..

Fundamentally, a genetic code determines the meaning of coding DNA and the

fitness landscape. In this sense, previous work on floating representations by Wu

et al [Wu and Lindsay, 1996, Lindsay and Wu, 1996] as discussed above might be

considered as an approach to evolving the genetic code in that the meaning of ge-

netic material is open to evolution. Other research considered appropriate codings

to present fitness landscape that favoured navigation. One example of this is gray

encoding [Caruana and Schaffer, 1998]

Attempts to evolve the genetic code are based on gene expression based meth-

ods, the first of which was [Banzhaf, 1994]. More recent work such as the gram-

mar based (GE)2 [O’Neill and Ryan, 2004] and Chemical Genetic Algorithm (CGA)

[Suzuki and Sawai, 2003] also use explicit genotype-phenotype mappings and address
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the evolution of genetic codes. Theoretical studies model how a primitive genetic

code may have originated [Bedian, 2001, Weberndorfer et al., 2003].

In [Banzhaf, 1994] a table of mappings from codon values to phenotype values

represent the genetic code. The system evolves to build redundancy around useful

phenotype mappings and discards less useful phenotype mappings. Similar work

has been carried out with grammars [O’Neill and Ryan, 2004], supporting the earlier

findings of [Banzhaf, 1994] and showing promising results in dynamic environments.

Suzuki and Sawai’s Chemical Genetic Algorithm (CGA) [Suzuki and Sawai, 2003]

which was later extended to Chemical Genetic Programming [Piaseczny et al., 2004]

also considers this issue. Once again, the goal is to optimize the genotype pheno-

type mapping as it can not be assumed that a human-chosen hard-coded method is

efficient. In the CGA [Suzuki and Sawai, 2003] both codes in DNA and code transla-

tions coevolve. The algorithm imitates a biological cell that includes a DNA string, a

set of aminoacyl-tRNAs, a set of tRNAs and a set of indexed amino acids. Artificial

embryogenies, discussed below, also exploit enriched cell models. As DNA is always

exploited in the context of a cell, genetic information on DNA has no meaning without

the construction of such intracellular units [Bedian, 2001]. In CGA, molecular units

involved in translation are exchanged between cells in addition to DNA exchange. In

this way, the appropriate mapping evolves to an optimum [Suzuki and Sawai, 2003].

Suzuki and Sawai report superior performance to the simple GA on deceptive prob-

lems.
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3.3 Model Building and Co-Evolution

Feature detection is any bias in an interpretation system which leads to the ’recogni-

tion’ of fundamental units. We review past work that has considered model building,

feature preservation and co-evolution.

Wu and Stringer [Wu and Stringer, 2002, Wu and Stringer, 2004] use a chunking

operator to identify and preserve building blocks or useful rules. Important rules are

identified and used to update a communal memory. Individuals in the population

benefit from all or portions of the shared rules to augment their own rules i.e. an

individual evolved rules and rule ’pointers’. Chunking refers to creation of single units

or ’chunks’ of information out of multiple smaller related bits of information. This is

based on human tendencies to process information in this way, significantly increasing

the amount of information they can manage. Their GA also works on variable length

genomes [Wu and Stringer, 2004].

[Wu and Stringer, 2002] try to find a way for GAs to modify and form chunks of

epistatic building blocks and applied the method to the control of simulated Micro

Air Vehicles (MAVs). Base (primordial) chromosomes are evolved while periodically

the evolutionary process is halted for chunking to create a shared memory of memory

chromosomes. Each individual has a base chromosome and memory chromosome.

These are augmented prior to fitness evaluation. A memory mechanism identifies,

preserves and allows choice (selective access) of chunks. Chunk elements are updatable

and replaceable (when better found). Gene salience is measured as gene frequency

in accordance with [Goldberg et al., 1993b]. They updated the memory periodically

and found that every 10 generations showed best results.
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Experiments on MAXSUM and MAV experiments showed the GAs ability to ex-

ploit good rule sets and avoid bad rule sets. They also found that MAV rules evolved

were both fit and compact, as the chunking GA was able to reduce the size of base

chromosomes over time. They refer to this effect as winnowing [Wu and Stringer, 2004].

GA chunking performed much better than standard GA in terms of average fitness

and equivalent in terms of best fitness. They propose separate memories for decom-

posable problems.

In justifying the chunk library, Wu and Stringer allude to the fact that memory is

important to dynamic environments where a simple evolutionary algorithm may nor-

mally loose possibly useful features that are temporarily unfit [Wu and Stringer, 2004,

Wu and Stringer, 2002].

With regard to this point, another very interesting study was carried out in

[Hasegawa and Iba, 2004]. Like our model described in chapter 5, this GP model

also exploits an immune system-like library of ’antibodies’. It is widely appreciated

within the artificial immune systems (AIS) community that an important feature

of AIS is the maintenance of diversity to improve performance in dynamic environ-

ments. [Hasegawa and Iba, 2004] demonstrate how this feature can be used in mul-

timodal problems. They note that in traditional GP it is almost impossible to evolve

two solutions simultaneously while in the Multimodel Search Genetic Programming

mechanism they achieved success 6 out of 10 times [Hasegawa and Iba, 2004].

Algorithms focusing on modularity report scalability for classes of problems with

regularities [O’Neill and Brabazon, 2005, De Jong and Oates, 2002, De Jong, 2003,

Garibay et al., 2003, Watson and Pollock, 2003] and describe under what circum-

stances modularity may or may not be beneficial [Garibay et al., 2004]. Related to

this, algorithms using niching or explicit recognition of hierarchy consider the de-
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construction and reconstruction of problems, see for example [De Jong et al., 2004,

De Jong et al., 2005].

One approach to modularization has been to explicitly encapsulate and reuse

modules for example ADFs [Koza, 1994]. This allows algorithms to start matching

in terms of combinations of properly encapsulated modules, boundaries of which are

respected during crossover. However, [De Jong, 2003] observes the lack of theory

on guiding development and evaluation of modules and suggests the use of Pareto-

coevolution. Using this method, a population of modules and a second population

of assemblies or solutions are coevolved. Evolutionary Multi-Objective Optimization

[Schaffer, 1985] is used to evaluate modules against multiple criteria. Satisfying mul-

tiple objectives can achieve a tighter modeling in determining when it is suitable

to encapsulate a module [De Jong and Oates, 2002, Garibay et al., 2004]. Pareto-

Coevolution is capable of exploiting structure in certain large search problems by

gradually consolidating learned information. While modules are fixed templates,

in principle any type of detectable pattern can be considered. This suggests that

a challenge for research is developing means to identify patterns [De Jong, 2003].

[Garibay et al., 2003] also recognize both issues of modular exploitation and auto-

matic discovery yet only address the former.

Perhaps the most successful model building approaches are those based on proba-

bilistic model building [Pelikan and Mühlenbein, 1998, Pelikan and Mühlenbein, 1999],

[Pelikan et al., 1999, Goldberg, 2002, Pelikan, 2005] most notably Hierarchial Bayesian

Optimization Algorithm (HBOA) [Pelikan, 2005], which is a hybrid of hierarchical

composition (niching) and multivariate probabilistic modeling originally used in BOA

[Pelikan et al., 1999]. Lately, probabilistic model building has been adopted in GP

[Sastry and Goldberg, 2003] and [Shan et al., 2004], where [Shan et al., 2004] uses a
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stochastic context-free grammar. This is used as an online model of the problem and

is sampled to generate a new generation.

Probabilistic model building algorithms are classified as competent genetic algo-

rithms. These differ largely on the methods used to estimate the distribution of

variables or the requirement for prior information. A population of genomes are eval-

uated and joint distribution/joint density functions are used to estimate the distribu-

tion which is sampled when generating the new population. The simplest probabilistic

methods estimate the occurrence probability for single variables, the earliest of which

was population based incremental learning PBIL [Baluja, 1994]. Later methods esti-

mated the joint distributions of two or more variables. For a complete review refer

to [Pelikan, 2005, Pelikan et al., 1999].

3.4 Developmental Methods

The following subsections review gene expression primarily in the context of neutral-

ity. Neutrality represents a perspective on evolutionary dynamics that is coupled to

other themes such as evolvability and weak interactions in gene networks. Having

looked at properties of gene expression we close by considering the emerging class of

artificial embryogenies.

3.4.1 Neutrality

A key contribution of gene expression based methods is their ability to promote di-

versity and stability in mapping to the phenotype. From studies in RNA and protein

molecules, clusters of phenotypes are known to be connected by single point muta-

tions. These are called neutral networks. This allows genetic change to be made
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while maintaining an existing phenotype and can reduce the chance of being trapped

in suboptimal regions. A considerable fraction of all mutations are said to be neutral,

having no causal link to the survival or reproduction of individuals [Kimura, 1983].

This view of evolution is not without controversy. Developmental algorithms like

GE exploit neutral redundancy through abstract modeling of the biological genetic

code where 64 codons map to only 20 amino acids. The use of redundant introns in

GAs and GP has also been studied to enable redundancy. However, another level or

neutrality is evident in genetic regulatory networks and protein folding, which some

artificial embryogenies aim to exploit.

While there are a number of perspectives on evolvability, one perspective is the

ability of random variations to sometimes produce improvements over the parent

[Wagner and Altenberg, 1996]. Following this perspective, [Ebner et al., 2001] evalu-

ated the differences between five genotype-phenotype mappings based on their ability

to reach phenotypes and stability on random neutral walks [Huynen, 1996]. The first

is a standard direct encoding. Second, a voting mechanism allows a number of genes

to vote on the expression of a phenotype feature. It exhibits redundancy in that

mutations may not affect the outcome. Note it behaves like a direct encoding in its

one-one genotype-phenotype mapping. A third, cursor based method, uses separate

commands to move a cursor and to write or clear bits. Two other mappings are

based on a non-uniform one dimensional cellular automata [Wolfram, 1983] and ran-

dom boolean networks [Kauffman, 1993]. The neutral walk is carried out as follows;

A random phenotype is mapped from a genotype. From this genotype, single point

mutations are applied. If a new phenotype is found, termed innovation, it is logged.

The neutral neighbours are also logged. One of these neutral neighbours is chosen at
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random and the procedure is repeated until no further innovations are possible. The

boolean network showed significant improvements over the other mappings. This is

said to provide a good balance between randomness (randomly scattering mapping

into phenotypes around genotype space) and structure (maintenance of neutral net-

works). This work demonstrates the intuitive effect of redundant mappings on rugged

or adaptive landscapes [Ebner et al., 2001].

Volkert and Conrad’s dual dynamics model makes an important distinction in

terms of informational impact between strong interactions (individually responsible

for modification e.g. control molecules in biology) and weak interactions (grad-

ual, indistinguishable contribution to behavior modulation e.g ion concentrations)

[Volkert and Conrad, 1997, Volkert and Conrad, 1998, Volkert, 2003]. The relation-

ship of the dual dynamics model to neutrality may not be immediately clear as weak

influences are not widely discussed in the GP literature. We note that there are

many mappings in natural developmental systems, while the genetic code is the most

familiar to the GP community. Therefore, we us use this as a reference point. It is

well known that many codons map to the same amino acid and that there are redun-

dant bases in some codons. The independent influence of each base could strongly or

weakly influence the amino acid outcome.

Volkert’s work evaluated behavior space coverage and accessibility to neutral and

near-neutral networks [Volkert, 2003]. Information obtained from such analysis was

correlated with performance observed on evolutionary tasks. By adding weak in-

teractions, Volkert distinguishes the dual dynamics model from non-uniform cellular

automata similar to NK Boolean Networks [Kauffman, 1993] or cellular automata

which use discrete influences. Multiple strong inputs are translated using a random
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function in a lookup table and are then integrated with a summed influence from

weak interactions to give a local state transition. Varying the influence of strong and

weak intention via tuning of parameters allowed Volkert to evaluate the differences

between entirely strong, entirely weak and dual networks [Volkert, 2003]. Volkert’s

hypothesis is that a system which uses a coupling function to dictates a collective

weak influence function to linearly modulate the outcome of a strong influence func-

tion, will demonstrate increased evolvability. Linear modulatory coupling enforces a

structure-function relationship that enhances mutation buffering. Importantly, Volk-

ert distinguishes between linear modulation and logic based modulation. Results from

behavioral space coverage experiments showed that for some behaviours there are a

larger number of neutral sets of linear modulation networks and strong function net-

works than for logic based networks. Similar tests investigating the number of neutral

offspring from single mutations further suggested the importance of these distinctions

[Volkert, 2003].

Neutrality is a widely studied theme in promoting evolvability in artificial systems.

Many other important issues such as Volkert’s study of weak interaction, modular-

ity, compartmentalization, and extra dimensional bypass have been considered by

Michael Conrad [Conrad, 1990] and are explored in a special issue on Evolvability in

Biosystems (69) 2003. These issues are hugely important to artificial evolutionary

systems but sadly can not all be covered here.
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3.4.2 Gene Expression

Interest in representations leads naturally to discussion of gene expression based ap-

proaches. These methods make the genotype-phenotype mapping (GPM) explicit

and aim to overcome the limitations of more direct mappings. One clear advantage

of these approaches is the separation of genotype and phenotype survival thresholds.

While the methods discussed here are sometimes referred to as developmental, we

prefer not to use this term, which is reserved instead for embodied, stateful mappings

with ontogenetic processes. We term these methods gene expression based in that they

consider alternate ways of expressing genetic material in order to map the phenotype.

One of the earliest of these methods which borrows from Kimura’s theory of neutrality

follows from [Banzhaf, 1994]. This mapping is said to be critical to search progress

as the larger the [genotype] space that is mapped to good phenotypes, the better the

performance [Keller and Banzhaf, 1999]†.

A number of gene expression methods consider ’gene concentrations’ to allow

for weak interactions between alleles [Azad and Ryan, 2003, Wu and Garibay, 2002].

Chorus [Ryan et al., 2002] is based on GE [O’Neill and Ryan, 2003]. However, in

Chorus a codon only causes a grammar rule to be fired if it refers to a transition

which is currently applicable and if there are no other relevant rules waiting to be

expressed. Waiting rules are determined by concentration levels; If a codon maps to

a rule which cannot currently be applied, the rule’s entry in a concentration table

is incremented. In this way, a particular gene may have an immediate or a delayed

effect and position is not as strongly coupled to its role. However Chorus does not

perform as well as GE.

†The type/rate of change on the phenotype with respect the the type/rate of change on the
genotype is important to the evolvability of a system and navigation through the search space.
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The proportional GA [Wu and Garibay, 2002] determines expression by the pro-

portion of its corresponding symbols within a chromosome. Such weak interaction is

consistent with combinatorial gene expression in nature. This algorithm is shown to

be as good as a standard GA on many problems and significantly better on certain

problems.

Michael Lones’ Enzyme Genetic Programming [Lones, 2004] is based on careful

consideration of biological principles. Enzyme GP is characterized by deriving pro-

gram structure from component connection choices rather than explicitly specifying

structure. Components are given meaning via shape using activity or functionality

models [Lones and Tyrrell, 2004a], the later of which is relevant to variable length

GP. These models capture the usage of Genetic Programming components in terms

of their inputs and outputs and allow the interaction between components to be

evolved in a position independent manner. These descriptions allow components to

be described with variable precision, hierarchically in terms of their sub components

and independent of the program structure they are in. The details of functionality

[Lones and Tyrrell, 2004a] are beyond the scope of this discussion. Implicit context

is enabled in Enzyme GP through the use of functionality measures that describe a

component’s purpose which allow components to fulfil roles with variable specificity

[Lones and Tyrrell, 2004a]. Lones and Tyrell [Lones and Tyrrell, 2004b] explore the

importance of this type of implicit context in biological systems where useful variation

is exploited while inappropriate change can be ignored. This notion of context is also

relevant in principle to degenerate coding in GE.

A number of studies on artificial chemistries for GP [Banzhaf and Lasarczyk, 2004]

and gene regulatory networks [Kuo et al., 2004] for GP represent and idealogy that

is also important to the current research. As we discuss gene regulatory networks,
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perspectives spill into the realm of artificial embryogenies, as discussed in the next

section (for example of using regulatory networks in an artificial ontology refer to

[Bongard and Pfeifer, 2001]). However let us continue to discuss this trend of ex-

ploiting gene expression in Genetic Programming here.

The shortcomings of Genetic Programming and requirements to cope with com-

plexity are well characterized in [Banzhaf and Miller, 2004]. As in GA, GP has scaling

problems. Development and regulatory gene networks are becoming widely accepted

as a promising approach to the complexity issue. As such it is necessary to under-

stand the marriage between self-organization and selection or variation. Kaufmann

must be cited as a hugely important contribution to this line of thought. However

Banzhaf and Miller take up this investigation in the context of Genetic Programming

[Banzhaf and Miller, 2004]. Self organization can lead to complex structures. What

role does the genome play? A perspective is summarized in [Banzhaf and Miller, 2004]

as

The biochemical network of interactions between substances is the under-

lying substrate of a system of control built upon the effect of additional

substances (signaling substances), that is itself produced by genes. The

system, is highly combinatorial in that many of the biochemical (mainte-

nance) substances can interact with each other and with the signal sub-

stances. It is through a control of the expression of the where and when

of the signals that genes exert their control on the underlying network.

Banzhaf and Miller refer to heterochrony as the control of the onset, rate and offset

of a gene’s expression. Following this they observe that the external influences in the

cell can determine this type of regulation i.e. when genes are to be expressed. We
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add, a complex, multi particle system creates a non-computable spatial state. The

regulation problem can be considered to be a functional induction problem where each

particle in the combinatorial system must appropriately determine the when and to

what extent its simple behaviours are expressed. This becomes interesting when they

react to the environment they are modifying. In general, the major mechanisms of

developmental biology are summarized in [Banzhaf, 2003] as heterochrony, the use of

spatial patterns and social interaction.

[Banzhaf and Miller, 2004] Outline ’nature’s recipes’ for exploiting information

during development, many of which are widely appreciated within the emerging field

of Artificial Embryogeny.

• The importance of embodiment - the natural regularities of the environment in

which a system develops

• Phenotypes are open system in steady states not in static equilibrium. We add

that this is also important for composition as entropy ’leaks’ between ’hierar-

chies’ thus providing the rules of composition.

• They observe the incremental development of higher order complexity

• Development proceeds by way of communication between social systems

• Successive developmental states are recursively defined of preceding blueprints.

They point to Lindenmayer Systems. We observe that fractal forms are per-

vasive in both living and non-living forms and have been greatly studied in

chaos theory [Peitgen et al., 2004]. Also, morphogenesis has special signifi-

cance in spatially extended systems [Bonabeau, 1997] which is not observed

in L-Systems.
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• Fitness evaluations are punctual i.e. feedback occurs at sub scales rather than

on the entire organism.

Banzhaf and Miller outline a number of other important features, some of which

are addressed by artificial embryogenies discussed below. The interested reader is

advised to refer to [Banzhaf and Miller, 2004].

Following such insights, Banzhaf discusses general properties of artificial reg-

ulatory networks [Banzhaf, 2003]. ARNs are applied to evolutionary problems in

[Kuo et al., 2004]

An ARN consists of a bit string representing a genome and mobile information

carrying molecules or proteins which are equipped with bit patterns for interacting

with the genome at regulatory sites located upstream from the genome. Attach-

ment to these sites produces inhibiting or activation of the proteins on corresponding

sites. These inhibatory/excitory interactions constitute the ARN and are shown to

have interesting dynamics in [Banzhaf, 2003]. [Kuo et al., 2004] extend the dynami-

cal network model to add semantics to gene expression. This allows the model to be

applied to simple function optimization. These models are very new and have yet to

be developed and applied to a wider range of GP problems.

Another development along this line of thought is Genetic Programming base

in [Artificial] Chemistries [Banzhaf and Lasarczyk, 2004]. These are similar in one

respect to Enzyme GP in that the structure of a program is not given explicitly but

derived from connection choices [Lones and Tyrrell, 2004a].

In summary, Genetic Programming over the years has gone through stages of

reconsidering how genes are mapped to proteins. The cutting edge perspective is

stepping into biological inspired processes of self-organizing development. It is im-
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portant to remember that this history goes back further than questions about genetic

codes and genotype-phenotype mappings in GP, to the fundamental issue of how

information is encoded, preserved and expressed from the artificial genome.

3.4.3 Artificial Embryogeny

In many ways artificial embryogenies (or artificial ontogenies) are a special applica-

tion of evolutionary algorithms, where the program itself is a developing structure

such as an emergent cellular automata or multicellular state [Banzhaf et al., 2003,

de Garis, 1992], morphologies/structures [Hornby and Pollack, 2001, Hogeweg, 2000],

neural networks [Kitano, 1990, Gruau et al., 1996, Gruau, 1994] or gene networks

[Eggenberger, 1997, Bongard and Pfeifer, 2001]. The interpretation of the term de-

velopmental may well depend on the level on interaction between the genetic and on-

togenetic processes. For example in [Amarteifio and O’Neill, 2004] we evolved rules to

control particles in spatially extended systems. The fitness of these systems depends

on emergent, non-computable states in the agents world. However, once the agent is

created, the genetic material has no further influence in developing agent behaviours.

On the other hand, artificial embryogeny is defined by [Bentley and Kumar, 1999] as

having

• Indirect correspondence between alleles and phenotypic effects. The genotype

is now regarded a set of growing instructions, a recipe which defines how the

phenotype will develop.

• Polygeny. Phenotypic traits are produced by multiple genes acting in combina-

tion
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An algorithm such as GE applies a rule to a stream of codons in order to develop a

phenotype. The developing phenotype and changing grammar context does influence

further development; this might be thought of as syntactically developmental. In

fact GE has many interesting qualities at this level including syntactic neutrality.

However, is this type of control sufficient for evolving complex systems? Does it

promote diversity and evolvability? Is there sufficient complexity in the genome

(wrapped or unwrapped) to develop complex structures. Artificial Embryogeny or

Artificial Ontogeny systems are, in principle, a class of emerging algorithms that aim

to address these concerns. We review a number of these algorithms asking what they

offer beyond syntactically developmental algorithms.

Developmental processes shift the role of the evolutionary algorithms to specify

generative rules rather then entire phenotype structure putting emphasis on ontogeny.

However as well as being a special application, artificial embryogenies demonstrate de-

sign principles for evolutionary algorithms in general, as seen for example in artificial

regulatory networks [Banzhaf, 2003] above. Artificial self-organization and artificial

evolutionary processes have become symbiotically coupled. On the one hand evolu-

tion can be improved through the use of developmental processes while developmental

processes offer insight to general evolutionary theory - distinct from development.

At the heart of embryogenesis and morphogenesis is the spatial blueprint-temporal

development coupling. Stages of development could be stateless or statefull. One may

distinguish between ballistic and adaptive assembly plans [Rieffel and Pollack, 2004].

While adaptive plans incorporate feedback during development, ballistic do not. The

only feedback is at the evolutionary scale. GE is an example of a ballistic assem-

bly plan. Approaches which embody statefull stages are generally based on cell

chemistries.
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One of the earliest uses of the term Artificial Embryogeny in evolutionary algo-

rithms may come from De Garis [de Garis, 1992] who is broadly interested in evolving

very large intelligent network structures. De Garis used a genetic algorithm to specify

cell behaviours in order to grow shapes. While some shapes emerge more naturally

than others, De Garis noted the difficulty in evolving structures which depend on reg-

ulating contexts for behavioral expression, i.e. heterochrony [Banzhaf, 2003]. Lately

work such as [Streichert et al., 2003] point to the important of limited growth for more

advanced regulation. In any complex system including embryological processes and

the immune system, in addition to growth processes like differentiation, processes

such as apoptosis are equally important to sculpt a solution [Cohen, 2000].

A developmental mechanism as an indirect encoding aims to reduce the combi-

natorial explosion of allele-matching requirements to enable evolvability of large phe-

notypes. These encodings exploit gene reuse. Peter Eggenberger [Eggenberger, 1997]

addresses the gene expression issue and offers an important perspective on this mat-

ter. He suggests that the complex gene expressing events and genotype-phenotype

mappings in developmental mechanisms allow reduction of genetic information with-

out losing complex behaviour. Presumably, this exploits large scale redundancy and

may not necessarily apply at all to simple problems. He observes that the genotype

will not necessarily grow as the number of cells increase. GE uses a degenerate cod-

ing scheme where a wrapped genome can be used several times. While this promotes

gene reuse, it may not overcome the trade-off i.e. pleiotropy; as genes are reused,

dependencies also increase. A gene reuse mechanism must be intelligent enough to

overcome this. In GE this becomes the problems of finding one sequence of codons

which, when mapped in the context of the grammar in 2 or more situations, will

produce the favourable phenotypes at the location.
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Rieffel and Pollock [Rieffel and Pollack, 2004] discuss development through indi-

rect encodings/mappings (i.e ontogeny) in erroneous environments and the ability for

these encodings to specify intermediate morphological elements. Development error

is imposed through a world physics where an action and a result of an action are

disassociated; an action is dependant on physics and may not have the ’intended’

effect. This seems unnatural because an adaptive system relies on regularities and is

like learning to walk when the ground periodically gives way under your feet. How-

ever it is plausible because regularities are not always obvious. Rieffel and Pollock’s

intermediate morphological elements or ontogenic scaffolding, are features that exist

during development, assist development but do not necessarily appear in the solu-

tion. Such features could be considered, generally, as temporal rather then structural

building blocks. Rieffel and Pollock address an interesting question; is there sufficient

information to allow the evolutionary process to cope with stochastic environment?

They seem to present the issue as a complication with developmental error and resul-

tant fitness distributions, which results in a fitness assignment problem. This leads

them to develop the following observation; it may be more informative to allow each

genotype multiple stochastic developments. A genotype will then produce an entire

distribution of phenotypes. Their answer to determine a mapping’s yield is pareto

optimisation, which requires some supervision, together with the use of multiple tri-

als which is arguably quite similar to the use of test cases in a symbolic regression

problem (i.e. quartic symbolic regression where x = 1 gives a noisy signal). They also

observe distinct developmental phases where scaffolding is first created to facilitate

solution construction and then removed. While this seems very interesting in terms

of morphogenesis, it is unclear whether a teleology-imposing observation has been

made. This and the fact that their physics makes scaffolding a more probable solu-
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tion makes the relevance of these results seem unclear. While we are unclear about

the findings, it is certainly a very provocative study. What information is driving the

indirect mappings? How can evolutionary algorithms control one-to-many genotype-

phenotype mappings? In this study this issue will be referred to as enabling canalized

diversity.

Bentley describes the evolution of fractal proteins for providing a rich medium for

evolution in order to improve evolvability [Bentley, 2004b, Bentley, 2004a]. The ide-

ology behind this work is, in part, to produce representations with as few constraints

and as much richness as possible. This is in keeping with biological design principles.

In this model, the genome is extended to encode both structural and regulatory genes.

The genome is embodied in a cell which has a cytoplasm that also hosts behaviours.

Cells in turn exist in an extended environment with one or more cells and one or

more fractal proteins. A fractal protein is defined as a subset of the Mandelbrot set.

Because of the richness in fractal proteins, fractal chemistries naturally emerge. All

fractal proteins are merged to calculate whether a gene should be activated. This

weak linkage property has been discussed in previous sections. The space of fractal

subsets is interesting; similar fractals can be near to each other, similar fractals can

be found in many different places and the space is theoretically infinite. Through this

representation, Bentley suggests the counterintuitive consequences; rather than make

the search space as small as possible, the space is made close to infinite. However,

the method is able to find solutions without difficulty proving that evolvability, not

size of search space, is critical to evolution. Fractal GP approach demonstrate inter-

esting developmental patterns in evolving gene regulatory networks. See results in

[Bentley, 2004b]. Fractal protein model is extended to immune regulatory networks

in [Bentley and Timmis, 2004]
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Federici discusses the problem of applying artificial embryogenies to difficult prob-

lems. In ontogenesis genes might be thought of being degenerate both structurally

and temporally. A gene that ’could’ be mutated and not seem to be relevant to the

solution, may be important during development. This type of dependency can result

in creating deceptive fitness landscapes [Federici, 2004]. To address these issues, Ar-

tificial Neural Networks are used to encode growth space, diversity is regarded and

development may happen in more than one Embryonic stage. The motivations for

these decisions are interesting. ANNs are used because of their supposed suitability

to modeling genetic regulatory networks and their affability to neutral explorations

[Federici, 2004]. The major contribution of this work is on embryonic stages. It has

been observed that species that are evolutionary related, share early stages of embry-

onic development and differ in later stages! This observation leads Federici to suggest

that subsequent modification of early stages could be catastrophic and reducing mod-

ification of early steps may assist evolvability. Diversity is important for many reasons

but in the context of the previous consideration, it will allow exploration in different

regions of the search space when returning to previous stages is impossible. This

is achieved by evolving an ANN with one chromosome, preserving that chromosome

and using a copy of that chromosome for the next developmental stage. The state of

the ANN in the previous stage is used to initialize the next stage of development. By

using chromosome copies in subsequent stages, the individual’s ontogeny is conserved

as evolution continues to operate incrementally. Results showed a positive effect on

performance and good resistance to fault tolerance[Federici, 2004].

Above we have described just a few features of artificial embryogenies; embryonic

stages, richness of environments, error tolerances and scaffolding in development,

limited Growth and indirect mappings.
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3.5 Summary

We have reviewed research in encodings in genomes, model building and modularity

in genomes, and finally gene expression and developmental processes. Later chapters

exploit the principles discussed in these sections in developing evolutionary models.

From the first section on representations we extracted salient features of interest

such as the preservation of linkage and the use of degeneracy. In the subsequent

section on model building, we recognized the importance of maintaining a memory of

modular structures, assuming useful modules could be identified.

As we look at studies based on gene expression, it becomes clear that an appro-

priate genotype-phenotype mapping is required to ensure that the space of useful

phenotypes is mapped. Perhaps the most ideal mapping is a combinatorial gene ex-

pression mechanism which allows for scalability of phenotypic complexity. This in

turn begs the question about context of genetic material and how genes used redun-

dantly and pleiotropicly can be given meaning. Following discussions of neutrality

and genetic codes, we reviewed a number of gene expression based mechanisms.

Finally we looked at a number of principles, sometimes found in artificial embryo-

genies, which are important to development. These biologically inspired principles

may contribute to evolvability in artificial systems.





Chapter 4

XMLGE

...To load a Program into the computer: this does not mean that the

future has been planned down to the last detail, that everything is written

”up above”. For example, the program did not specify that in 1815 a battle

would be fought near Waterloo and that the French would be defeated, but

only that man is aggressive by nature, that he is condemned to wage war,

and that technical progress would make war more and more terrible.

- Milan Kundera ’ Immortality’

4.1 Introduction

This chapter introduces the XML-based Grammatical Evolution framework which

may be used for stand-alone and distributed Grammatical Evolution. Using XML for

evolutionary computing is a novelty that offers advantages for analysis, collaborative

research and system decomposition. Initially developed for use on a single-machine,

inherent qualities of XML made distributing the process relatively painless. The pri-

57
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mary purpose for using a distributed model has been to evaluate single GE genomes

on remote clients and carry out evolution on one machine in situations where indi-

vidual evaluation is expensive. However the parallelisation model can be extended to

allow the selection process to be distributed also.

This chapter describes Grammatical Evolution in eXtensible Markup Language

(XML) [W3C, 2005a]. XML is used to mark up all artificial genetic material and

permits rich representations. The eXtenable Stylesheet Transformation Langauge

(XSLT) [W3C, 2005b] is a declarative language used to write genetic operators. XML

trees encode all information required to generate programs in a high level program-

ming langauge. This allows program structure to be serialized and assists a distributed

evaluation architecture. Many of the methods used are inherently inefficient because

they are based on XML. However XMLGE has been developed to explore the use of

rich representations.

The primary motivation for XMLGE is to abstract the evolutionary process, tak-

ing all evolutionary logic and placing it in XML. From a philosophical perspective,

this is similar to the idea that organisms in nature consist of the same elements and

processes and differ only through DNA. XMLGE uses core set of classes to load and

manage XML, which dictates properties and processes expressed at runtime. From

a practical standpoint this allows one to concentrate on evolutionary logic and share

logic in a standard, persistent way. An extensible evolutionary process is defined

through XML with well-defined phases. Ideally it should be possible to carry out any

evolutionary experiment changing only evolutionary logic defined as XML or adding

elements to the XMLGE environment written in high-level code for what we term the

fitness environment.
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We continue to section 4.2 to provide background information on XML. We in-

troduce XML, XML Schema and XSLT. Following this we will discuss XML in more

detail through its applications in XMLGE. We describe how these elements are used

for evolutionary operators, evolved-program serialisation, communication and valida-

tion. We will take an overview of the XMLGE framework describing its usage.

4.2 XML

As evolutionary algorithms and their analysis are data intensive, we consider XML for

their representation. XML is a W3C standard mark-up language and has been widely

adopted across many industries. It is an extensible language allowing document

authors to define their own elements, attributes and document structure.

The hierarchical structure of an XML document implies semantics in a similar fashion

to a LISP S-Expression. In XMLGE, XML documents represent both genomes and

S-Expressions. XML Genomes have a flat structure, a parent XML ’Genome’ node

and variable length list of ’Codon’ nodes with integer values (we do not consider

binary codons here). XML S-Expressions are hierarchical structures with each node

level corresponding to a symbol taken from the GE grammar.

XML has a number of standard supporting languages including standards XML

Schema [W3C, 2005e] , XPath [W3C, 2005d] and XSLT [W3C, 2005b]. XML schema

is normally used to define document types. It constrains and validates document

instances. In XMLGE, XML schema corresponds to the BNF grammar. In addition

to being far more expressive than BNF, because it is represented in XML, it can be

parsed by XML tools such as XPath.
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The XML-based grammar is very similar to the BNF counterpart, apart from the use

of XML Schema keywords such as ’choice’, ’sequence’, ’enumeration’, ’simpleType’

and complexType. These elements are important in the mapping as they provide

information such as whether the symbol is a terminal or non-terminal or if a choice

is being made and hence if the GE rule must be applied to use a genome value. The

natural recursive processing order of XSLT adheres to the way GE is naturally applied.

This is an interesting use of XML Schema because XML schema normally validates

an existing document instance (which it may also do here) but it now generates valid

document instances too.

XPath is a regular expression language for matching node sets in XML trees.

Working from a context node it is possible to select child nodes and parent nodes,

ancestor and descendant nodes, sibling nodes and attributes. A query can filter by

node names and positions and can specify a node that has a ’related’ node or node set

with certain constraints. For example, an XPath query could identify a child node,

which has a child with a certain name, which has a certain attribute of a certain

name and a certain value. XSLT is a language used to transform XML data. Taking

a source document it uses a number of templates to match nodesets using XPath

and describe result output using the context node’s values. It works recursively in an

XML tree using values from one source document to determine the output document.

XSLT is commonly used to generate HTML content from XML sources.

XSLT stylesheets and XPath play an important role in XMLGE. XSLT is used to

transform XML data based on evolutionary logic or to transform data into other forms

for analysis or representation of data. In the first case, XSLT is used for example as

a crossover operator or the GE transcription operator. In the later case, XML results

can be transformed for example into SVG graphs.
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An XSLT stylesheet is used to apply the GE mapping. The mapping reads a

sequence of genomes and using a given rule will select a sequence of grammar symbols

in order to construct a program tree. In XMLGE the Genome population is merged

with the grammar so the XSLT file can act on one document to generate the resulting

XML based S-Expresion population.

SOAP [W3C, 2005c] is the specification of the XML-based information which

can be used for exchanging structured and typed information between peers in a

decentralized, distributed environment. Further description of SOAP is not required

to understand its role in XMLGE. Suffice to say, it defines the Web Service packet

structure that is used to exchange data in the distributed model of XMLGE. Even

Dynamic Link Libraries (DLLS) can be passed over the wire in this way as binary

data encoded in strings passed in XML nodes.

4.3 XML and Evolutionary Algorithms

In XMLGE, XML represents both genetic material and genetic mechanics. High level

languages in turn describe the fitness environment in which this genetic material is

evaluated. In XMLGE the fitness environment consists of the fitness function and

the set of symbols defined in the grammar.

XML is used to represent all data in XMLGE including parameter files, serialised

data types and result data. It is used to represent genomes and X-expressions gener-

ated from genomes. In this text we will generally refer to XML based X-Expression

trees as X-Expressions to avoid ambiguity. Because data is represented in XML it

can be persisted directly to file, transmitted easily in a SOAP message and shared

by users who know the document format. XML files, which are verbose and large,
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are generally compressed in XMLGE using GZip compression for both storage and

transmission.

XML genomes consist of one genome element contains a variable number of codon

elements which have integer values between zero and an upper limit. Genomes store

fitness values and id’s as attributes.

Figure 4.1: Sample Genome

S-Expressions in XML, called X-Expressions henceforth to differentiate from other

meanings, have an arbitrary structure of Symbol elements as defined in the grammar.

Terminal symbols contain primitive string or numeric values. The Start-Symbol con-

tains a ref attribute that corresponds to the Genome ref. A production sequence in

GE such as

1. <StartSymbol> ⇒ <SymbolType1>

2. <SymbolType1> ⇒ <SymbolType2><SymbolType3><SymbolType2>

3. <SymbolType2> ⇒ T1

4. <SymbolType3> ⇒ T2
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5. <SymbolType2> ⇒ T1

is structured as follows.

<Start-Symbol ref="1" fitness="0.0">

<SymbolType1>

<SymbolType2>T1</SymbolType2>

<SymbolType3>T2</SymbolType3>

<SymbolType2>T1</SymbolType2>

</SymbolType1>

</ Start-Symbol >

Each of the above structures representing genomes or X-Expressions exists within

its respective XML document under a single root <Population/> element.

We now build an XML Schema that corresponds to a BNF grammar definition.

The complete schema can be found on page 71 in figure 4.2. We start with the root

element and its namespace declaration. Notice how the root is namespace qualified

and the namespace is declared inside the node.

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<!-- Schema/Grammar Content Goes Here -->

</xs:schema>

Within this schema element, all the elements that will appear in the XML instance

will be defined. The schema describes the structure and content of the document by

specifying what elements and attributes can be contained within them. An element

that can contain other elements is defined as a complex type while an element that
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cannot is of simple type. A complex type would be used to define every non-terminal

BNF symbol. An element can be defined with an embedded complex type defined

inline, or the complex types can be defined and reused. The later approach is better

for our purposes.

The first part of the schema specifies that XML instances can have expressions,

or <expr> tags as the root node. This corresponds to the start symbol in the BNF

grammar used in GE. This element will sit one level below the xs:schema root element

and does not have an explicit BNF counterpart.

<xs:element name="expr" type="Expression"/>

The schema element definition specifies the element’s name and type. ’type’ cor-

responds to its schema complex type definition shown below. There is a sequence

with three elements, and a loose element. Note that the single loose element might

well have been wrapped in a sequence element. Note also the XML Schema definition

elements prefixed with xs, which reflects the XML Schema namespace defined in the

root.

There are various types of sequences, bags, enumerations etc. that can be used

in XML Schema. XML Schema also provides data type constraints. The data type

might specify that an element or attribute must contain a number, string or date for

example. These data types can be extended. These details are not important to the

current discussion.

The BNF specification

<Expression> ::= <Expression><Operator><Variable>

| <Variable>
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is represented in XML Schema using explicit choice and sequence keywords as

shown below.

<xs:complexType name="Expression">

<xs:choice minOccurs="1" maxOccurs="1">

<xs:sequence>

<xs:element name="expr" type="Expression"/>

<xs:element name="op" type="Operator"/>

<xs:element name="expr" type="Expression"/>

</xs:sequence>

<xs:element name="var" type="Var"/>

</xs:choice>

</xs:complexType>

Each of the elements have name and type attributes. Their ’type’ attributes refer

to their complex type definitions. Each element, including grouping elements e.g.

xs:choice can have minOccurs and maxOccurs attributes. These are not necessary for

XMLGE.

eXtensible Stylesheet Language Translations (XSLT) is a language for translating

a source XML document into a result using an XSLT stylesheet∗. Like XML Schema,

XSLT stylesheets are written in XML. Each of the stylesheet elements is qualified

with an xsl prefix and an XSLT processor knows to use these xsl prefixed elements.

Below the root node of an XSLT stylesheet is shown.

∗XSLT is a declarative langauge. Some of the details explained here are given to stress the
stylesheet langauge’s ability to compute. As such, it may seem strange that we discuss what would
be trivial details in a high level programming language.
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<xsl:stylesheet xmlns:xsl=’http://www.w3.org/1999/XSL/Transform’>

<!-- Stylesheet Content Goes Here-->

</xsl:stylesheet>

Stylesheets are composed primarily of templates and match clauses. An XSLT

processor will read a source document, parsing through each of its nodes and at-

tributes. If a node or attribute matches a template, that template is applied. Within

the template, the stylesheet author will specify how the output should look, most

likely using elements and attributes (or their values) from the source. Here is a sim-

ple template that matches the root document and does nothing. The Forward slash

refers to the root node.

<xsl:template match="/">

<!-- Template Content Goes Here-->

</xsl:template>

XSLT uses a separate language called XPath which is a language for identifying

node sets in XML documents; this forward slash is a simple example of XPath. The

root node of the source might contain a <Population> element. If so, within the

template (empty in this case) one might choose to process the individual node of the

current context. It is in many respects similar to navigating a directory structure.

./population/individual would identify an individual child of ’population’, which

is itself a child from the current context.

In an XML file there may be multiple children of the same name, unlike in file sys-

tems. The above XPath expression would therefore refer to a ’nodeset’ i.e. all ’individ-

ual’ children. XPath can specify the second child; ./population/individual[2]...

the second and third child; population/individual[2|3]... the individual with an
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’id’ attribute set to 135;

population/individual[id=’135’]@, where @ refers to attributes.

XPath also defines axis which are written as ’AxisType::’. The child axis, child::*

can be used to the same effect as ’./*’. Similarly, the parent axis, parent::, can be

used to the same effect as ’../’. There other axis also like following-sibling::*, or

ancestor-or-self::*.

XSLT has a number of functions such as position(), current(), sum(), count(),

which can be applied to nodes or node sets. It is also possible to extend XSLT by

writing functions in scripting or high level programming languages to be included in

XSLT stylesheets. For example, XMLGE uses extension functions written in Java or

C# for random number generators and tournament selection.

XSL has elements for processing XML files. For example xsl:for-each, xsl:if and

xsl:choose allow iterative and conditional processing. xsl:value-of, xsl:copy-of and

xsl:copy allow elements or their values to be processed. xsl:element and xsl:attribute

allow for the creation of new elements and attributes in results. xsl:variable and

xsl:param allow the use of variables and parameters as XML sources are processed.

xsl:apply-tempates and xsl:call-templates allow templates that are defined in the

stylesheet to be called. Consider the following source file.

<RootElement>

<AnotherElement attrOne= ’whatever’ attrTwo= ’4’/>

<ElementWithChildren>

<Child fitness = ’19’/>

<Child fitness = ’5’/>

</ElementWithChildren>

</RootElement>
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We will use two templates to arrive at the following result. This result is a simple

XML file with some text content.

<SimpleRoot>

<TransformResults>

This is Text: Child Two had fitness of 5 and

child One had fitness of 19. The average fitness is 12

</TransformResults>

</SimpleRoot>

We get the result by matching <ElementWithChildren>, getting its children, get-

ting their attributes and printing them in the results. We also calculate the average

fitness in a variable and print that. Here are the two templates. This first part

matches the root and applies templates to all children.

<xsl:template match="/RootElement">

<xsl:apply-templates= "child::*"/>

</xsl:template>

The template for the second child is shown below. This is specified in the match

clause.

<xsl:template match="ElementWithChildren">

<xsl:variable name ="average" select="sum(Child/@fitness)

div count(child::*)"/>

<xsl:element name=’SimpleRoot’>

<TransformResults>

This is text: Child Two had fitness of
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<xsl:value-of select="Child[2]/@fitness"/>

and child One had fitness of <xsl:value-of

select="Child[1]/@fitness"/>.

The average fitness is <xsl:value-of select="$average">

</TransformResults>

</xsl:element>

</xsl:template>

We have used a variable element to compute the average. This uses the sum,

div, and count functions of XSL. Within the sum function, we use a node-set or

attribute-set argument. These evaluate to numeric ’fitness’ values in this case. The

count function counts the child nodes in the current context. We have created the

result by creating the elements and text output within the template. Notice we have

used two methods for creating elements. One (SimpleRoot) uses the xsl:element and

the other (TransformResults) writes the element directly. <xsl:value-of select/>

gives the value of a node or variable in the select clause. In this case the ’average’

variable is used. Variables are prefixed with the dollar symbol.

4.3.1 The GE mapping using XSLT

XSLT works by transforming a source document and creating a result output. In

XMLGE, two source documents are used by one stylesheet in order to produce a

result in the mapping process. The main source document is the genome population

but the grammar is also used as the genome is parsed; this is the principle. What

is in fact happening is the grammar is being transformed using values from each

genome individual to make choices. For each genome individual, record the codon

values on a stack. Transform the XML schema (grammar) into an XML instance for
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that individual, sequentially using the codon values at each stage of the mapping. A

complete schema and corresponding BNF can be found on the next page.

Note the S = expr is added for consistent comparison and would not appear in a

BNF grammar.

Applying GE styles

A stylesheet processes the schema by matching a template or handler for each impor-

tant element in the schema. The most important elements to GE are the <xsd:choice>

and <xsd:simpleContent> as it is in these elements that the decisions are made about

mapping. The schema defines

<xsd:element name="expr" type="Expression"/>

to bootstrap processing. This is the only element not contained within a complex

or simple type. The process will begin to build an XML element with name ’expr’ and

of type ’Expression’. The use of this ’Expression’ type attribute is twofold in XMLGE.

For the stylesheet it decides which complexType definition to process. Also, this will

be used later as a Java or C#’class in constructed by wrapping the XML individual.

Note we differentiate between ’Expression’ and ’expr’ logically and for discussion.

However it is more reasonable to use the same value and preferably the shorter in an

actual schema. Once processing has been redirected to the appropriate complexType

definition i.e. ’Expression’, it will reach an <xsd:choice> element (storing the current

source node in context).

<xsl:template match="xs:complexType">

<xsl:apply-templates select="xs:simpleContent|xs:choice|xs:sequence"/>

</xsl:template>
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Figure 4.2: XML Schema and corresponding BNF grammar.
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This template will look to find one of the elements separated by ’|’. Recall that

the value of the select attribute is an XPath query†. If the template finds such an

element, it will call a matching template and pass the tree context to that. In this

way, each of the complex types in the schema, whether they have ’simpleContent’ or

’choice’ children, can be handled in this ’switch’. The choice element will be handled

as follow;

<xsl:template match="xs:choice">

<xsl:variable name="wraps" select="Xgenetic:wrapCount($XgenInstance)"/>

<xsl:variable name="allele" select="number(Xgenetic:popA($XgenInstance)) "/>

<xsl:variable name="childCount" select="count(child::*)"/>

<xsl:variable name="pointer" select="$alle mod number($childCount)"/>

<xsl:variable name="choice">

<xsl:choose>

<xsl:when test="$wraps &lt;= 1">

<xsl:value-of select="number($pointer) + 1"/>

</xsl:when>

<xsl:otherwise><xsl:value-of select="number($childCount)"/></xsl:otherwise>

</xsl:choose>

</xsl:variable>

<xsl:for-each select="child::*[position()=$choice]">

<xsl:apply-templates select="."/>

</xsl:for-each>

</xsl:template>

†The use of the separation character is actually part of an XPath expression and means ’or’. This
is not related to the use of the same character in a BNF grammar.
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As the XSLT processor operates on the schema, it pops codons (integer values)

from a stack and uses the modulus of that integer to make a mapping decision.

The popped value is stored in the variable ’allele’. This stack is implemented as

an XSLT extension because XSLT has no memory. The namespace prefix Xgenetic

before ’popA’ refers to a class that implements stacks and random number generators.

popA is a function within that class. The choice variable in the middle section uses

the codon value in the mod rule (and adds 1 to index from 1 in XSLT). In the last

section, the stylesheet calls a template to match what will evaluate to the xs:sequence

or xs:expression child at the chosen position.

The xs:simpleContent element from the schema above makes decisions in this

fashion when choosing terminal values.

The xs:element handler constructs the actual tags and attributes of the element.

An XML element is created with the name specified in the ’name’ attribute. Following

this, the complex type definition for that element is processed as discussed above. In

this way, elements are constructed recursively.

<xsl:template match="xs:element">

<xsl:element name="{@name}">

<xsl:attributename="class"><xsl:value-of select="@type"/></xsl:attribute>

<xsl:apply-templates select="//xs:complexType[@name=current()/@type]"/>

</xsl:element>

</xsl:template>

We do not discuss other operators such as crossover. However these also use XSLT

to transform source documents into result documents.
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4.3.2 Evaluating Programs

XMLGE programs are constructed from XML expression tress at runtime using re-

flection. Reflection in object orientated languages allows runtime scrutiny and in-

stantiation of class libraries, classes and methods. The use of reflection is far slower

than constructing programs in a standard way. However this has been done to sup-

port remote runtime evaluations. For example, imagine remote clients that evaluate

arbitrary simulation-based problems for a central server. These clients do not know

ahead of time what Dynamical Link Libraries (DLLs) are being used for a particular

problem or if DLLs have been updated. The details of remote evaluation will be

explained.

X-Expressions are evaluated as programs within the fitness environment, which

as we have mentioned consists of symbol implementations and fitness function imple-

mentations in a high-level programming language. There must be a symbol class to

correspond to each symbol defined in the grammar. For example in symbolic regres-

sion the above abstract X-Expression could be seen as the expression or function X

+ 1 i.e.

<Expression ref="ID" fitness="val">

< Expression >

<Variable>X</ Variable >

<Operator>+</ Operator >

< Variable >1.0</ Variable >

</ Expression >

</ Expression >
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An implementation for each symbol Expression, Operator and Variable must be

provided in code. Each symbol class must behave in a specific fashion. Each non-

terminal must pass parameters down to its children. Each terminal must know how to

evaluate itself and pass appropriate results to its parents. The Non-terminal Expres-

sion class in the XMLGE implementation first determines if it is a variable (containing

only a Variable child) unary expression (Containing a Preoperator and a Variable or

Expression), or a binary operator. It then computes values for child variables and

expressions and applies child operators. Parameters are passed in hashtables. For

example an input parameter X is mapped to a value and the parameter Y is mapped

to a value for each test case. This allows the appropriate variable instances to pull

the values required. For swarm evolution as we shall see, many types of parameters

can be passed in at runtime representing arbitrary types of information.

By passing variables to children and managing child evaluations, X-Expressions in

XMLGE are evaluated recursively at runtime and programs are effectively serialisable.

This is a trivial point but an important part of XMLGE nonetheless. The term

behavioural transfer is used to describe the remote transfer of code. In XMLGE as

we shall discuss shortly, the fitness environment is sent to remote clients in a dll that

contains all necessary symbol classes and the fitness class. As symbol classes are

transferred to remote clients, which see them for the first time, the serialized form of

the evolved programs can accompany them to be properly reconstructed.

4.4 Overview

This section describes the XMLGE framework architecture for stand-alone and dis-

tributed scenarios. The XMLGE abstraction means all evolutionary operators and
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genetic material are represented in XML. High level programming languages provide

the fitness environment. Code is also used in automation. Automation includes wrap-

ping the specification file to retrieve values, applying operators and reading or saving

results.

There are five stages in XMLGE; The start and end of the experiments, before and

after each run, and during the run. XMLGE defines a ’transform pipe’ for each of

these stages where stylesheets at each stage are applied to genetic material and the

results are passed to the next stylesheet in that stage. The specification file points

to the appropriate stylesheet files. In this way the XMLGE core should not need to

know about evolutionary logic.

Figure 4.3: A stylesheet transformation pipe is used at each stage. For brevity, this
stylesheet pipe is shown only for the Transform stage. The other five stages may also
have transformation pipes. This notion is trivial and simply separates XSLT tasks
(genetic operators) from other tasks such as program evaluation. The GE mapping
is applied at the Transform stage while crossover will be applied in the Post stage.

In the run method, the main transform stage generates the X-Expressions from the

genomes and constructs the programs at runtime based on the grammar-defined types.

These programs are evaluated via the fitness function and results are tagged on the

genomes and expressions in the XML document.
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Distributed Mode

In distributed mode, this process is replaced by an event model to work in an asyn-

chronous manner. A Task Manager is also added and a Task class that manages

individual tasks by keeping track of genomes and their corresponding X-Expressions.

X-Expressions are generated and tagged with results on remote clients and sent back

to be collected by the Task class. The task logger is exposed to the world through a

web service through which jobs are published and results returned.

Figure 4.4: The Server (left) Generates a population of genomes i.e. tasks. These are
sent over HTTP in SOAP packets to the client on request. The appropriate DLLs and
XML files may also be sent to the client. The client applies the GE map to generate an
X-Expression from a local GE stylesheet and subsequently evaluates the expression using
the appropriate fitness environment. The expression with tagged ID and fitness is sent back
to the server. When all tasks (entire population) are evaluated, crossover is applied and the
next generation of tasks is created.

In order to publish an experiment in XMLGE, a web service is hosted on a web

server. This web service must have access to project files such as dll(s) and XML

files. A client servicing a particular server will request the active project specification

and hence determine if it needs any additional files. The client requests a job (client

can specify how many jobs to take at once) and the Task Manager returns one or
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more genomes through the web service. These genomes are then used to generate

X-Expressions using the mapping stylesheet and grammar which are contained in the

project files. The client will construct the program using Symbol elements found

in the project dlls supplied. This client will evaluate the program using the fitness

environment supplied. When evaluated, the X-Expression is tagged with fitness. The

tagged X-Expression(s) are then returned to the task manager via the web server.

Representing evolutionary logic in XML means that arbitrary clients can perform

operations on data on ways that are not pre-defined. This makes moving processes

from the server to the client very easy as both data and logic can be exchanged.

The distribution of genome evaluations makes little sense except in the case where

individuals evaluations are expensive such as evaluating simulations. In another case,

where the population being evaluated is very large, applying evolutionary operators

to produce a new generation is computationally expensive (particularly using XML).

The Task class described above can be serialized as XML. This stores the partial or

complete state of the evaluated population with genomes and X-Expressions tagged

with fitness. This Task can be serialized into partial tasks and sent to remote clients

(as compressed data). For example the population could be divided into ten equal

segments. Clients could generate new sub-populations using for example tournament

selection and send the new population segments back to the primary server for com-

position. We have not explored this later type of parallelization but concentrate on

the ’expensive individual’ case. In the next section, we consider an application of

XMLGE where an individual evaluation is expensive.
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4.5 Evolving a Dynamical System

This section describes an application of XMLGE to evolving cooperative swarm be-

havior. XML structures evolved through Grammatical Evolution correspond to ’ant

genes’, which are the serialized form of transducers that govern behaviours in a colony

of homogeneous ants.

We use the term synergenesis to denote the emergence of synergy between par-

ticles that previously behaved chaotically from the macroscopic perspective. In the

following sections we develop a particle system and a special-case function induction

problem. Grammatical evolution is used to evolve particle behaviours in order to

reduce a global entropy measure. We believe this type of evolutionary problem, while

often difficult to formulate is of great importance. Much of the prominent challenges

in science (ecology, immunology, neuroscience, economics) stems from the need to

understand how systems function and how microscopic changes affect or are effected

by order parameters.

These ideas are also important to evolutionary computing itself. For one, self-

organizing dynamics can be used to build better algorithms. More generally, it is a

reminder that all natural systems are complex and that nature’s evolutionary search

space is not the vast sea of variation it was once thought to be - much complexity is

a natural consequence of self-organizing dynamics. The emergent order parameters

that regulate ’social systems’ are in effect an extended phenotype for the lower, non

social scale of selection. As we consider what information is in the genome, we are

reminded that much of the phenotype complexity may not be encoded. The following

study is a good example of this.
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Dynamical systems are interesting evolutionary problems. The paradoxical contra-

diction of the second law of thermodynamics seen in selforganizing systems has been

explained in terms of a coupling between the macro level that hosts self-organization

(where entropy is reduced) and the micro level (where entropy is increased through

random processes) [Parunak and Brueckner, 2001]. The micro level is said to serve

as an entropy sink permitting overall system entropy to increase while sequestering

this increase from the interactions where self-organization is desired.

4.5.1 Dynamical Particle System

We have abstracted a Dynamical Particle System. Each system consists of an envi-

ronment with objects or gases. We refer to animate objects as particles. A system

of homogenous particles (animate) are given a number of behaviours. Each particle

has a short memory which is a matrix of occurrences - each row corresponds to a

particular piece of information. Particles can perceive gases and particles directly

and probe their properties. However, memory stores occurrences only as real values

e.g. 5 objects, 20,000 units of pheromone. Either memory or object properties at a

given moment can be used in functions. These functions are defined by a grammar.

Particles can move and act by physical manipulation of objects or by pheromone

deposits.

It can be seen that our Dynamical Particle System corresponds closely to an

active cognitive transducer [Wiedermann and Van Leeuwen, 1999] as described be-

low. It is also consistent with the work of myrmecologists who observe that ants

use functions of their recent, local experience in directing their actions [Wilson, 1971,

Hölldobler and Wilson, 1990, Gordon, 2001]. These spatially extended systems which
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communicate through their environment have significant computational abilities.

Wiedermann and Van Leeuwen’s cognitive transducer differs from finite transduc-

ers or Turning machines. The former, while finite (and sometimes limited) in reac-

tions, the order and intensity of reactions to input streams can vary in infinite numbers

of ways. In this sense, while our artificial ants are genetically homogenous, hetero-

geneities do emerge within the colony. As cognitive transducers can influence there

environment they are described as active transducers. Input streams can be causally

linked to single or joint past reactions [Wiedermann and Van Leeuwen, 1999].

Cognitive transducers by definition are always on i.e. infinity of operation and are

embodied in their environment within which interaction is describable i.e. interactiv-

ity [Wiedermann and Van Leeuwen, 1999]. Processing of environmental information

is dynamic yet implicitly stateful. Multiple inputs may be processed in parallel.

A community of active cognitive transducers is a time varying set of devices which,

at each moment, consists of finite number of homogenous units sharing the same en-

vironment. All members jointly play the role of an ’advice’. This advice keeps emerg-

ing online, incrementally and is blind, possessing as a whole no specific information

processing, or computational intention [Wiedermann and Van Leeuwen, 1999]. Stig-

mergy meaning incite to work [Wilson, 1971] is used in the context of eusocial insects

to describe communication through the environment. This allows for plebiscitary

activity, which supports Wiedermann and Van Leeuwen’s non-computable advice.

4.5.2 Swarm Evolution

We consider three primary concerns in evolving dynamical systems. The rich XML

representation method of XMLGE and the ability to distribute processing may be
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useful abstractions for addressing some of these issues.

Tractability The problem tends to be intractable in terms of evolutionary time and

search. Emergent computation performed by Cellular Automata [Wolfram, 1983]

is determined by its overall space-time behavior [Crutchfield et al., 2003]. This

is also true of swarms. Individual experiments evaluated by the evolutionary

system may run for several minutes. The problem contains non-linearities and

therefore mirrors a rugged search space. On a desktop PC it could take weeks

to evolve a solution, if a solution is to be found at all.

Representation As an automatic programming problem we must consider how to

encode the problem, what terminals to use and how to map the genetic material

onto the swarm program. This representation should contribute to a Language

that allows us to relate microscopic and macroscopic phenomena [Kubrik, 2003].

Fitness Evaluation A Method to determine the fitness of the swarm can be diffi-

cult to produce for dynamical systems problems [Williams, 2002]. Methods to

identify patterns in space or time are required. For example Spatial Entropy

values [Bonabeau et al., 1999], Hough Transforms [Williams, 2002] and tech-

niques from computational mechanics [Crutchfield et al., 2003] each describe

patterns and hence fitness of dynamical pattern-forming systems. This is not

to say there is a one-size-fits-all fitness evaluation method for complex systems

but that dynamical systems might be evaluated based on the recognition of

patterns.

Different functions of information effect the swarm’s ability to model its environment

although it is difficult to determine appropriate information and functions. Each
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dynamical environment has its own properties and information - where information

is the meaning of events. In complex environments there are consistent patterns in

space and time. If an entity can recognise relevant patterns, it has the potential to be

adaptive and anticipatory [Rosen, 1985]. The information-theoretic notion of relevant

information and the potential of taking an agent-centered theoretic approach to the

design of distributed adaptive systems is discussed in [Nehaniv et al., 2002].

Every creature in nature survives by modeling its environment as it senses it and

through a transducer system makes a response that is fit for that environment. Using

GE, we evolve templates for simple transducers that describe how environmental

information should be modeled by an ant to produce a response that favours the

swarm’s fitness.

Grammar-based Genetic Programming approaches such as GE are a powerful means

to describe legal interpretations of such terminal information yet still allow the open-

ended evolution of novel solutions. GE’s distinction between genotype and phenotype

aids in representation of the problem and provides a substrate for processes that will

regulate swarm construction.

4.5.3 Experimental Setup

We describe a multi-agent or swarm simulation model where information processing

ants cooperate to solve an abstract clustering problem. Ants cluster identical objects

which is a distinct problem from sorting (where a similarity measure is used to sort

like objects). The ant’s world is a square toroidal grid of 177*177 pixels (similar area

to the circular world used in [Bonabeau et al., 1999])and uses a Moore neighbour-

hood. We use the Repast simulation tool and the Colt math library [Repast, 2004].
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Ants will move one pixel per time step. Ants can move in random directions based

on a Gaussian probability distribution centered around the forward direction. A ’left

antenna’ at the north-west Moore pixel surrounding the ant and a ’right antenna’ at

the north-east are used to sense the concentration gradient. An ant will move deter-

ministically in the direction of highest concentration or will continue moving straight

if there is no difference in concentrations. These design choices are based on natural

phenomena [Wilson, 1971, Hölldobler and Wilson, 1990]. An ant will deposit a single

pheromone signal of a certain concentration as it moves. This pheromone signal dif-

fuses and evaporates at a constant rate. Diffusion and evaporation is implemented by

the repast simulation tool [Repast, 2004]. An ant may pickup or deposit objects in

it’s environment. Ants have a ’browsing’ function whereby objects and other ants are

observed and ’remembered’. The ant has a limited memory map where each object

type encounter over a certain period is stored.

Ants use non-deterministic threshold functions [Bonabeau et al., 1999] to determine

action. Equations 1 and 2 give the probability to pick up and drop an object respec-

tively. k1 is the threshold value for picking up and object and k2 is the threshold

value for dropping an object. f is the stimulus that the ant perceives - here it is the

fraction of objects perceived over some period i.e. the ant’s memory length.

ρp = (
k1

k1 + f
)2 (4.1)

ρd = (
k2

k2 + f
)2 (4.2)

The parameters used in the simulation model are shown in Table 4.1. We experi-

mentally decided the simulation time. This time is a short duration that can be used
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Parameter Value
World Dimensions 177 X 177

Ant Count 400
Object Count 1000

Memory Length 50
Decay factor 80 timesteps

Evaporation Rate 0.87
Diffusion Rate 0.42

Simulation Duration 5000 timesteps

Table 4.1: Swarm simulation parameters.

to effectively evaluate the clustering performance. Evaporation and diffusion rates

were chosen to represent ’recruitment’ signals with medium spatial effect and short

temporal effect. Other parameters were chosen over a number of trials.

In the clustering task, ants have a number of behaviours. There is a behaviour

for picking up objects, dropping objects, sensing stimulus, dropping pheromone and

depositing ’pheromone traces’ on objects. Each of these has a corresponding gene,

which is the evolved template mentioned above. These templates are equivalent to

GP S-Expressions, arranged in sequences that make up a complex of S-Expressions

or genes. These genes regulate ant responses using environmental information as

inputs. Each ant individual is encoded by a complex of genes mapped to behaviours.

These genes regulate the values used for k1, k2 and f in equations 1 and 2. When

objects are deposited, they emit pheromone traces of concentration specified by the

appropriate gene. The concentration of pheromone used in ant trails is also regulated

by a gene. Pheromone is emitted for a period of time specified by the decay factor in

Table 4.1. GE uses the following grammar to map a genome to an S-Expression, or a

complex of S-Expressions called GeneComplex. Start Symbol, S, Non-terminals, N,

Production rules, P, and Terminals, T are shown below. The terminal values in <var>
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correspond intuitively to information in the ants world. Encounters with ants and

objects, or ants in a ’working state’ are remembered in a matrix (for example over

50 timesteps). Parameters are retrieved from the memory depending on the Gene

Complex function. current_pherenome is the value of pheromone surrounding the

ants at the given moment in time while pheromone is the total pheromone occurrence

in the matrix.

<GeneComplex> ::= <expr> <expr> <expr> <expr>

<expr> (0)

<expr> ::= <expr> <op> <expr> (0)

| <var> (1)

<op> ::= + (0)

| - (1)

| / (2)

| * (3)

<var> ::= 10 (0)

| 100 (1)

| ants (2)

| working_ants (3)

| current_pheromone (4)

| pheromone (5)

| objects (6)

Notice the terminal symbols of the grammar correspond to environmental informa-

tion. Production rule 1 describes a complex of 5 X-Expressions. These expressions

are mapped onto ant behaviours. A complex of X-Expressions are mapped in an ar-
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bitrary but consistent manner from a single genome using the grammar above. This

complex is passed to a swarm simulation and used to construct genes for ants using

a sequential mapping of S-Expressions onto the behaviour to be encoded. During the

simulation at each time step, the ant senses its environment and passes in a table of all

sensed variables corresponding to terminal symbols. Terminal symbols represent the

number of ants, working ants, objects etc. (see grammar) encountered at each time

step. Each behaviour class then computes a response value based on the environmen-

tal information supplied. These computed values are used for example in equations

1 and 2 to decide when to pick up and drop objects. In this way, each S-expression

determines the value for a gene or parameter that determines the expression of a

behaviour based on information inputs.

Initially objects are distributed randomly. As ants work, objects are picked up and

deposited around the grid. After the specified experiment length, the fitness of the

swarm is computed and returned to the evolutionary engine. As a measure for clus-

tering performance, a spatial entropy value [Gutowiz, 1993, Bonabeau et al., 1999] is

used, calculated over the lattice which is divided into a number of grids. The equa-

tion below gives the spatial entropy E, at a certain grid scale, s. P is the fraction of

objects in one grid of total objects. In our experiments s = 6, there are 36 grids.

Es = −
∑

I∈s−patches

PI logPI (4.3)

Spatial Entropy [Gutowiz, 1993] is a macroscopic measure that corresponds to the

individual ant’s microscopic goals. As the ants work, spatial entropy values tend to

decrease as the world becomes more ordered. In time-dependant problems it is ad-

vantageous to have fitness evaluation measures where the fitness value tends towards
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Parameter Value
Mutation rate .1
Crossover Rate .7
Population size 200

Generations 5
Fitness Measure Spatial Entropy

Table 4.2: GE parameters.

the optimum. We run simulations for 5,000 time steps. However, this time reasonably

approximates clustering behaviour over 50,000 time steps.

It is the nature of the swarm clustering task that it should be easy to find a good

solution (approximate ratio between stimulus and threshold values) while it can be

difficult to identify the features of the multi-parameter problem. Consequently we

focus on showing evidence of progressive search rather than on finding an optimal

solution. GE genome individuals are evaluated only once (assuming they are not

mutated). We use a variable-length generational GA with tournament selection, one-

point crossover and integer mutation (as opposed to bit mutation). See evolutionary

parameters Table 4.2.

4.5.4 A Case for Remote Evaluation

In the previous section, we described how a web service hosts a GE experiment while

clients request genomes, evaluate them and send back results. Clients can request

XML files or dlls on demand. In this section we describe how the dynamical system

problem could be used in the distributed system.

For evolving dynamical systems, a simulator and an ant gene class constitute the

fitness environment. These are packaged in a dll. The XML files required at the client

are the grammar (an XML schema file), the GE Mapping stylesheet (XSLT file) and
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the problem specification file. Documents can be validated by XML Schema files also

(for example a schema ensures the specification is valid).

When the client starts, it will ask for a Job providing the specification ID it is

currently using (if any). The client can request one or more jobs which the server

returns as a list of genomes. If the specification ID on the server is different to the

one supplied by the client, new project files are sent to the client.

The client will process each genome by applying the GE mapping stylesheet to

generate an X-Expression (phenotype derivation tree), constructing the fitness en-

vironment to evaluate the X-Expression and returning the result. The fitness en-

vironment is a simulator that constructs ants using the X-Expressions to describe

transducers that process local information and determine behaviours. The simula-

tion is run for a specified period of time and the X-Expression is used to regulate ant

behavior in each time step. For the clustering-based problem addressed here, fitness

is a spatial entropy value. At the end of the simulation, the fitness is tagged to the

X-Expression and returned to the server.

The simulation is performed on the client. The optimal speed of the XMLGE

distributed system is to have as many clients as there are individuals in the GE pop-

ulation. In this case each generation will take approximately as long as the simulation

takes. Clients will send X-Expressions with tagged fitness image snapshots (e.g. Scal-

able Vector Graphics (SVG) or string encoded image files) back to the server. A fit

X-Expression i.e. an Ant’s GeneComplex may be used to re-construct a simulation

at the server.

The server will wait until it has the correct amount of fitness assignments for the

population and apply generational crossover. The clients will continue to request

jobs at this time but the server will respond that there are no jobs at that time.



90 Chapter 4. XMLGE

Runs 1 2 3 4 5
GE(mean) 1.79 1.79 1.70 1.43 1.70
GE(sd) 0.47 0.11 0.11 0.35 0.33
Rand(mean) 2.02 1.99 2.42 1.65 1.98
Rand(sd) 0.60 0.45 0.49 0.47 0.15

Table 4.3: Comparison between random run (Rand) and Grammatical Evolution
(GE) showing mean Spatial Entropy results and standard deviation. (Initial entropy
values approx. 2.7 on average). The standard deviation values for the GE runs are
generally lower than the random case.

When crossover is finished, a new task set is generated for the new population and

client processing will continue. XMLGE experiments are driven by one parameter file.

Custom parameters as used by custom fitness environments such as the simulator are

included in the parameter file along with evolutionary parameters. The parameter

file is consistent and is constrained by an XML schema. In this way a simulation, as

an evolutionary algorithm fitness function, can be controlled and monitored remotely.

4.5.5 Results

Over many clustering experiments, individual spatial entropy values ranged from av-

erage 2.7 (worst) to 0.9 (best) using given parameters. Results showing best solutions

found in each generation for both GE search and random search are shown in Table

4.3. Random search generates and evaluates a random population on each genera-

tion. Due to computational time requirements, we have only taken 5 samples of each.

Although not discernable from the tables above, GE did find the most favourable

average spatial entropy value of 1.059 although only marginally better than the best

value in the random search which was 1.127. However GE made improvements over

successive generations in most samples and the standard deviation values were pre-

dominately lower.
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All experiments used the same agent models and differed only in the information-

processing templates used. Clustering models in the literature show consistent for-

mation of several small clusters, gradually becoming three or four large clusters. We

observed these similar patterns but also observed patterns where objects seemed to

be ’swept’ into regions of the ant’s world. The regions first contained sparse clusters

that were gradually swept into dense compact clusters. We observed clusters that

formed stripe-like patterns in addition to ’spots’.

4.5.6 Discussion

The purpose of this section was to demonstrate evolutionary pattern-forming swarms

using Grammatical Evolution, with the result that the ant colony successfully evolved

templates that exhibited clustering behaviour based on a spatial entropy measure. GE

provides independence between the evolutionary aspects and the program represen-

tation. Many complex systems can be considered in terms of swarms of information

processing particles. The use of grammars provides a means to describe transducers

for information processing in complex system nodes. Grammars provide a powerful

means to describe legal interpretations of information yet still allow the open-ended

evolution of novel solutions.

Fitness evaluation methods that evaluate patterns are an interesting way to evolve

dynamical systems. The choice of fitness function is important as depending on how

well it approximates or anticipates performance of the dynamical system in the early

stages of a simulation, one can use shorter simulation times and less runs in the

evolutionary stages.
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The use of templates in a homogenous colony leads to behaviorally heterogenous

ants based on their environmental information context. In a sense it also realises a

type of ontogeny in that over time, the ant has features that may have variable fitness.

This is an important aspect to exploit given the temporal development of simulations

and makes the colony more adaptive. We have observed this through comparisons

between models using static parameters and those using template-based parameters.

In all areas of complex system research, a bridge of understanding between mi-

croscopic and macroscopic phenomena is required. Some research perspectives focus

more on one or the other of these suffering the critique of others. Templates repre-

sent for us loci at which to study this connection. The evolutionary search implicitly

identifies these templates as features of complex systems where for some global task,

we can see how individuals process information.

4.6 Conclusions

We have demonstrated the use of genetic operators such as crossover and an imple-

mentation of the GE mapping in XMLGE. These use XSLT, which is a declarative

stylesheet langauge. We have shown how genetic material can be represented in XML.

The ability to first evolve structures in data form which can be used to reliably

drive software processes is good software practice. XML is used extensively for a

similar purpose with manually programmed software. It is used to describe user

interface layouts, application configurations and application messaging.

XMLGE is a candidate program DNA. We suggest that such ideas should be

developed to consider artificial DNA as active data rather than the most abstracted

and simple binary string. We have used reflection to react at runtime to data and
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fire events in the presence of certain information in a deterministic fashion. Future

work could create more intelligent, possibly non-deterministic environments using rich

representations.

This chapter has also demonstrated the evolution of dynamical systems as a spe-

cial case of evolution. Studies in gene networks [Kauffman, 1993] and cell systems

[Furusawa and Kaneko, 2002] suggest that the complexity in life emerges sponta-

neously and naturally as a consequence of system dynamics. Whether the use of

complex interactions and state are used in the phenotype as we have done, in the

genotype-phenotype mapping as done in certain embryogenies or whether it is in the

development machine itself, the genome can be used in more rich ways than is the

case with deterministic, ballistic mappings.

A lesson from self-organizing systems is that we must enrich environments so

as to create regularities that an evolutionary system can exploit. This is a special

type of compression or implication and a possible route to the evolution of artificial

complexity. Evolutionary systems are inherently suited to exploit regularities in an

environment while traditionally the only feedback from the environment is fitness

based.

In the remainder of this thesis we exploit the information that is tagged on genomes

or X-Expressions during the GE mapping. We evaluate the usefulness of this ap-

proach.





Chapter 5

Coevolving Antibodies for Selfish

Genes

Everything else is without importance from the Creator’s point of view,

and is only a play on permutations and combinations within a general pro-

gram, which is not a prophetic anticipation of the future but merely sets

the limits of possibilities within which all power of decision has been left

to chance.

- Milan Kundera ’ Immortality’

We consider an evolutionary algorithm to be a cognitive or perceptual system.

These terms do not differ greatly from how Holland [Holland, 1992] used the term

adaptive meaning to fit to. In each case a system models or constructs an image

of its environment and reacts differentially in the context of environmental stimuli

or information. An important property of cognitive systems is their anticipatory

nature, where past experience can be used degenerately to model new experience.

95
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These systems often make ’leaps of imagination’ using analogy in order to innovate.

Understanding the physics of innovation is an important objective in evolutionary

algorithm research [Goldberg, 2002].

It can be seen that a cognitive system operates dual processes of feature detection

and feature integration [Hershberg and Efroni, 2001]. An anticipatory system must

have the physical means to detect regularities in its environment and these means

must be biased towards useful examples [Hershberg and Ninio, 2004]. In particular

we use the term perceptual to emphasize a cognitive system’s selective ability to

perceive relevant information. Like all perceptual systems so too must an evolutionary

system detect useful features and integrate them into global images. This is termed

the linkage learning problem within the EC community and requires that linkage

be learned quicker than alleles are crystallized. We note that most variants of the

competent GAs use explicit dual processes including messy and fast messy GAs, gene

expression messy GAs and BOA [Goldberg, 2002] and suggest also that if not explicit,

all use implicit dual processes. Thus, we stress that one of the simple GA’s main

shortcomings is its unfortunate coupling of feature detection and feature integration

processes. This is an important theme in this chapter.

In this chapter, queries are evolved which mirror primary structures in evolution-

ary algorithms and extract useful features. These features are then combined into

higher-order solutions in a second process. We refer to this type of algorithm as

a dual process evolutionary algorithm and point out that similar dynamics and in-

formation processing could be achieved in different ways. We believe an important

contribution of this approach which uses XMLGE, is the ability to evolve comple-

mentary structures for any primary structure. These ’complements’ form the basis

of a distributed perceptual system. In the chapter title we have used the term selfish
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gene taken from [Dawkins, 1989]. This simply emphasizes the selfish or independent

definition of tightly linked features outside of the individual. Specifically we develop

a model were complements are coevolved to detect features or genes. Our convolu-

tionary model is based on the immune system and referred to as antibody coevolution

[Amarteifio and O’Neill, 2005].

5.1 Principles

5.1.1 An Immune System Overview

The model-building evolutionary algorithm literature refers to the problem of iden-

tifying features as the linkage learning problem at both inter-gene and intra-gene

levels. First suggested by Holland [Holland, 1992], later work addressed this problem

through alternate encodings [D. E. Goldberg and Korb, 1989] and stochastic model

building [Pelikan and Mühlenbein, 1998, Pelikan et al., 1999]. Learning inter-gene

linkage refers to the adaptive definition and propagation of strongly linked alleles,

which are essentially features of a cognitive system’s world.

The question of how a system can learn fundamental features that are later recom-

bined into high-order features is not confined to genetics. This problem is common

to any cognitive system. In any such system one can take the perspective that there

are two simultaneous, non-discrete high-level processes. One that identifies features

as elements and another that forms concepts or learns through integration and di-

versification of features. The immune system can be seen as such a cognitive system

[Hershberg and Efroni, 2001]. If we are to engineer these processes in evolutionary

computation we might see this as a co-evolutionary problem as both systems are tem-
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porally mingled. The immune system provides an example of a co-evolving feature

detector system. An antibody library is continuously evolving in the immune system.

It evolves continuously and simultaneously with respect to the recombination process

in which antigens are suppressed by dynamic networks of library samples.

The immune system is an autonomous, distributed, adaptive system composed

of trillions of immune cells. The functions of the immune system are accomplished

by combined action of many of these entities. The single function of the immune

system is to maintain homeostasis in the body. This is achieved by detecting and

eliminating harmful non-self pathogens that would lead to the eventual demise of

the host [Hofmeyr, 1999]. This must be done while not harming self. The immune

system consists of layered protection from the skin, to physiological conditions such

as temperature or pH in and around the skin, to the innate immune system and the

adaptive immune system.

The innate immune system is a built-in defence mechanism from birth giving the

adaptive immune system the chance to build up. The adaptive response consists

of the primary response which learns and memorises new attacks. This response is

both slowly initiated and slow to complete. A secondary response responds to known

attacks that the primary response has remembered. This memory lasts up to the

lifetime of the organism. It is also associative in the sense that it can recognise

similar attacks. This is a property of many distributed representations. The adaptive

immune response consists primarily of lymphocytes. These white blood cells move

around the body seeking out pathogens. There are trillions of these lymphocytes each

moving about the body, interacting with each other and detecting pathogens through

simple localized rules [Cohen, 2000]. The stage when the immune system chooses the

appropriate response is called the effector choice stage. The correct cells must be
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activated to respond appropriately.

Pathogen recognition in the immune system involves establishing chemical bonds

between lymphocyte receptors (antibodies) and the surfaces of pathogen peptides

(protein fragment). These surfaces are called epitopes. The strength of these protein

bonds is termed affinity. Receptors are specific in the sense that they bind tightly

onto a few similar epitope structures or patterns. Each lymphocyte has in the order of

105 identical receptors, making lymphocytes specific to certain pathogens. Lympho-

cytes will only be activated if the number if receptors bound exceeds some threshold.

Therefore the affinity of receptors to epitopes must be high and there must be a suffi-

cient amount of local pathogens. Pathogens are complex structures and they consist

of a variety of epitope compositions. There is a many to one relationship between

lymphocytes and pathogens. There are significantly more pathogen proteins than the

proteins the immune system has available (at any one time) for recognition, even after

resorting to DNA recombination. It has been suggested that there is a lymphocyte

turnover rate of about 107 a day. The significance of this is that over a period of about

10 days, a completely new repertoire of lymphocytes has been produced giving the

immune system greater defences over time [Hofmeyr, 2001]. Antibodies have variable

and constant regions. The constant region is used to communicate with other im-

mune cells and thus regulates responses. The variable region is randomly generated

and binds to specific pathogens.

The adaptive process of antibody production involves a Darwinian cycle of activa-

tion, proliferation and differentiation of B cells [Hofmeyr, 1999]. B cells are a class of

lymphocytes that learn and remember pathogens, ’B’ indicating bone marrow where

they originate. Another class of adaptive lymphocytes are T cells which originate in

the thymus. When B cells are activated they migrate to lymph nodes throughout
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the body where they undergo somatic hypermutation. This is a very high rate of

mutation and there is a high probability of different or new B cells. At this point B

cells are exposed to pathogens. If they do not bind they die after a short time. If they

do bind they differentiate into plasma B cells or memory B cells. This continuous

cycle ensures only the fittest cells, those with the highest affinity, survive over time.

B cells must compete for available pathogens which imposes selection pressure.

As T cells originate and mature in the thymus, they are exposed to most self cells.

If they are activated by self cells they are censored. This negative selection process

is called central tolerance and is a first step towards self tolerance, which is vital

in preventing autoimmunity. However central tolerance is only a half-step towards

self tolerance as there may be a very large amount of autoreactive B cells (that

have recently undergone hypermutation). Distributed tolerance is achieved by only

allowing B cells to be activated when they have been stimulated by both pathogens

and T cells (T helper cells/Th cells). In the event that B cells are stimulated by only

pathogens, they die.

Noest describes the designer lymphocyte, designed without regard for biological

constraints but based on the theory of statistical optimal detection [Noest, 2001]. He

bases his description on detection theory (Neyman-Pearson); in this approach it is

desired to maximize the probability of choosing a hypothesis (H1) when it is true

(detection), while not exceeding a fixed probability of choosing H1 when it is false

(false alarm). This binary decision maker can be generalized for multiple hypothesis

testing for multiple, distinct epitope encounters. In consequence Noest points out

the need for specificity to reduce interference and following this, diversity to cover

the problem space. Noest observes that natural lymphocytes behaviour is consistent

with a mathematically derived designer lymphocyte [Noest, 2001]. However, it may
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be the case that no individual lymphocyte is so discerning but rather a distributed

response alone ensure robustness.

5.1.2 The Emergence of Meaning

The primary task of any adaptive systems is to model the environment by creating

functional representations of it. The brain can be classified as an adaptive system.

It responds to situations in an adaptive manner and involves understating and re-

sponding to new situations in relation to what is already known. Similarly, in the

immune system, the response must mirror the stimulus. The immune system does

not recognize pathogens as they exist but aspects of the pathogen whose context is

deconstructed according to immune system rules. The response to the deconstructed

antigen is not the sum of the responses of each individual agent; the immune response

is the cooperative outcome of the mutual interactions of the different agents and their

diverse perceptions [Cohen, 2001].

This research uses rich representations to allow for the evolution of meaning

[Hershberg, 2003]. An adaptive system must be seen as part of an environment.

This environment is expected to contain regularities and the system has certain sen-

sitivity to such regularities. Meaning evolves as a relationship between an adaptive

entity and its environment.

The exemplar learning model [Hershberg and Ninio, 2004] describes how cognitive

systems, the immune system in particular, determine the rules or general properties

or useful examples of their environment∗. They suggest a class of examples that

are ubiquitously encountered (ensuring reinforcement) that are almost meaningless

in their generality. For example in infants learning to speak, parents use a high

∗[Wu and Stringer, 2002] developed a chunking geentic algorithm based on similar observations.
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frequency of verbs that are almost empty semantically - which are the first verbs

learned by infants. It is widely accepted that the statistical shape of language is

such that a relatively small subset of words are highly frequent while the rest are

used at lower frequency and these words might have an important role in syntactic

development [Zipf, 1965].

A central component of contemporary immune systems understanding is the clonal

selection theory. This states that the immune system relies on the existence of recep-

tors that can bind preferentially to pathogens rather than self cells. In contradiction

the cognitive immune system viewpoint [Cohen, 2000] observes that 1) due to com-

mon ancestry there exists an essential similarity between cellular biology and ourselves

and 2) A necessary benign self-affinity is known to exist in healthy immune receptor

repertoires.

Based on the cognitive perspective, ’useful examples’ in the immune system are

expected to be; 1) Centrally important and therefore should not have changed much

though time, 2) to be common to both self and pathogens and 3) should be expressed

in times of stress. A possible candidate for such structures are housekeeping pro-

teins, which fulfill these criteria [Hershberg and Efroni, 2001]. These constitute an

’achieved set’ which describes generalities - a repertoire built to react degenerately

at a median leave of affinity to a few self antigens. This repertoire will not change

much. Then throughout lifetime, a refitting mechanism is used for refitting to spe-

cific encounters allowing for the deconstruction and reconstruction of the immune

’image’. The second non-self-reactive receptors evolve and adapt over time as the

immune system encounters antigens. As such this observes that the immune system

like any perceptual system uses the self as a background signal, which it ignores, while

reacting to changes that the background emphasizes [Hershberg et al., 2003].
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5.1.3 Artificial Immune Systems

The immune system at a teleological scale protects the host by distinguishing harmful

entities from non-harmful entities. This has inspired application to security models

such as network monitoring. Work on this line follows from Hofmeyrs important thesis

on the subject [Hofmeyr, 1999]. Other metaphors inspire work in other areas such as

scheduling and data clustering [Hart, 2002]. In the last few years, many artificial im-

mune systems (AIS) are emerging as the immune system’s information processing ca-

pabilities are becoming better understood within the EC community. This is perhaps

best seen in the last thee ICARIS gatherings. See for example [Nicosia et al., 2004]

The current work follows in the tradition of Artificial Immune Systems in recog-

nising properties such as feature detection, diversity maintenance and memory and

perception. Both Kim [Kim and Bentley, 2001] and as mentioned, [Hofmeyr, 1999],

exploit the security analogy in intrusion detection methods. Similar to the cur-

rent work, Hightower et. al. explore the use of gene libraries and complementary

matching in a genetic algorithm while contrasting potential and expressed genes

[Hightower et al., 1995]. Questions about efficient pathogen space coverage which

is equivalent to strategic sensor evolution in perceptual systems, have also been ad-

dressed [Hightower et al., 1995, Oprea, 1999] while [Oprea, 1999] puts some emphasis

on germline diversity. In a recent application to GP, [Hasegawa and Iba, 2004] ex-

ploit an antibody library to tackle multimodal problems. Artificial immune systems

seems well positioned to exploit this duality, which may well be one of the important

properties sought for competent GAs.

Of particular interest is work in [Hightower et al., 1995], which best supports our

motivations. The antibody analogy is used to model a lock and key mechanism. Bit
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strings are used to represent both the genotype libraries and the antibody molecules

of the phenotype [Hightower et al., 1995]. The number of bitwise complementary

matches are used as a measure of affinity between complementary structures. Fitness

of an individual (collection of gene segments) is determined by how well it recognizes

a set of antigens overall.

5.1.4 Dual Processes

Our work considers the perspective of the cognitive immune system

[Cohen, 2000, Hershberg and Efroni, 2001, Hershberg and Ninio, 2004]. The evolu-

tionary model is developed based on the immune system’s process of antibody pro-

duction. Antibody co-evolves with antigen to be retained subject to co-affinity. Affin-

ity depends on complementary shape and electrical charge matching. In the natural

immune system, an immune regulatory network subsequently emerges from a library

of fit antibodies as selected based on affinity.

In order to adaptively detect and integrate features or concepts, natural intelligent

systems seem to exploit distinct, simultaneous phases [Hershberg and Efroni, 2001].

These are referred to in this article simply as dual processes.

While the selection of antibodies and the emergence of an immune network can

be seen as two independent processes, this is an idealization; biological processes

can be broken down into many sub processes. It is well understood that biological

processes are spatially and structurally distributed without central control. How-

ever, it is important to consider, and distinguish, temporal distribution of processing.

[Butcher et al., 2001] gives a relevant example in the context of the immune system

where multistep navigation leads to combinatorial targeting. In this view, immune
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system cells need to make simple yes-no decisions at different states, gradually lead-

ing to the appropriate action. This can clearly be appreciated from an information

theoretic perspective.

[De Jong and Oates, 2002, De Jong, 2003], discuss the use of Evolutionary Multi-

Objective Optimization to make informed decisions about the suitability of features;

While this may be an effective method, considering biological principles we suggest

that a dual process evolutionary algorithm can operate distinct selection phases. The

first phase; a crude selection of general features the second, a simple or informed

recombination event that chooses from a library of general features.

In our abstract model, complementary structures can be evolved to match pheno-

type fragments and hence suggest features based on the binding. A library of these

features are maintained based on a number of criteria. A second process must inte-

grate these features. Emphasis is put on isolating the phases of feature detection and

feature recombination. These processes can be seen as a set of independent selection

phases.

5.2 Methods

The methods described below exploit rich representations in XMLGE. The XML

implementation allows a feature detection mechanism at a high level of representation.

Features as used in XMLGE are described in the following subsection. A method for

evolving antibodies which is more like somatic hypermutation than crossover is used

as well as a chaining operator for recombination of multiple features.
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5.2.1 Using Grammatical Evolution for Feature Detection

Representations and Anti-Representations

In XMLGE, XML-based genomes are mapped to XML-based phenotype tree struc-

tures or expression trees. XML Expression trees (X-Expressions) can encode infor-

mation captured during the mapping process. The result is a rich XML tree that

describes the phenotype including information from the grammar context and codon

that generated it. A reverse phenotype-genotype feedback may inform the genome

of the context it is used in. With a hint of the Lamarckian, this simply represents

both 1) regularities that would be implicitly expected as natural genomes and inter-

preters co-evolve and 2) the more dynamic and information-rich process of mapping

the natural phenotype.

Using XML-based rich representations a novel feature detection method can be

implemented. The XPath langauge is a powerful XML query language that can se-

lect nodesets on XML trees (in the current EA application termed X-Expressions).

Queries can be seen as phenotype structure complements. Using a translation gram-

mar, a mirror grammar can be generated from any primary grammar. This secondary

grammar is used to generate XPath queries that bind to the primary expressions.

Thus we explicitly recognize the importance of complementary structures which are

pervasive in biological systems and can be used to construct distributed perceptual

systems. While previous work [Hightower et al., 1995] used similar immune system

inspired ideas at a binary string level, grammars and antigrammars suggest an ap-

proach at a higher level of representation.

An algorithm that coevolves complementary structures may be important for

bootstrapping ’perceptual’ systems because the recognition process is inherently im-
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plicit. Features may be associative making recognition pleiotropic and redundant at

higher scales. We refer to this general principle as complement coevolution in em-

phasis of the use of the associative ’lock and key’ mechanism. However to avoid

ambiguity, we refer to this in the immune system context as as antibody coevolution.

Closer to ideas in EC, this type of distributed perception sees through the simple and

discrete fitness feedback and can preserve features of variable interest. This property

has already been noted by [Hightower et al., 1995] as discussed above yet here we can

deal with the issue at higher level of representation.

Generating XPath

The XPath queries are generated to mirror the primary phenotype structure. The

technique is expected to be domain-independent. A mapping grammar maps from

the primary grammar to an XPath grammar. While many mappings are possible and

may exploit variable features from the standard W3C XPath grammar [W3C, 2005d],

we use a rudimentary mapping given below. Note VALID-CONSTRAINT, VALID-

CHILD-FILTER and X are expanded according to the production choices in the

primary grammar. <NTF>, <TCF> and <TVC> denote non-terminal filter, terminal

constraint/filter and terminal value constraint respectively.

<NTF> ::=

<TYPE-NAME>

|<TYPE-NAME>[<VALID-CONSTRAINT>]*

|<TYPE-NAME> / <NTF>

|<NTF> / <NTF>

<TCF> ::=
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(<TCF> <BOOL> <TCF>)

|(not (<TCF>))

|<VALID-CHILD-FILTER>*

<TVC> ::=

<TYPE-NAME> [(<TVC> <BOOL><TVC>)]

|<TYPE-NAME> [not (<TVC>)]

|<TYPE-NAME> [text()= <X>* ]

XPath queries are generated from the grammar by mapping the genomes using

the standard Grammatical Evolution mapping. The fitness of an XPath query is the

average fitness of all phenotype structures it binds to. In theory, the fitter the XPath

library, the more accurately it detects useful features to be used for composition. A

population of 100 genomes is used in these experiments for the XPath population.

Using XML with Grammatical Evolution, a population of Expression tree phe-

notypes are co-evolved with XPath expressions. Expression trees are represented as

detailed XML trees with mapping details encoded on each node. Information is purely

local to the mapping event such as the grammar context used in the mapping or the

codon and its position that was used to produce a given part of the tree.

Evolved XPath queries will match non-terminal and terminal regions with variable

specificity using boolean filters. The example below shows an XPath query with

isotype regions. Isotype regions are chosen downstream from a random read point.

The term isotype comes from the natural antibody structure although the analogy is

not stressed. Here, the tail and leaf of an XPath lymphocyte regulates the context

and specificity of a feature. In the hypermutation based operators an emphasis can be

put on modularity and hierarchy where genome regions that encode loosely defined
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’isotype regions’ might be identified.

Figure 5.1: Example Lymphocyte

Features in Grammatical Evolution

Features are groups of alleles with tight linkage, which together contribute to some

phenotype function. Feature detection is the first of the processes in the dual process

model. Every cognitive system must have the physical means to selectively attend to

features. Antibodies for example match reciprocal antigen ligands through physical

and chemical affinity.

In XMLGE, features can be identified at the phenotype using XPath queries i.e.

regular expressions. XPath queries are used to select sub trees on X-Expressions. The

features themselves are genome sub sequences that were recorded on the phenotype

during the GE mapping event. Genome sub sequences are stripped from the pheno-

type when the XPath queries match phenotype X-Expressions. In the example below,

the XPath expression marked (1) will match the expression marked (2) because the

expression has an operator child with a ’+’ value and the expression does not have

a variable with a ’Y’ value; The codon sequences or context sequences can then be

stripped from the tree. In this study, sequences such as (1/2),(3/3),(2/4),(1/3) are

considered degenerate features or modules. This values which can be seen in the

expression below simply state that 1st of 2 (1/2) production rules were chosen. This

information is important because it captures the essence of the mod rule. An ar-

bitrary codon integer value can be used to satisfy that choice such that the codon
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value x mod two equals one. Thus, when ultimately used, these context sequences

are converted into appropriate (arbitrary) codon sequences.

(1)

/Expression[Operator[text()=’+’] and not(Variable[text()=’Y’])]

(2)

<Expression ref="123" fitness="12.89">

<Expression codon="240" context="1/2">

<Variable codon="12" context="3/3">X</Variable>

<Operator codon="126" context="2/4"/>+</Operator>

<Variable codon="79" context="1/3">1.0</Variable>

</Expression>

</Expression>

In this study, the GE mapping is exploited in the definition of features. The

first stage of selection is to identify stable sequences. Some context sequences will

simply not exist for a given grammar. This is analogous to the basic physical and

chemical laws of nature that make some compositions impossible. This hints at an

important theme; the use of available information in rich representations.† Stable

sequences are identified on stable phenotypes but are retrieved as context sequences

and then stored as degenerate codon sequences. Thus there are a number selection

and filtration events. Ultimately it is desirable to have a set of encapsulated features

yet allow exploration. As such adaptation should be achieved with the use of degen-

erate sequences that have ’proved’ themselves in historic contexts but are sensitive to

variation. From the discussion of grammars and antigrammars and the discussion of

†It is engineering practice to abstract as much as possible and allow the same abstraction to
work in all suitable contexts. This is limiting for adaptive system design. Here we suggest exploiting
information that is inherent to a given algorithm, in this case GE, in order to detect regularities.
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degenerate codon sequences, it becomes clear how XMLGE constructs a perceptual

system as a distributed library of degenerate complements. The memory of this system

i.e. the model of degenerate codon sequences is sampled to construct new individuals.

5.2.2 Immune System Model

The Binding Event

XPath queries are somewhat analogous to lymphocytes and will be referred to as

such.

In each generation, given a population of lymphocytes and a population of pri-

mary expressions, each lymphocytes will bind to each expression with a probability

factor used simply to provide a degree of binding uncertainty (in these experiments

this is 0.7). Lymphocytes traverse the tree depth first with the same probability of

binding at each site. If another lymphocyte has already bound to a site, lymphocytes

will compete for the site. In the current implementation the winner is randomly cho-

sen. However there are other possible strategies such as shortest query wins or most

bindings wins. The product of the binding event is what is referred to as an antibody

secretion and is stored in a library of sequences.

This library records sequences, grouped by common grammar context sequences

or production sequences. A production sequence is different to a codon sequence.

As explained in chapter 2, when the genome is mapped sequentially, the grammar

context evolves. Two codon sequences such as 21,19,13 and 21,11,38 may have the

same phenotype impact. Given production rules choices from the grammar, the mod

rule in both cases will, for example, chose the first of five choices, followed by the

first of two, followed by the second of four. There can be any number of instances
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for a given production sequence grouped together. These instances are grouped and

stored with details from the mapping event. Note that in GE, the ability to map

many codon sequences to the same phenotype provides a degree of neutrality at the

syntactic level. The sequences retain information about positional context, the host

they come from, the fitness of the host they came from, the grammar context they

were used in and the XPath query that ’found’ them.

During the binding, in addition to preserving sequences, the lymphocyte’s details

will be updated with the fitness of the Expression tree it bound to and its bind-

ing count will be incremented. The average fitness of hosts a lymphocyte binds to

determines its own fitness.

Figure 5.2: Binding Analogy
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Evolving Antibodies

In the natural immune system Lymphocytes or B cells contain Y-shaped receptor

i.e. antibodies. The filtering effect of an XPath query is achieved using receptors,

which are regular expression constraints. Yet the combined effect of the entire query

in addition to the context or the ’side effects’ from the binding event are more gen-

erally attributed to these artificial lymphocytes. The analogy is carried further in

the evolution of antibodies. In a somatic hypermutation based algorithm described

below, antibody regions along the XPath query (artificial lymphocyte) can evolve to

best match the pathogen samples.

All XPath queries are mapped from the genome using Grammatical Evolution.

Two search strategies have been used. The first is the the simple genetic algorithm

and needs no explanation. The second method is based loosely on the immune system.

Only a small number (approx 10-15%) of XPath queries bind successfully in each

generation. These are given exclusive propagation rights (survival and ability to

reproduce) although there is a small probability called a survival factor that an un-

successful XPath query will propagate.

Using feedback from the genotype-phenotype mapping event, genomes are encoded

with the grammar production they are used for. This information is used to identify

regions of the XPath. The more specific regions are referred to as isotypes. Isotypes

are defined and selected as follows. Each grammar symbol in the XPath grammar

has a code that associates it with a particular function on the primary genome.

For example, a set of XPath symbols that filter a symbolic regression expression

will have one code, whereas any XPath symbol that filters an operator will have

another. Isotypes are selected by picking a random position on the genome and
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looking downstream for the next region as specified by these codes.

Using this type of information, mutation rates can vary at the isotype region on

the genome or isotype regions on the genomes can be swapped (isotype switching).

When isotypes are swapped, they are selected randomly from the pool of all matching

isotypes. Each time an XPath is used in reproduction, one of the following operators

is used; 1) low mutation (0.1) across the genome, 2) high mutation (0.3) at isotype

regions 3) Isotype switching, taking the isotype from the pool of isotypes on all

antibodies 4) Isotype switching with (0.3) mutation at that region. The purpose

of these operators are to promote diversity and improve hierarchical composition

through isotype regions. Using phenotype-genotype feedback to bias operators in

GE is a topic for further research made particularly interesting in light of degenerate

coding in Grammatical Evolution.

Recombination

The previous section described evolution of XPath. XPath queries are used to produce

a library of sequences through the binding event. These sequences are available to po-

tential operators when regenerating the primary population. The simplest method is

to use a one-point crossover. Two sequences are chosen from the library through tour-

nament selection and joined. Intuitively, this will only work with particular problems

unless the library has managed to incrementally detect higher-order features.

The second method, called chaining, allows any number of features to be added

to the solution thus overcoming the ’two feature limitation’. This operator is based

on the integration of multiple antibodies or similarly the formation and folding of

a polypeptide chain. A number of sequences are chosen from the library randomly.

These are layered according to their fitness onto a stack of variable length sequences
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with higher sequences overwriting lower sequences. As sequences are of variable

length, sequences may be totally overwritten or partially overwritten. Positional

information is used to chose where to add the new sequences to the stack. There

is a probability (0.1) of shifting the position once to the left or right and a smaller

probability (0.01) of picking a random position. A number of features (in these

experiments, 8) are stacked in this way.

Figure 5.3: The fittest fragments are in the higher layers and will mask lower layers
in that region when the genome is expressed.

Two observations should be made. Firstly, sequences are chosen randomly from

the library for chaining. It might seem more reasonable to use, for example, tour-

nament selection. However, we aim to promote diversity in choosing sequences for

recombination. The layering method can still expresses fitter sequences by adding

them at higher layers. The second point is about measuring sequence fitness. A

number of direct options exist. Recall that sequence instances are grouped by having

a common ’production sequence’. These sequences will have a range of fitness values.

A sequence could be measured by its best fitness, average fitness or perhaps the en-

tropy of its fitness distribution. Fitness might further be affected by affinity distances

between other sequences involved in the chaining event. The many possibilities are

beyond the scope of the current study. Best fitness is used with hesitancy. The reason

for this hesitancy comes from [De Jong and Oates, 2002, De Jong, 2003] observation
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that evaluating modules on single criteria can be inaccurate. However motivations

link back to the end of section three as we operate a two phase selection process. Thus

we return to the first observation just mentioned; by randomly picking modules from

the sequence library, which is a small subset of all possible sequences in the search

space, it is possible to build many variations during the second chaining event.

5.3 Experiments and Results

The purpose of these experiments is to determine if antibody coevolution is a feasible

module detection mechanism. These experiments require the modular algorithms to

build solutions from features detected by the feature detectors. A number of variants

of the model have been tested on standard GP problems, specifically, two Symbolic

Regression functions and a Multiplexer problem.

Parameters are shown in Tables 5.1 and 5.2. The immune system models uses a

number of specific parameters (Table 5.2) explained in the previous section.

The first dimension of variation is with respect to the evolutionary algorithm. Note

we refer to genotypes or phenotypes for the problem itself as the primary population

and genotypes or phenotypes for XPath as the secondary population. We investigate

a standard GA approach (S) to evolving the secondary population and a method

modeled on the immune system (I). Two means of recombination within the first

population are tested. One is a one-point crossover-like model(X) for exchanging

identified features and the other is the chaining method (C) which layers a number of

identified features using contextual information. There are therefore, four variations

in coevolution, namely SX, SC, IX and IC.
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Property Primary XPath
Generations 31 -
Tournament Size 3 3
Wrap Threshold 3 3
Population 300 100
Elitism 0.1 0.2
Mutation 0.1 0.1
Crossover 0.7 0.7
Binding Rate 0.7 0.7

Table 5.1: Parameters for both primary and XPath population evolution.

Property Value Property Value
Binding Rate 0.7 Chain Position Shift 0.1
General Mut. 0.1 Chain Position Mut 0.01
Isotype Mut. 0.3 Survival Factor 0.02

Table 5.2: Parameters particular to Immune System

Symbolic Regression

Two symbolic regression functions are tested, each over 30 runs with test cases drawn

from the range [0,1]. The first function is quartic symbolic regression and the other

is taken from [Keijzer, 2003]. Linear scaling is used following [Keijzer, 2003].

f(x) = x4 + x3 + x2 + x1 (5.1)

f(x,y,z) =
30xz

(x− 10)y2
(5.2)

The grammar in section is used in both cases.

<expr> ::= <expr><op><expr>

| <var>

<op> ::= + | - | * | /

<var> ::= x | y | z | 1.0 | 2.0
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Model Avg Pop.(S.Dev) Avg Best(S.Dev) Success(Gen)
Crossover 28.6(1.1) 0.07(0.2) 28(579)
SX 28.4(0.4) 0.5(0.8) 19(399)
IX 34.0(1.6) 5.2(5.4) 6(79)
SC 35.9(0.8) 1.6(3.5) 19(353)
IC 33.1(0.9) 0.04(0.2) 28(603)

Table 5.3: Results for quartic symbolic regression i.e. function 1. From 30 runs,
average population fitness and average best fitness are shown with standard deviation
in brackets. Successful runs are shown with successful generations in brackets. This
indicates how quickly solutions are found.

Model Av.Pop.(S.Dev) Av.Best(S.Dev) Hits(Gen) at 15,12,10
Crossover 79(2.0) 8.3(1.7) 8(183), 5(111), 1(23)
SX 81(1.8) 10.8(3.0) 2(62), 1(31), 0
IX 67(4.2) 10(2.7)) 3(29), 1(3), 0
SC 76.8(1.9) 10.7(3.2) 3(49), 2(40), 1(14)
IC 79.1(0.5) 8.6(2.8) 6(186), 6(186), 6(186)

Table 5.4: Results for symbolic regression function 2. Probably due to the use of
constants, no algorithm found the perfect solution using the given grammar. Hits for
less than 15,12 and 10 are shown.

Results in Tables 5.3 and 5.4 show negligible differences between the crossover and

IC model. However the intermediate models SX, IX and SC suggest contributions

from aspects of the IC algorithm.We used hits less than scores 15,12,10 as a means

to exaggerate the difference between these algorithms on function 2.

While it is difficult to reduce the algorithms completely, the results suggest that

there is little difference between crossover recombination (X) and chaining (C) when

the standard method S is used to evolve lymphocytes. However when the hypermuta-

tion based method (I) is used to evolve lymphocytes, the chaining method can exploit

it in IC while the crossover based recombination methods cannot (IX). Graphs (Fig-

ures 5.4 and 5.5) of average best and average population fitness for both functions

show the IC algorithm to converge slowly.
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Figure 5.4: Symbolic Regression Best Fitness and Average Fitness over 30 samples
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Figure 5.5: Function 2 Average Fitness over 30 samples
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Model Avg Pop.(S.Dev) Avg Best(S.Dev) Success(Gen)
Crossover 28.5(1.4) 9.7(1.8) 1(28)
SX 31.1(1.2) 9.7(3.1) 2(51)
IX 28.7(1.3) 9.7(1.8) 4(70)
SC 31.2(1.2) 9.7(3.1) 0
IC 27.9(1.6) 8.1(4.0) 6(116)

Table 5.5: Results for 3-Multiplexer

3-Multiplexer

The multiplier problem requires discovery of a boolean expression that behaves as

a three multiplexer. 8 fitness cases are used to represent all possible input-output

pairs, where fitness is the number of the correct output cases. The grammar is shown

below.

<bexp> ::= <bexp><bop><bexpr>

| <uop> (<bexp>)

| input

<bop> ::= and | or

<uop> ::= not

<input> ::= input1|input2|input3

Results in Table 5.5 show IC to be effective on this problem, while the SC model

which also used chaining performed badly. The IX model was the next best model

to IC. The suggestion is that the hypermutation algorithm maintains diversity better

than the standard crossover model and that these diverse features can be exploited

by the chaining operator. However the differences between IX and IC are not so

significant that the chaining operator can ne considered superior. Graphs (Figure

5.6) show the IC algorithm to be better on average in terms of best fitness.
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Figure 5.6: Multiplexer Best Fitness and Average Fitness over 30 samples
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A note about the Multiplexer problem is required. Multiplexer is an easy GP

problem. However the crossover operator only solved the problem once. This was

alarming. We ran the algorithm for the standard length with standard populations

size and found it to be considerably more effective, finding the solution in almost all

cases. Fortuitously, this has led to an interesting observation. Multiplexer fitness

is based on the number of successful outputs over 8 fitness cases. Fitness cases

can range from 1 to 8. At the start of the run, many solutions get between 2 and

4 successful output. By the middle of the run, many solutions find all but one.

However, there is nothing to differentiate between different solutions. While it is

easy to find a 3 multiplexer, as a GP problem it is still ’deceptive’. This might be

seen as the problem of having different, equally fit lineages each solving parts of the

problem [Gustafson, 2004]. By using a library of features in recombination, antibody

coevolution seems to be more effective on this problem under the given constraints.

5.3.1 Quartic symbolic regression with small populations

Having shown the performance of the different algorithms on a range of problems, we

considered the issue of population sizes using the quartic symbolic regression problem.

Quartic symbolic regression was repeated, this time with a population of size 50.

Results are shown in Table 5.6. Success rates scaled down uniformly giving little

indication as to the differences in the models.

Following this, the XPath population was increased from 100 to 300, which is

equal to the size of the initial primary population. IC scored 11(191) hits which was

almost twice as good as any previous run‡. When the XPath population was increased

‡This is interesting when considering the evolution of simulations or other resource intensive
evaluations. Is it possible to attach a second, evolving process to adaptively model and improve an
expensive primary evolutionary process?
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Model Avg Pop.(S.Dev) Avg Best(S.Dev) Success(Gen)
Crossover 34.5(2.3) 15.7(7.7) 5(102)
SX 34.8(2.3) 17.5(8.4) 2(32)
IX 34.2(2.0) 14.2(7.3) 1(4)
SC 33.1(2.2) 7.9(8.7) 4(78)
IC 36.2(1.9) 15.7(10.7) 6(79)

Table 5.6: Function 1 with primary population size at 50.

Model SX (100) SX (300) IC(100) IC(300)
Multiplexer 2(51) 1(18) 6(116) 13(238)
Quartic SR 19(399) 20(428) 28(603) 20(402)

Table 5.7: Results with both populations set to 300 compared to results with xpath
populations set to 100 (italics)

to 500, IC only managed to achieve 4(90) hits. This is less than the result achieved

with an XPath population of 100. While the differences between these are small, the

difference between IC with XPath population of 500 and IC with XPath population

of 300 is quite big i.e 4(90) against 11(191).

Following this result, quartic symbolic regression and multiplexer where evaluated

with both populations at 300 for models SX and IC as summarized in table 5.7.

The SX model changes slightly in both cases. For the quartic symbolic regres-

sion problem, the improvement is from 19(399) to 20(428) while on the multiplexer

problem there is slight degradation from 2(51) to 1(18), which in both cases is trivial.

The IC model improves on the multiplexer from 6(116) to 13(238) yet degrades on

the quartic symbolic regression case from 28(603) to 20(402). Later when XPath was

set to 500, IC scored 4(90).

These results suggest that when there is deception or over-representation of differ-

ent, equally fit lineages, complement coevolution can exploit large XPath populations

to improve search space modeling. However, there is an upper limit in increasing
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XPath population size probably due to competition at binding sites leading to inap-

propriate distribution of XPath survival. We suspect that this upper limit will be

higher in deceptive problems (or in general problems that do not quickly converge).

This may be because a larger number of diverse XPath queries can be sustained

through the binding events that are crucial for their survival. Future work will ana-

lyze the behavior of the XPath population under different conditions.

5.4 Discussion and Conclusions

We have introduced the concept of antibody co-evolution at a high level of represen-

tation using grammars. Associative templates (complements) are evolved to mirror

primary structures and act as adaptive feature detectors. This method exploits a

genotype-phenotype mapping to filter the possible genome sub sequences through

phenotypic significance. It achieves further adaptability as features, identified at the

phenotype via antibodies, are ultimately represented as genome subsequences. These

sequences are degenerate in GE and not tied to reproducing the same phenotype as

can be the case with ADFs for example. There is naturally a tradeoff between the in-

formation loss and the diversity gain. However work such as [Wu and De Jong, 1999]

suggests that this type of degeneracy is more beneficial than not.

The results are interesting. The IC algorithm performed as well or better than

standard crossover on the tested problems. The effect of increasing XPath popula-

tion sizes seems to have a positive effect on performance to a limit in certain cases

and may be useful for evolution of resource-intensive problems. The differences be-

tween the various models suggest contributions from isolated processes in the general

model. Further work will determine how the individual processes can be improved
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through either parameter choices or alternative representations (e.g. XPath mapping

grammars). Future research will also explore dual process evolutionary algorithms as

evolving networks of adaptive low-level features. Particular attention will be paid to

the correlations between problem characteristics and performance fluctuations when

comparing standard genetic algorithms to these models.

At one level, we demonstrate an analogy with cognitive or perceptual systems.

Such systems have selective interest, selecting environment micro features of interest.

These are used to construct a reality or global perception. Through this analogy

we suggest the importance of dual processes. Unlike other evolutionary algorithms

which consider a single process of optimization, we suggest that two processes should

be distinguished. This mechanism overlaps existing ideas in the literature. On the

one hand, the importance of modularization for certain problems and on the other

hand the importance of memory for maintaining mutually exclusive features.

The perceptual system is distributed in the sense that a library of feature detec-

tors or antibodies are maintained. Collectively, these antibodies mirror aspects of the

pathogen i.e. the problem. These antibodies can be evolved using grammars that

are themselves reciprocal structures of primary grammars, which makes the general

approach domain neutral. This method is believed important in bootstrapping per-

ceptual systems in a bottom-up fashion. The use of antibodies or more generally,

complements, in evolutionary algorithms can be used as adaptive module detectors

while a library of antibodies can sustain a library of features or genes which are their

complements.

The evolution of antibodies which mirror phenotype structures has been made

possible through the use of rich representations. A number of information-based

filtration phases result in meaningful degenerate codon sequences. Grammar contexts
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and other details are stored on phenotypes and constitute and implicit relationships

with the genotype. Such methods suggest approaches to performing ’local search’

within genetic material without making problem-specific assumptions.

The next chapter explores another method for exploiting rich representations in

the GE mapping.





Chapter 6

Codon Compression and Delayed

Expression

[Agnes] wondered what kind of existence the computer had programmed

for life after death. Two possibilities came to mind. If the computer’s field

of activity is limited to our planet, and if our fate depends on it alone,

then we cannot count on anything after death except some permutation of

what we have already experienced in life... At best, existence after death

would resemble the interlude she was no experiencing while reclining in a

deck chair: from all sides she would hear the continuous babble of female

voices.

- Milan Kundera ’ Immortality’

129
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6.1 Introduction

It is becoming clear that artificial genomes used in genetic algorithms may not be

best appreciated as literal strings, read in a linear fashion. It becomes extremely

difficult for an evolutionary algorithm to present a perfect string as problems become

large and complex. Work in evolutionary algorithms such as artificial embryoge-

nies [Bentley and Kumar, 1999] and gene expression based methods [Kuo et al., 2004]

have begun to address this issue by using developmental processes and combinatorial

gene expression.

In a more generic perspective we consider the genome interpreter as an anticipa-

tory system which discovers regularities in a noisy genome environment. An antici-

patory system can be considered as a system containing a predictive model of itself

and/or its environment, which allows it to change state at an instant in accord with

the model’s prediction pertaining to a later instant [Rosen, 1985]. This is a useful

way to think about innovation in evolutionary algorithms yet requires the use of rich

environments to enable information-centric rather than purely algorithmic-centric

investigations.

The work presented in this section makes two contributions. 1) It presents a new

and effective genetic mechanism while 2) asking questions about the information con-

tent in the artificial genome. We consider a method that compresses information in a

single genome which may lead to more adaptive algorithms. A second feature of the

algorithm is referred to as delayed expression and will be explained.
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Algorithmic Information Content

We consider the Algorithmic Information Content of a string, which is defined as

the length of the shortest program needed to generate that string [Kolmogorov, 1965,

Chaitin, 1990]. We ask; what is the shortest string that is needed to map to promis-

ing regions of phenotypic space with high probability given many potential genome

encodings? This could be evaluated as the probability that a genome will yield a

good phenotype following a random perturbation. This could in turn suggest that

the regularities that define the search space are encoded and possibly compressed in

the genome in that it facilitates a mapping that is adaptive to perturbations. Note

as we discuss an encoding, the mapping process that interprets it is implied.

In a simple direct mapping in Grammatical Evolution, how much information

does a single genome contain? To add information to the encoding one could add

complexity to either the mapping or to the environment. More complex mappings

in evolutionary algorithms such as those evaluated in [Ebner et al., 2001] use al-

leles in complex ways and appear to contribute towards evolvability. Other ap-

proaches enrich the environment and the mapping for example in artificial embryo-

genies [Bentley, 2004b, Federici and Roggen, 2004]. This study considers exploiting

trivial information inherent to the genome and the mapping.

Gell-Mann’s perspective on the matter of complexity attempts to account for

how complex adaptive systems learn to anticipate in a world that exhibits regular-

ities as well as random deviations from those regularities. Gell-Mann defines ef-

fective complexity as complexity inherent in patterned regularities. Effective com-

plexity is characterized mathematically in terms of an algorithmic information mea-

sure that measures the extent to which regularities can be compressed into a mini-
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mal representation or schema. Gell-Mann also characterizes the effects of random-

ness mathematically in terms of a Shannon information measure [Shannon, 1948]

that measures the extent to which random deviations depart from the patterned

regularities in question. He then defines total information as the effective com-

plexity in addition to the complexity inherent in the effects of such randomness

[Gell-Mann and Lloyd, 1996, Gell-Mann and Lloyd, 2004].

Christoph Adami and co-workers consider biological complexity in the context of

the genome [Adami, 2003, Adami et al., 2000] and ask what information a genome

stores about the environment. However Adami acknowledges that lack of agree-

ment on what is ’complexity’ while defining physical complexity which he suggests

corresponds exactly to what biologists feel is increasing when biological systems self-

organize. The physical complexity of a sequence (such as a genome) is the amount

of information which is stored about an environment. Entropy can be seen as the

potential states a system could have and Adami equates sequence entropy to length.

Adami suggests that adaptation (evolution) is filling empty slots along the length of a

sequence with information (which reduces uncertainty at that position) thus increas-

ing complexity. Information is revealed as symbols that are conserved (fixed) under

mutational pressure - if a mutation which is beneficial (fits the environment) occurs

then the amount of information (and hence complexity) has increased. A beneficial

mutation that is lost before fixation does not decrease information. In short, Adami

views natural selection as a filter or semipermeable membrane that allows information

to flow into the genome but not out. He compares this to Maxwell’s demon ∗. These

questions about complexity have influenced developmental evolutionary algorithms

∗Maxwell’s demon is the elusive creature that disobeys the second law of thermodynamics by
selectively allowing particles to move in certain directions.
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[Lehre and Haddow, 2003].

6.2 Algorithm Description

Two parents are selected for crossover. Rather than splice and merge as in traditional

crossover, a function is applied along the genome. Where possible, a number that will

satisfy both parents’ production rules choices is chosen as the new codon, allowing

the child to satisfy both parent genomes at that allele. In the case where both parents

can not be satisfied, the information from both parents can be stored. When it is

possible to satisfy both parents we will call this codon compression. When it is not

possible, we will call this codon divergence.

In a rich-representation-based approach, feedback is applied from the genotype-

phenotype mapping. After evaluation, in addition to having a fitness value recorded

on the genome, the grammar context at each codon is recorded. This allows a genetic

operator to exploit information about the grammar in order to choose codon values.

Specifically, rather than use codons in recombination, the grammar contexts may be

used directly in a manner as described below.

A simple function is used to choose the new codon value. Recall that using the

mod rule, ’codon value’ modulus ’grammar choices’ gives the grammar choice to used

in production. If the codon value was 10 and there were 6 choices, 39 mod 6 would

give 3, and so the grammar choice at index 3 would be used in phenotype production.

Hence, consider the case where one parent chooses rule ’3 of 6’ at the first allele.

Assume on the corresponding allele in the second parent the genome value is 46 and

the number of choices is 4 causing the second codon value to be chosen in the given

context. Thus, given X modulus 6 = 3 and X modulus 4 = 2, X could be compressed
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to become 15. Clearly, there may not be such a real number in all cases but where

there is, the codon is said to be compressed as both parents are satisfied. This can

be computed for any order. Order is the number of generations of alleles remembered

and compressed. Order-1 satisfies only the parents as just shown. Order-2 satisfies

the parents and the grandparents. And so on.

When a genome encoded in this way is to be expressed, there may be more than

one possible expression path. For example consider the following sequence ’34|210’,

’12|51’, ’47’. The numbers separated by ’|’ denote a divergent codon. This could

be called diploid in that both parents’ alleles are represented. An isolated number

such as ’47’ has either been compressed or mutated. Note a mutation event will have

chosen a random value for that position while a compressed codon will have found

one codon value that satisfies both parent’s intentions. The genome can be visualized

as columns of lineages and rows of codons. The cursor sits above a given column and

may be incremented at random moments to explore different columns. The maximum

number of columns in these experiments is 5.

A cursor can be used and incremented (and wrapped) by some value with a small

probability. This probability of increment is given by the Cursor rate parameter and

the jump value is given as the Cursor Jump parameter in Table 6.1.† Using a small

cursor increment probability means that as gene expression takes place row by row,

linked codons are likely to be expressed together. Because each genome stores a

number of genome columns (e.g. the genetic material for both parents and a couple

of the grandparents), more information is retained. The ’compound’ genome can

be read a number of times reusing variable genetic material over a number of gene

†A number of trial runs were used to determine these parameters. Jump values of 1,2 and 3 were
used. The suitability of these values may depend on the number of columns used which in this case
is 5.
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Figure 6.1: The Genome and read cursor. The cursor moves along the columns and is
normalized to the number of columns in the particular row. Columns correspond to
entire chromosomes from parents while rows are allele positions. In this illustration
the later rows are divergent with row five retaining all genetic material. Earlier rows
have been compressed or mutated. This is a realistic outcome.

expression events. we refer to this as delayed expression. This preserves ancestral

features despite not always being able to express them.

Encoding Mapping Details on the Genome

We evaluate two methods for encoding grammar contexts on the genome which

are used in the algorithm. These values are encoded on the nth generation while

compression-divergence occurs at generation n + 1.

The first method is an accurate and intuitive feedback mechanism. Recall that

the genome may have divergent alleles and depending on the read cursor, there are

a number of possible expression paths. The feedback mechanism records the actual

grammar context used on the derivation tree (i.e. X-Expression). Feedback allows

the genome to be informed as to how it was actually used in a given mapping event.
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A read ahead method ignores the expression path and ignores divergent codons.

It records grammar contexts for all alleles that are compressed by reading along the

genome before the mapping event. This involves reading a genome’s values as though

a regular GE mapping (as opposed to Codon Compression Delayed Expression) is

actually taking place. If there are divergent codons, GE can not use the allele posi-

tion. Otherwise, GE will use the codon value in choosing a grammar production. If

a grammar context is not recorded, a grammar context may be already recorded at

the given allele from a previous read ahead event. The method is called ’read ahead’

because prior to the actual mapping event, this approximation of the genome’s inter-

pretation is recorded. In Figure 6.1, the alleles at positions 3, 4 and 6 will not have

a grammar context stored because codons are divergent at that position.

Figure 6.2: Read ahead method for storing grammar contexts. Grammar context
values such as 1 of 4 (1/4) are chosen based on an evolving grammar context.

The grammar context values shown in Figure 6.2 will be used in favor of codon

values in a subsequent recombination event to generate new codon values for the

alleles.

Using parameters given in Table 6.1, when we evaluated each method on symbolic

regression, read ahead performed significantly better. This may not be the case for

other problems. However this paper concentrates on read ahead grammar encoding.
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Property Value Property Value
Samples 30 Cursor Rate 0.1
Genome Length 30 Cursor Jump 3
Generations 50 Crossover 0.7
Tournament Size 3 Mutation 0.1
Wrap Threshold 3 Elitism 0.1
Population 50 Max Columns 5

Table 6.1: Parameters.

Model Sample Hits Generation Hits
Read Ahead 20 61
Feedback 9 85
Crossover 5 102

Table 6.2: Hits comparison of read ahead and feedback grammar context encoding
against standard crossover algorithm on symbolic regression. The generation hits are
lower for the compression algorithm in both Read Ahead and Feedback cases than
for crossover. This is due to the non-deterministic mapping.

6.3 Experiment Results

For these experiments we use small population sizes. We consider this a more suitable

measure when comparing algorithms. Evolutionary algorithms can rely quite heavily

on large populations depending on the problem. For example, on the 3-Multiplexer

problem we observed a significant performance difference between runs using 300

individual over 31 generations as opposed to 500 individuals over 51 generations.

However on symbolic regression, performances scale down uniformly with population

sizes. We are interested in an algorithms ability to evolve a solution and as such try

to restrict the influence of many random samples. Parameters for all problems are

shown in Table 6.1.

For all fixed length experiments, genomes are fixed at 30 integer codons. The

cursor in the new model is incremented at a fixed rate, and by a fixed rate. These

rates are shown in Table 6.1.
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Fixed Model Crossover CA Comp. Diverg.
Quartic 4 20 300 750
Multiplexer 1 4 160 900

Table 6.3: Total Hit results for fixed crossover and fixed compression based algorithm
(CA) on both problems. Approximate compression and divergence rates over all
generations are shown.

Variable Model Crossover CA
Quartic 4 6
Multiplexer 2 7

Table 6.4: Results (Hits) for variable length comparisons show a slight improvement
over variable length crossover using variable length compression. Variable length
compression is similar to variable length crossover except compression is used when
adding a segment to the recipient genome. This does not perform as well as the
fixed case (shown in Table 6.3) on symbolic regression but performs slightly better
on multiplexer.

Quartic Symbolic Regression

Results for quartic symbolic regression are shown in Figure 6.3 The following grammar

is used.

<expr> ::= <expr><op><expr>

| <var>

<op> ::= + | - | * | /

<var> ::= x | y | z | 1.0 | 2.0

The fixed length compression algorithm and to a lesser extent the variable length

compression algorithm are seen to oscillate on average despite the use of elitism. These

algorithms use a number of genome columns which can be read in random orders. This

means that genomes can have variable fitness over a number of ’expression events’. In

these algorithms the best fitness can for example be found in generation 12, then lost

and recovered in generation 24. This explains the average fitness readings. However it
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Figure 6.3: Population best fitness plots for Compression Experiments on Quartic
Symbolic Regression

is interesting that on average the fitness does improve until about generation 15 and

then levels out. A similar pattern is seen for the multiplexer problem. This suggests

that the complexity of these genomes is increasing in that they become less likely to

depart from fitter regions of the search space.

3-Multiplexer

The fixed length compression algorithm performs better on average in the multiplexer

problem. This can be seen in Figure 6.4. The grammar is given below.

<bexp> ::= <bexp><bop><bexpr>

| <uop> (<bexp>)

| input

<bop> ::= and | or

<uop> ::= not

<input> ::= input1|input2|input3
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Figure 6.4: Population best fitness plots for Multiplexer Compression Experiments.

Figure 6.5 shows compression-divergence ratios for both problems. The compression

and divergence plots show consistency in the population-wide rates.

6.4 Discussion

One aspect of complexity is the amount of information that is compressed in an en-

tity. This is to say, that the proportion between how many variants there might

have been and the state(s) the system finds itself in is significant. We have not

addressed complexity measurement explicitly in this study. Measures such as Kol-

mogorov complexity have been used in consideration of genotype/phenotype com-

plexity [Lehre and Haddow, 2003] while a measure of physical complexity has also

beng developed and used for this purpose [Adami, 2003]. Yet we relate our use of

codon compression to this issue and hypothesize that a useful relationship between

such measures and codon compression might be found in future work. Intuitively,

evolution proceeds by reducing uncertainty thus adding information.
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Figure 6.5: Compression Ratios for Symbolic Regression and Multiplexer. Average
population compression rates peak and then gradually level out while divergence rates
mirror them. This is the same for both problems. The intensity of the variation seems
to increase for more successful applications.

The algorithm uses codon compression and delayed expression. Codon compres-

sion gradually crystallized alleles sequentially while divergent codons can explore.

Codon compression is a type of ’incremental commitment’ mechanism. We suggest

that the compression of codons which both parents ’agree on’ is, in effect, gradually

forming building blocks. Pollack and Watson suggest that one of the earliest compe-

tent GAs, the messyGA has many unique features and it is difficult to suggest the

contribution of these. However they argue that the feature that most distinguished

it is partial commitment where individuals commit to specifying only a subset of the

entire gene set [Watson and Pollack, 1999].

Delayed expression can preserve genetic material that may not have had the op-

portunity to prove itself and thus guarantee its survival. While we mentioned in

the last chapter that many competent GAs work via dual processes, the LLGA
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[Harik and Goldberg, 1997] is said to overcome the mixing problem through prob-

abilistic expression. This delays allele convergence while linkages can be learned

[Goldberg, 2002].

It seems as though the problem of preserving good genetic material is more of a

concern than the problem of building block disruption as is often discussed. Studies

on degenerate floating representations in genetic algorithms showed interesting results

for abstract problems and on symbolic regression [Wu and De Jong, 1999]. The aver-

age population fitness increased faster and leveled off at higher values using floating

representations while diversity was also higher. Interestingly while 60% of building

blocks survived from one generation to the next, 97% of those that did not survive,

did not survive due to not being selected - while only 3% did not survive due to

disruption. Indirect or non-deterministic mappings such as delayed expression aim to

preserve genetic material while it is not always expressed.

6.5 Chapter Conclusions

Codon compression rates are correlated with search progress. The trend in the com-

pression algorithms success seems to correlate with the trend in GE’s success and

problems that are difficult for the compression algorithm are also difficult for GE.

This suggests that the compression algorithm may be simply exaggerating what GE

is already doing. The algorithm in its fixed-length and variable-length modes is

compared to fixed and variable length standard crossover. We report performance

improvement on a multiplexer problem and significant improvement on symbolic re-

gression problems. Interestingly, high compression rates appear to correlate with
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success on these problems. Results seem to indicate that search proceeds through

gradually compressing genome segments. For the moment we do not say which of

the features codon compression or delayed expression is most important. Future work

will perturb various parameters to determine feature contribution.





Chapter 7

Conclusions

... But there is a second possibility: beyond our planet’s computer there

may be others that are its superiors. Then, indeed, existence will not need

to resemble our past life and a person can die with a vague and justified

hope.

- Milan Kundera ’ Immortality’

7.1 Lessons and Future Work

The work is based on Grammatical Evolution [O’Neill and Ryan, 2003], which was

described in chapter 2. Grammatical evolution exploits a grammar-based genotype-

phenotype mapping to evolve programs in arbitrary languages. Inherent properties

such as degeneracy and intrinsic polymorphism add robustness to the evolutionary

procedure while recent applications of grammars using GE consider modularity and

coevolution of genetic codes.

145
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In chapter 3, a wider scope encompassed ideas in evolutionary algorithms that are

relevant to the theme of genome interpretation. Methods for representing genome in-

formation such as floating representations [D. E. Goldberg and Korb, 1989, Wu and Lindsay, 1996]

were reviewed. Some of these methods led to representations that composed fragments

or templates of genetic material from a dynamic model [D. E. Goldberg and Korb, 1989,

Wu and Stringer, 2002]. Other model building methods use probabilistic model build-

ing. These models are sampled to choose allele values in generating new genomes.

In addition to emphasis on evolving a genome which is then mapped to a pheno-

type, the mapping process itself has been another point of research [Banzhaf, 1994,

O’Neill and Ryan, 2003, Lones, 2004]. Gene expression methods have been devel-

oped using both ballistic mappings and indirect mappings. It is expected that

combinatorial gene expression methods will have an important impact in the fu-

ture [Kuo et al., 2004]. Other gene expression-like methods use explicit developmen-

tal processes. These are known as artificial embryogenies or artificial ontogenies

[Bentley and Kumar, 1999].

In chapter 4 we presented the XMLGE framework. This is a novel XML applica-

tion of Grammatical Evolution with a number of unique properties. XML based tools

such as XSLT and XPath are used in XMLGE to generate, manipulate and analyze

genetic material. This framework builds on GE to allow evolutionary algorithms to

be studied at a high level of representation with implied semantics.

The use of a rich genotype-phenotype map was explored in chapters 5 and 6.

We discussed the immune system. Artificial immune systems [Hofmeyr, 1999] are

a class of evolutionary algorithms that among a number of emerging properties of

interest, may use an antibody library. We took the perspective of the cognitive

immune system emphasizing the ability to perceive and remember features while
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generating new information. An implementation of an artificial immune system which

can be seen more generally as a dual process evolutionary algorithms exploited a high

level representation and used information from the mapping event. The compression

algorithm in chapter 6 also used this information in a novel recombination mechanism.

In both cases, the adoption for rich representations led to improvements over GE in

many cases and was shown to perform as well in all cases.

General Interpretation

The genome is like a word puzzle, with many features waiting to be found. As

evolution proceeds even in the simple GA, above average sequences are propagated.

However, these are lost in a number of ways due to disruption or repositioning. This

may be just as well since these blocks are not ’good features’ per se but merely a

route to solutions, where that route must be reasonably canalized. Following this we

suggest that certain blocks should be selected preferentially but used degenerately.

In this way they are removed from an explicit context, promoting future exploration

and reuse.

We believe the artificial genome is misinterpreted and should not hold information

in isolation. Blocks of genes can be constantly rediscovered as meaning itself evolves.

If meaning evolves, an adaptive system can learn ’contexts’. For example in an

early evolutionary phase, if a sequence of genes matches a fit context, the context

should be preserved not the gene. If the gene reoccurs in that context, the context

will be expressed. However other genes can fulfil that context also, just as similar

genes can activate different contexts. Many biological systems define contexts that are

manifested as system attractors. These attractors are stable despite the loss of control

parameter information such as gene mutations. We suggest that macroscopically
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(having no relation to dynamical systems), this is the most important feature of

Grammatical Evolution i.e. the degenerate and intrinsically polymorphic code that

packs meaning into redundant sequences.

7.1.1 Extending the Dual Process Algorithm

We have suggested a method to preserve features as degenerate sequences. This

method could be applied to dynamic and multimodal problems which are difficult for

evolutionary algorithms. Extensions to the XPath grammar may allow more specific

and powerful matches. It will be interesting to see if modification of this grammar

has any effect on the algorithms performance. This, and a number of parameter

variations may improve the first process in the dual process algorithm.

The dual process algorithm was based on ideas about perceptual systems and

useful examples [Hershberg and Ninio, 2004]. Such work discusses the statistical dis-

tribution of useful examples suggesting that many features that are the building blocks

of perceptual systems are semantically neutral and are used ubiquitously, while speci-

ficities are emphasized on this background signal. Consolidation of our dual process

algorithm and such observations will be pursued in the future. Firstly within the

current algorithm, the occurrence rate of features could be measured and a means

to detect feature anomalies could be investigated. Later extensions to the algorithm

may be directed towards a closer exemplar learning based modeling.

The integration process might also be improved by borrowing again from biology

and constructing networks. Just as pathogens are suppressed by dynamic antibody

networks, or genes are activated in dynamic gene networks, so too might linkages

evolve between degenerate features.
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7.1.2 Exploiting Compression

We have based the compression algorithm on questions about complexity. However we

have not explicitly considered complexity measures. The relationships between gram-

mar complexity, phenotype complexity and compression will be investigated more

closely in the future with respect to complexity measures.

Another development will be to add compression to the chaining operator in the

dual process algorithm. This would mean that codon values that satisfy different

layers could be exploited to a certain degree.

7.1.3 The Next Generation of XMLGE

The XMLGE framework has been developed as a means to explore XML in evolution-

ary algorithms and the benefits of rich representations. The use of XSLT for genetic

operators has been demonstrated as a novel but resource hungry mechanism. Going

forward, we aim to redevelop the ideas of rich representation without XML so as to

improve performance. In certain cases it is beneficial to ’expose’ structures as XML

for either serialization or analysis. As such, XML will be used as an extension of

regular classes. For example, a phenotype object structure can be exposed as XML

for XPath queries and used in complement coevolution. The alternative to this would

be to develop a custom query tool.

7.1.4 Towards Efficient Dynamical Systems Evolution

Future work is still required to improve these evolutionary algorithms. However

work to date such as the use of XPath feature detection and compression suggest

that smaller populations can be used with symbolic regression type problems. We
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have shown how evolving complex systems is a special function induction problem

with one or more functions to evolve. One of the suggestions of the dual process

algorithm is its applicability to multimodal problems for example the case where a

number of functions are simultaneously evolved. We observed this in the multiplexer

problem which is a very simple case where mutually exclusive building blocks must

be preserved. However work such as [Hasegawa and Iba, 2004] suggests that artificial

immune systems are efficient at these types of problems in cases where standard GP

are unable to find solutions. Given these two findings (i) that smaller populations can

be used with symbolic regression problems (ii) dual process algorithms are useful for

multimodal problems, we can attempt to evolve function-based dynamical systems

more efficiently. This has been our goal and we are pleased to say that it seems now

to be within reach.



Conference Papers

Parts of this thesis have appeared in the following publications.

• Saoirse Amarteifio and Michael O’Neill (2004), An evolutionary approach to

complex system regulation using grammatical evolution in: Artificial Life IX

(Proceedings of the Ninth International Conference on the Simulation and Syn-

thesis of Living Systems J. Pollock et. al (eds). MIT Press.

• Saoirse Amarteifio and Michael O’Neill (2005), Coevolving Antibodies with a

Rich Representation of Grammatical Evolution, To Appear in CEC 2005.
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