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Abstract—Grammar-Guided Genetic Programming is already
outperforming humans at creating efficient transmission sched-
ulers for large heterogeneous communications networks. We
have previously proposed a multi-level grammar approach which
achieved significantly better results than the canonical Grammar-
Guided Genetic Programming approach. Initially, a restricted
‘small’ grammar is utilised in order to discover suitable structures.
A full grammar is then adopted after this initial phase. Hence,
evolution can focus on maximising performance, by fine-tuning
the well-structured models. In this work, we propose to use a
hierarchical approach by employing multiple small grammars in-
stead of a unique small grammar at the lower level, in conjunction
with the full grammar at the upper level. To use multiple small
grammars while maintaining the same computational budget,
we have to use either (i) reduce the number of generations,
or (ii) reduce the size of the population for the evolution with
each of the small grammars. In this work, we confirm that the
hierarchical grammar approach using the division of number of
generations strategy achieves significantly better results than the
multi-level approach, but requires defining an ideal number of
small grammars to achieve the best performance. We also show
that the hierarchical grammar approach using the division of
population size strategy achieves significantly better results than
the multi-level approach. However the division of population size
strategy is less sensitive to the number of small grammars.

Index Terms—Genetic Programming, Telecommunications, Hi-
erarchical Grammar-Guided Genetic Programming, Heteroge-
neous Network.

I. INTRODUCTION

The number of mobile phone users is currently estimated
at 5 billion [1] and it is increasing at a fast pace. Network
providers attempt to ‘loyalise’ their existing clients and sign-
up additional ones through improved services and innovative
technology capabilities. While attracting new clients might
increase the profitability of the network providers, the additional
demand for data affects negatively the overall Quality of Service
(QoS) [2] that is experienced by the clients. Network operators
attempt to improve the QoS of their infrastructure using
efficient consolidation software (e.g., antenna duty cycle, and
signal strength variation) with elaborate optimisation algorithms.
Network operators also expand their physical communication
infrastructure with better-performing cells [3], thus leading to
an infrastructure heterogeneity.

Historically, cellular networks consist of a set of Macro
Cells (MCs) to provide User Equipments (UEs) such as smart-

phones with communication capability. However, the increase
in number of phones rendered MCs incapable of providing
an adequate quality of service. To reduce the load on MCs,
Small Cells (i.e., SCs, low-powered cells) have been deployed
in the field to absorb parts of the workload, thus creating
a Heterogeneous Network (HetNet). SCs are often installed
in areas with high network traffic (e.g., parks) to provide
communication capabilities to near-by UEs. This reduces
congestion on overloaded MCs. SCs have the benefit of being
small and cheap devices which allows their installation in an
ad-hoc fashion. However, SCs transmit at a low power, making
them vulnerable to severe interference from other cells that
share the same spectrum. To alleviate inter-cell interference, the
3rd Generation Partnership Project standardisation (3GPP [4])
includes a mechanism called Almost Blank Subframes (ABSs).
Note that a ‘subframe’ is a one millisecond unit of time in which
cells transmit data. MCs are muted during ABS sub-frames and
are only active during non-ABS sub-frames. Muting MCs for
a given time reduces the interference at the SCs and enables
them to communicate more effectively with their attached UEs.

HetNets are complex systems and they must be continually
reconfigured in real-time as conditions in the environment
change. In this paper, we focus on the coupled problems
of optimising the ABS patterns of MCs and scheduling
communications between SCs and their attached UEs. Lynch
et al. [5] were the first to put forward an autonomic algorithm,
i.e., Grammar-Guided Genetic Programming (G3P) to optimise
HetNets communication scheduling in a millisecond timescale.
G3P evolves an expression that maps network statistics to
a transmission schedule. While G3P has been shown to
outperform human-designed policies, the authors also identified
a remaining optimality gap that could be closed in future work.
In a former work [6], we proposed using G3P with a multi-
level grammar approach to gain a performance improvement.
For this end, we created various grammar levels starting from
a small grammar with only a restricted set of terminals (the
most important ones), to a full grammar with all the available
terminals. We start by running G3P with the small grammar
for a few generations to evolve structurally useful individuals.
Then, we expand the grammar (change the grammar to its
complete form) to further expand the full search space and,
and hence maximise performance.
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In the current work, we confirm the advantage of using
a hierarchical grammar (with two levels): multiple small
grammars instead of a unique one at the lower level, and one
full grammar at the upper level. The idea is to (i) independently
run G3P with each of the small grammars for a few generations
to evolve different structurally interesting individuals, (ii) gather
the best-obtained individuals from each independent run, and
(iii) evolve them using the full grammar for the rest of the
evolution to maximise the fitness function.

Our current work is an extension of [7] which only looked
at one strategy for implementing the hierarchical grammar
approach. When considering multiple small grammars at the
lower level, some compromise has to ensure a fair comparison
between each approach: either (i) reduce the number of gener-
ations when evolving the population of each small grammar,
or (ii) reduce the size of the population and maintaining a
large number of generations for each small grammar. We show
in this work that both strategies significantly outperform the
original multi-level approach. However, the strategy (i) requires
using an adequate number of small grammars to achieve the
best performance—which is not easy to define and also differs
from one instance to another, whereas the strategy (ii) is less
sensitive to that parameter.

Several works have previously been proposed to improve
the quality of the initial population of evolutionary algorithms
with greedy approaches (e.g., [8], [9]) or the quality of the
final solution through local searches (e.g., [10], [11], [12]), our
work is the first to investigate the use of different hierarchical
grammar strategies to improve performance.

The rest of this paper is structured as follows: Section II
provides a formal definition for the problem of scheduling
in heterogeneous networks. Section III describes the G3P
algorithm, the state-of-the-art multi-level G3P approach and
our proposed hierarchical grammar approach with the two
considered strategies. Section IV details our evaluation envi-
ronment, whereas Section V reports and analyses the results
of our experiments. Section VI concludes this work.

II. FORMAL PROBLEM DEFINITION

Let’s consider a HetNet H composed of a set of MCs M
and a set of SCs S with M∪ S = C. Let’s also consider a
set of UEs ui ∈ U receiving a wireless signal σj

i from every
cj ∈ C.

A. Heterogeneous Networks

UEs often attach to the cell from which they receive the
strongest wireless signal. However, given that SCs are low
powered, only a few UEs attach to them on that basis.

The 3GPP standard includes a bias mechanism, i.e., Range
Expansion Bias (REB) which allows increasing the number of
UEs that attach to SCs. The REB enables SCs to capture UEs
located in geographical positions where their signal is not the
strongest. REB biases the signal σj

i of cj ∈ C to ui ∈ U by a
value βj , with βj = 0 for cj ∈ M and βj ≥ 0, for cj ∈ M.
Therefore, every UE ui ∈ U attaches to a cell cj ∈ C with:

cj =
|C|

arg max
k=1

(σk
i + βk) (1)

The geographical location in which UEs attach to a small
cell cj when considering the bias βj , but do not attach to cj
without considering the bias βj is called the ‘Expanded Region’
Ej of a SC cj ∈ S. A UE ui belongs to Ej of cj ∈ S if:

cj =
|C|

arg max
k=1

(σk
i + βk) ∧ cj 6=

|C|
arg max

k=1
(σk

i ) (2)

SCs share the same wireless channel as MCs. Therefore,
combining SCs and MCs maintains the network spectrum
and does not necessitate either radical network upgrades
or new safety regulations/permits. However, besides these
advantages, sharing the same channel generates substantial
cell-edge interference in the expanded regions. To mitigate this
interference, the 3GPP framework divides time into frames F
which contain 40 sub-frames (SFs) of 1 ms duration each. Using
the time domain and the ABS mechanism, network allocators
can mute MCs at given SFs, and allow SCs to communicate
with their attached UEs without suffering massive interference
from MCs. However, while UEs at expanded regions experience
a reduction in interference when muting MCs, UEs attached
to MCs are not receiving any data.

Figure 1 shows a Heterogeneous Network with 1 MC, 1 SC
and 21 UEs. In Subfigure 1, the SC with its low signal only
attaches a few UEs, whereas most UEs attach to the MC. In
Subfigure 2, we see the REB mechanism at work. The SC
connects more UEs by expanding its region and offload the
MC. However, at the same time, the REB introduces substential
interference in the expanded region of the SC. In Subfigure 3,
the ABS mechanism is introduced and mutes the MC at the
given sub-frame. Therefore, SC’s expanded region no longer
experiences the interference from the MC, but the MC cannot
communicate with it attached UEs.

Fig. 1. Example of a Heterogeneous Network with 1 MC, 1 SC, and 21 UEs
in three scenarios: (i) with no REB mechanism, (ii) with REB mechanism,
and (iii) with REB and muting mechanisms.

B. Scheduling in Heterogeneous Networks

Let’s consider that a UE ui is able to download an amount
of data with downlink Rf

i during the SF Sf . This downlink
rate Rf

i is well-approximated by Eq., (3) using the bandwidth
B, number Nf of UEs communicating at the given SF Sf and
the Signal to Interference and Noise Ratio (SINR).

Rf
i =

B

Nf
× log2

(
1 + SINRi

f
)

(3)

MCs have a strong signal, which makes their attached UEs
experience high SINR and provides them with high downlink
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rates whenever the MC is not overloaded. Therefore, all UEs
attached to MCs could be scheduled for transmission during
all SFs at which the MCs are active, making their scheduling
trivial. On the other hand, SCs are low powered devices, making
UEs that are attached to them experience a relatively weak
signal. Additionally, UEs attached to SCs would be subject to
considerable interference by MCs during their active SFs.

The bandwidth is hard to improve as it is a scarce and
expensive resource. This leaves two levers to act on (i.e.,
SINRf

i and Nf ). We could improve SINRf
i of UEs attached

to SCs by more often muting MCs. While this would lead to
a higher SINRf for UEs attached to SCs, it also penalises
the downlink rate of UEs attached to MCs (which may be
more numerous). We could also attempt to reduce the number
of UEs attached to SCs and communicating at the same SF.
This would improve the downlink rate for the scheduled UEs.
However, it would also penalise the non-scheduled UEs.

All these aspects make transmissions scheduling in HetNets
a non-trivial problem. We require a system that defines both
the SFs at which MCs are muted and schedules the SFs at
which UEs communicate.

C. Fitness Function

HetNets operators often aim to optimise the fairness of
experienced average downlink rates by all UEs [13] that is
expressed in Eq., (5) as it improves low average downlink rates
and does not reward high downlink rates. Fairness is the fitness
function we aim to optimise and the one optimised by works
on which ours is based [5], [6].

Fairness =
∑
ui∈U

log
(
R̄i

)
(4)

where, R̄i =
1

|F|
∑
Sf∈F

Rf
i (5)

III. PROPOSED APPROACH

In this section, we present details of the G3P algorithm for
scheduling in HetNets [5], the multi-level grammar approach to
G3P [6], [14] and our proposed approach (i.e., the hierarchical
grammar approach) with its two different implementation
strategies (i.e., division of number of generations strategy,
and division of population size strategy).

A. Grammar-Guided Genetic Programming

G3P has been used to address different problems (e.g., traffic
assignment in urban areas [15], software configuration [16], and
link allocation in 5G Networks [17]). The first G3P algorithm
that was brought to the problem of scheduling in HetNets
is by Lynch et al. [5] as implemented in the PonyGE 2
framework [18]. G3P evolves an expression according to a
unique grammar F in a Backus-Naur Form (BNF). The grammar
F includes arithmetic production rules that are common to the
GP community. Additionally, it includes networking statistics
as a means to incorporate domain knowledge.
<expr> ::= <reg> | <reg> | <reg> | <Terminal>

<reg> ::= <expr><op><expr> | <expr><op><expr> |
<expr><op><expr> | <expr><op><expr> |
<non-linear>(<expr>) | <non-linear>(<expr>)

<op> ::= + | - | * | / (protected)
<non-linear> ::= sin | log (protected) |

sqrt (protected) | step
<Terminal> ::= <sign><const> | <statistic>
<sign> ::= - | +
<const> ::= 0.0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 |

0.6 | 0.7 | 0.8 | 0.9 | 1.0
<statistic> ::= downlink | num_variable | num_att |

airtime | congestion | avg_downlink_frame |
max_downlink_frame | min_downlink_frame |
avg_downlink_SF | max_downlink_SF |
min_downlink_SF | avg_downlink_cell |
max_downlink_cell | min_downlink_cell

The majority of the production rules mentioned in the
above grammar are well-known to the GP community and are
easy to understand. However, <statistic> contains terminals
from the communication network application domain. While
understating the meaning of each terminal is not critical for
the understanding of this work, we briefly describe each of
them in Table I.

TABLE I
BRIEF DESCRIPTION OF THE COMMUNICATION NETWORK TERMINALS USED

IN THE GRAMMAR OF THE STATE-OF-THE-ART G3P.

Statistic Description
downlink Amount of data (bit/s) that could be transferred in

a unit of time
num variable The noise is too high for a UE to communicate

num att Number of UEs that are attached to the Small Cell
airtime Number of sub-frames at which a given UE is

allowed to transmit
congestion Number of UEs transmitting at the same sub-

frame
avg downlink frame Average channel quality of a UE over all sub-

frames
max downlink frame Maximum channel quality of a UE over all sub-

frames
min downlink frame Minimum channel quality of a UE over all sub-

frames
avg downlink SF Average channel quality of UEs attached to a SC

at a given sub-frame
max downlink SF Maximum downlink of UEs attached to a SC at a

given sub-frame
min downlink SF Minimum downlink of UEs attached to a SC at a

given sub-frame
avg downlink cell Average downlink per cell of average downlink

per sub-frame
max downlink cell Maximum downlink per cell at any given sub-

frame
min downlink cell Minimum downlink per cell at any given sub-

frame

G3P uses the Algorithm 1 to map the evolved expressions
and the network statistics to a transmission ‘interest’ every
time a scheduling decision has to be made: whether or not to
schedule a UE to communicate at a given SF. For each UE u
at every SF f , the expression is evaluated using the network
statistics at that SF, and u is scheduled providing there is a
positive interest and a sufficiently high SINR.

B. Multi-Level Grammar

In addition to the full and more thorough grammar (i.e., F as
outlined above) defined by Lynch et al. [5], we have previously
described a smaller and more restricted grammar (i.e., S1) by
only keeping a subset of terminals that we believe are the most
critical [6].

Authorized licensed use limited to: University College Dublin. Downloaded on December 22,2020 at 11:12:06 UTC from IEEE Xplore.  Restrictions apply. 



input :E: Expression
output :M : Schedule Matrix
for cj ∈ S do

M [j]← zeros(|F| × |U|) // define a
matrix of ‘not scheduled’

for Sf ∈ F do
for ui ∈ U do

interest← evaluate(E, i, f)
// evaluate expression for
ui in f

if interest > 0 and SINRf
i ≥ 1 then

M [j][i][f ]← 1 // set as
‘scheduled’

end
end

end
end
return N ;

Algorithm 1: The mapping process of an expression to a
transmission schedule.

The small grammar is defined by modifying <const> and
<statistic>. The number of terminals is reduced to the strict
minimum by only keeping a small subset of constants and what
seems to be the most crucial statistics. The downlink is what
we would like to optimise. Whereas maximising the value of
min downlink frame would improve the smallest downlinks.
Therefore, improving it would have a better impact on the
fitness function. We set in S1:

S1
<const> ::= 0.0 | 0.5 | 1.0
<statistic> ::= downlink | min downlink frame

After defining the grammars S1 and F, we adapted the G3P
algorithm to take the grammar S1 at the start of the evolution
and dynamically modify the grammar to F after a certain
number of generations (in our case, after 10 generations). All
individuals obtained using the grammar S1 are seeded as an
initial population to G3P using the following grammar (i.e.,
F).

While updating the grammar, we do not require any modi-
fication in the representation of the individuals as G3P uses
a tree representation of individuals and the grammar S1 is
included in the full grammar F. The individuals also do not
require the re-evaluation of their fitness as we use the same
mapping algorithm and fitness function.

C. Hierarchical Grammar Approach

In this work, we also design two grammar levels. However,
unlike in the multi-level grammar approach, we design several
small grammars for the lower level. Therefore, in addition
to the full grammar F from [5], we define multiple small
grammars Si | i ∈ {1, .., µ}. In our case, we decided to design
5 small grammars (i.e., µ = 5) to showcase our proposed
architecture, but more refined tuning needs to be performed
in that regard in the future. While the small grammar S1 is
taken from [6], we design by hand four other small grammars
S2, S3, S4 and S5 in a similar way as S1 by varying their
terminals. All Si | i ∈ {2, .., 5} are a subset of F and their

production rules <const> and <statistic> have between 2 and
4 terminals each:

S2
<const> ::= 0.1 | 0.4 | 0.7 | 1.0
<statistic> ::= downlink | max downlink frame

S3
<const> ::= 0.3 | 0.45 | 0.55 | 0.7
<statistic> ::= downlink | min downlink cell

S4
<const> ::= 0.0 | 0.2 | 0.4 | 0.6
<statistic> ::= downlink | min downlink frame |
max downlink frame

S5
<const> ::= 0.4 | 0.6 | 0.8 | 1.0
<statistic> ::= downlink | min downlink frame |
min downlink cell

Note that <statistic> rules always contain the terminal
‘downlink’ as it is the most important statistic [6] (we try
to improve the downlink). In addition, we include one to two
other relevant terminals from the set {min downlink frame,
max downlink frame, min downlink cell} that have been
shown to have an impact on the fitness function [5]. Rules
<const> are designed to cover different parts of the search
range (whole, centre range, higher range, and lower range).

In our work, we investigate two different strategies for
implementing the hierarchical grammar approach depending on:
(i) population size PopSize, (ii) number of generations for the
lower level if we only use one small grammar #LowLevelGen,
and (iii) number of small grammars #SmallGrammars:
• Dividing number of generations: we generate a population

of size PopSize for each of the small grammars and
evolve each of them individually for #LowLevelGen

#SmallGrammars
generations.

• Dividing population size: we generate a population of
size PopSize

#SmallGrammars individuals for each of the small
grammars and evolve each of them individually for
#LowLevelGen generations.

1) Dividing Number of Generations Strategy: Figure 2
shows an example of the hierarchical grammar approach with
two small grammars (S1 and S2) and a full one (F), using the
division of number of generations strategy. The computational
budget for the lower level is x ∗ PopSize, whereas the
computational budget for the entire evolutionary process is
(x + y) ∗ PopSize. G3P generates two initial populations
(one using each small grammar) of size ‘PopSize’ each.
G3P independently evolves each of them for ‘x2 ’ generations
with the same grammar used to generate them. Afterwards,
the PopSize

#SmallGrammars best individuals (in our case, PopSize
2

individuals) from each resulting population are selected and
aggregated to form the initial population with F, which is then
evolved using the full grammar for ‘y’ generations.

2) Dividing Population Size Strategy: Figure 3 shows an
example of the hierarchical grammar approach with two small
grammars (S1 and S2) and a full one (F), using the division of
population size strategy. G3P generates two initial populations
(one using each small grammar) of size PopSize

#SmallGrammars

each (in our case: 100
2 individuals per initial population). G3P

independently evolves each of them for x generations with
the same grammar used to generate them. Afterwards, all
the PopSize

#SmallGrammars individuals in the resulting population
from the evolution with each small grammar are selected and
aggregated to form the initial population with F, which is then
evolved using the full grammar for y generations.
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Fig. 2. Overview of the hierarchical grammar approach to G3P using the division of number of generations strategy with 2 levels (2 small grammars S1 and
S2 at the lower level, and one full grammar F at the upper level).

Fig. 3. Overview of the hierarchical grammar approach to G3P using the division of population size strategy with 2 levels (2 small grammars S1 and S2 at the
lower level, and one full grammar F at the upper level).

IV. EXPERIMENTAL DESIGN

In this section, we describe the dataset, the setup and the
statistical test used to assess the significance of our results.

We use in our work the same three HetNet instances as
those used in the works we are comparing against, i.e., [5],
[6]. All the HetNets simulate 21 MCs spread in a hexagonal
pattern in a 3.61 km2 area of Dublin city centre. The three
scenarios, however, differ in their number of SCs. The least
dense HetNet contains 21 SCs (1 SC per MC on average). The
average density HetNet contains 63 SCs (3 SCs per MC on
average). The densest HetNet contains 105 SCs (5 SCs per
MC on average). Furthermore, 1250 UEs are considered in
each of the scenarios. Each of the UEs is attached to either an
MC or an SC.

We use the G3P algorithm provided by the authors [5] that

is implemented using the PonyGE 2 framework [18]. We set
the evolutionary parameters as shown in Table II.

We perform the non-parametric test, i.e., two-tailed Mann-
Whitney U test (MWU) to check the significance of our results.
MWU takes performance values (best fitness values) obtained
by two algorithms from each run (in our case: 30) and returns
the p-value that one algorithm achieves different results than
the other. We consider tests with p-values < 5% significant.

V. EVALUATION

We would like to evaluate in this section the advantage
of using a hierarchical grammar approach over both a multi-
level grammar approach and the original G3P (with one full
grammar). Let Si be the set of small grammars {S1,S2,...,Si}.
We define the 6 configurations below:
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TABLE II
EVOLUTIONARY PARAMETERS DEFINED FOR THE DIFFERENT G3P
APPROACHES: SINGLE GRAMMAR, MULTI-LEVEL GRAMMAR AND

HIERARCHICAL GRAMMAR.

Initialisation Ramped Half-Half
Max initial tree depth 20

Overall max tree depth 20
Population size 100

Number of generations 100
Selection Tournament

Tournament size 10% of population
Replacement Generational with elites

Elite size 1% of population
Crossover type Sub-tree (70% probability)
Mutation type Sub-tree (once per individual)

Number of runs 30

• F: G3P with the full grammar from the start to the end
of the evolution [5].

• S110F: the multi-level grammar approach [6] with G3P
starting with one small grammar (i.e., S1) and introducing
the full grammar at generation 10.

• Si10F with i ∈{2,3,4,5}: the hierarchical grammar ap-
proach with G3P starting with i small grammars (i.e.,
S1,...,Si) and independently evolving a population of size
p with each of the small grammars for a number of
generations g, before gathering the best b individuals from
each of the independent runs to create a full population
that is evolved with the full grammar F for the remaining
generations. The parameters p, g and b are set to different
values depending on the used strategy.

Note that depending on the strategy used with the hierarchical
grammar approach, Si10F with i ∈{2,3,4,5} will take different
values for each of the parameters p, g and b:
• Division of number of generations: p = PopSize, g =
b 10i c and b = PopulationSize

i . Division of population size:
p = b = PopSize

i and g = 10.
In this section, we evaluate the performance of the hier-

archical approach in two phases according to the considered
strategies. First, we evaluate the performance using the division
of number of generations strategy. Then, we evaluate the
performance using the division of population size strategy.

A. Dividing Number of Generations Strategy

Figure 4 shows the evolution per generation of the best
fitness on each instance, obtained by G3P when using the
different grammar configurations (results are averaged over 30
runs). For hierarchical grammar configurations, the division of
number of generations strategy is used.

Figure 4 shows that G3P improves the best fitness using all
grammar configurations with division of number of generations
strategy. Figure 4 confirms that using the multi-level grammar
approach S110F outperforms the single grammar F in all
instances. It also shows that the hierarchical approach S210F
using the division of number of generations strategy yields
a better performance over all instances (jointly with S310F
on 63 and 105 SCs) than both the single and the multi-
level grammar approaches. However, it also shows that other
hierarchical approaches (i.e., S410F and S510F) using the

21 SCs 63 SCs

105 SCs
Fig. 4. Average over 30 runs of the evolution of the best fitness obtained by
G3P on the different instances with various grammar hierarchies using the
division of number of generations strategy.

division of number of generations strategy perform poorly as
they are outperformed by the multi-level grammar approach in
all instances and achieve worse results than the single grammar
approach in most cases. This is mainly because using a large
number small grammars means that G3P is only allowed a
small number of generations to optimise the populations that
were generated with each of these grammars (remember that
the lower level has to share a computational budget of 10
generations). This is more acute in the case of S510F where
each small grammar is allowed 2 generations (10 generations
divided by 5 small grammars) to evolve its population.

We notice that the hierarchical grammar approach using the
division of number of generations strategy could outperform
the performance of a G3P algorithm and outperforms the use
of a single or a multi-level grammar approach. However, the
number of grammars at the lower level (i.e., number of small
grammars) has to be tailored to allow G3P to evolve the
population that is generated using each of these grammars. In
our work, we decided to use the same number of generations
allowed to the lower level as in the multi-level approach [6]
(i.e., 10) to mitigate the effect of modifying this parameter and
make sure that any improvement would be the result of the
hierarchical grammar approach. Furthermore, we defined the
5 small grammars Si ∈ {1, ..., 5} and chose to use them in a
particular order (i.e., we have to select Si to be able to select
Si+1 for every i ∈ {1, ..., 4}). We anticipate that increasing
the computation budget for the lower level, choosing different
grammars or setting a different grammar selection order might
affect the ideal number of small grammars at the lower level.
In our case, we have seen that using 2 or 3 small grammars is
ideal, but the most adequate number varies between instances.

Table III reports the mean and the standard deviation of the
results obtained over 30 runs by G3P with the different grammar
configurations using the division of number of generations
strategy. It also includes the p-value between each of the
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grammar configurations and either the full grammar F alone
or the multi-level grammar approach S110F.

Table III confirms that the hierarchical grammar approach
S210F using the division of number of generations strategy
significantly outperforms both the single grammar F and the
multi-level grammar S110F approaches on all instances. It also
shows that S310F with the division of number of generations
strategy significantly outperforms F and S110F on all instances
(except on 21SCs where results are not statistically significant).
Furthermore, while S210F with the division of number of
generations strategy achieves the best overall mean results on
the least dense instance (i.e., 21SCs), S310F with the division of
number of generations strategy achieves the best mean results
on the densest instances (i.e., 63 SCs and 105SCs).

Table III also shows high standard deviations with respect to
the difference in mean values. However, the standard deviation
with S210F is the lowest in every instance and is a sign of
more stable behaviour. The standard deviation increases from
S210F to S510F (except between S310F and S410F on 63SCs).
Therefore, using more small grammars at the lower level either
makes G3P behave more erratically (converges to different
fitness values) or not fully converge in the given computational
budget (requires more generations to fully converge).

B. Dividing Population Size Strategy

Figure 5 shows the evolution per generation of G3P’s
best fitness on each instance, when using each grammar
configuration (averaged over 30 runs). For hierarchical grammar
configurations, the division of population strategy is used.

Note that while Figure 5 shows different number of genera-
tions for each of the plots, each grammar configuration is given
the same computational budget. In the division of population
strategy, the evolution with small grammars is performed using
populations of smaller sizes, thus allowing us to run more
generations with a lower computational cost. In our case, we
run 10× (#SmallGrammars− 1) extra generations.

Figure 5 shows that G3P improves the best fitness using all
grammar configurations with division of population strategy.
Figure 5 also shows that running G3P with the hierarchical
grammar approaches S210F and S310F using the population
division strategy yields a better fitness than both the single
and the multi-level grammar approaches over all instances.
However, unlike what we noticed with the division of number
of generations strategy, running G3P with the hierarchical
grammar approaches S410F and S510F using the division of
population strategy also yields better results than the single and
the multi-level grammar approaches over all instances. This
shows that the division of population strategy is less sensitive
to the number of small grammars at the lower level.

Table IV reports mean and standard deviation of the results
by G3P with the different grammar configurations using the
division of population strategy (over 30 runs). It also includes
the p-value between each of the grammar configurations and
either the full grammar F alone or the multi-level grammar
approach S110F. Table IV shows that all the hierarchical
grammar approaches S210F, S310F, S410F and S510F using the
division of population size strategy significantly outperforms

21 SCs 63 SCs

105 SCs
Fig. 5. Average over 30 runs of the evolution of the best fitness obtained by
G3P on the different instances with various grammar hierarchies using the
division of population strategy. Note that while we have different number of
generations for each of the grammar configurations, the computation budget
is always the same.

both the single grammar F and the multi-level grammar S110F
approaches on all instances. Table IV also shows that standard
deviations with the division of population size strategy are
higher than the differences in means. However, they are at
the same level as those observed when using the division of
number of generations.

VI. CONCLUSION

We have recently proposed a multi-level grammar approach
to G3P which has showed to evolve highly performing
transmission schedulers for Heterogeneous Networks. In this
approach, G3P (i) evolves structurally interesting individuals
with a small grammar at the lower level, then (ii) introduces a
more thorough grammar at the upper level to investigate the
full search space and evolve better performing individuals.

In this work, we investigated a hierarchical grammar ap-
proach to G3P. Instead of using a single small grammar at the
lower level, G3P independently uses several small grammars.
Then, G3P gathers the best individuals with each of these
grammars and continues to evolve them using the full grammar.
We proposed two different strategies for implementing the
hierarchical grammar approach while maintaining the compu-
tational budget: dividing number of generations, and dividing
the population size between small grammars.

We confirmed in this work that using the division of number
of generations strategy can outperform the original G3P and
the multi-level G3P approaches. However, it requires defining
an ideal number of small grammars to be used at the lower
level beyond which performance is significantly impacted.

On the other hand, we have shown that the hierarchical
grammar approach using the division of population size strategy
also outperforms the original G3P and the multi-level G3P
approaches. However, the hierarchical grammar approach is
less sensitive to the number of small grammars.
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TABLE III
MEAN AND STANDARD DEVIATION (SD) OVER 30 RUNS OBTAINED BY G3P ON THE VARIOUS INSTANCES WITH EACH OF THE 6 GRAMMAR

CONFIGURATIONS USING THE DIVISION OF NUMBER OF GENERATIONS.

Instance Function F S110F S210F S310F S410F S510F

21SCs

Mean 232.957 232.995 233.018 232.996 232.908 232.877
Sd 0.051 0.063 0.043 0.065 0.069 0.118

MWU F – 4.43E-04 4.49E-08 1.20E-03 6.05E-04 1.71E-04
S110F 4.43E-04 – 2.17E-02 4.27E-01 2.27E-09 8.28E-10

63SCs

Mean 321.334 321.443 321.493 321.497 321.308 321.260
Sd 0.075 0.131 0.055 0.092 0.071 0.077

MWU F – 6.76E-06 3.63E-12 6.92E-10 7.84E-02 2.13E-04
S110F 6.76E-06 – 1.95E-02 1.65E-02 1.83E-06 1.58E-09

105SCs

Mean 619.799 620.101 620.274 620.326 619.859 619.634
Sd 0.160 0.244 0.081 0.152 0.150 0.221

MWU F – 2.75E-10 4.72E-14 1.44E-13 5.42E-02 3.38E-03
S110F 2.75E-10 – 8.01E-04 1.85E-05 7.24E-06 3.07E-11

TABLE IV
MEAN AND STANDARD DEVIATION (SD) OVER 30 RUNS OBTAINED BY G3P ON THE VARIOUS INSTANCES WITH EACH OF THE 6 GRAMMAR

CONFIGURATIONS USING THE DIVISION OF POPULATION SIZE STRATEGY.

Instance Function F S110F S210F S310F S410F S510F

21SCs

Mean 232.957 232.995 233.030 233.042 233.038 233.003
Sd 0.051 0.063 0.020 0.019 0.017 0.028

MWU F – 4.43E-04 7.83E-10 2.00E-11 6.59E-11 4.60E-05
S110F 4.43E-04 – 9.00E-03 2.98E-04 1.01E-03 4.48E-03

63SCs

Mean 321.334 321.443 321.497 321.494 321.494 321.496
Sd 0.075 0.131 0.048 0.073 0.061 0.046

MWU F – 6.76E-06 8.27E-13 9.13E-11 1.09E-11 7.16E-13
S110F 6.76E-06 – 1.12E-02 2.13E-02 1.95E-02 9.96E-03

105SCs

Mean 619.799 620.101 620.328 620.323 620.287 620.306
Sd 0.160 0.244 0.111 0.081 0.114 0.090

MWU F – 2.75E-10 6.37E-14 4.72E-14 6.87E-14 4.72E-14
S110F 2.75E-10 – 6.54E-06 1.33E-05 2.98E-04 4.66E-05

In the future, we aim to study the automatic grammar design
and the definition of the computational budget for the lower
level of the hierarchical grammar approach. Furthermore, we
would like to apply our hierarchical grammar approach to
different problem domains.
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