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Abstract

At a high level, data centres are large IT facilities hosting physical machines (servers)
that often run a large number of virtual machines (VMs)—but at a lower level, data
centres are an intricate collection of interconnected and virtualised computers, con-
nected services, complex service-level agreements. While data centre managers know
that reassigning VMs to the servers that would best serve them and also minimise some
cost for the company can potentially save a lot of money—the search space is large
and constrained, and the decision complicated as they involve different dimensions.
This paper consists of a comparative study of heuristics and exact algorithms for the
multi-objective machine reassignment problem. Given the common intuition that the
problem is too complicated for exact resolutions, all previous works have focused on
various (meta)heuristics such as First-Fit, GRASP, NSGA-II or PLS. In this paper, we
show that the state-of-art solution to the single objective formulation of the problem
(CBLNS) and the classical multi-objective solutions fail to bridge the gap between
the number, quality and variety of solutions. Hybrid metaheuristics, on the other hand,
have proven to be more effective and efficient to address the problem—but as there has
never been any study of an exact resolution, it was difficult to qualify their results. In
this paper, we present the most relevant techniques used to address the problem, and
we compare them to an exact resolution (e-Constraints). We show that the problem is
indeed large and constrained (we ran our algorithm for 30 days on a powerful node of
a supercomputer and did not get the final solution for most instances of our problem)
but that a metaheuristic (GeNeP1i) obtains acceptable results: more (+ 188%) solutions
than the exact resolution and a little more than half (52%) the hypervolume (measure
of quality of the solution set).
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1 Introduction

Data centres are facilities dedicated to hosting many computer resources, and while
they have been around for decades, they are now the centre of (a lot of) attention as they
are increasingly the crucial element of our digital lives (e.g., the Cloud). Data centres
evolve constantly as for instance machines age and are eventually decommissioned,
new ones (more powerful) are bought regularly, and processes hosted are updated
to potentially more greedy ones. Data centre managers adapt their systems to these
evolutions and migrate processes from one machine to another one following technical
and non-technical constraints and preferences. This is what we call reassignment of
processes to machines. For instance, managers may want to increase the reliability of
their data centres and move the workload from overloaded machines to less loaded
and/or more powerful ones. Often, they also try to move the workload to power efficient
machines, to lower the cost and environmental impact of the data centres.

One problem is that machines can range to up to tens of thousands (e.g., OVH, a
European leader in the domain, have 150,000 servers in 12 data centresl), and services
up to millions (e.g., VMware ESX accepts up to 320 VMs per host). At this scale,
any instance of the reassignment problem becomes a challenge to the existing heuris-
tics/solvers and finding the ‘best’ (re-) assignment an illusion. Another problem is
that, as we mentioned in the previous paragraph, managers have different perspectives
on what is a ‘good’ solution, and ranking all the solutions according to a single utility
function (e.g., minimising energy consumption) is probably not relevant.

This is a perfect example of a problem where multi-objective decision making
makes sense: an optimisation problem with various independent objectives that only
decision-makers can compare—possibly collectively. For instance, Li et al. (2013)
describe such an enterprise environment where managers of hosting departments have
various perspectives when it comes to placement decisions. Hence we call the problem
we address in this paper Multi-Objective Optimisation for the Machine Reassign-
ment Problem (MOMRP). While this problem has been addressed in the context of
machine assignment (Mills et al. 2011), or for dynamic assignment of a small number
of machines (Xu and Fortes 2011), it has not been in itself the topic of research in
the past. In this paper, we identify three objectives for the problem: (i) reliability,
i.e., a penalty is given to assignments that load too much the machines; (ii) migra-
tion, i.e., assignments that move processes too much (especially to remote locations)
are penalised; and (iii) electricity: trying to obtain assignments that minimises the
(electrical) cost of running the data centre.

In this paper, we show that classical solutions do not perform well against this
problem, in terms of the number of non-dominated solutions found (the quantity of
solutions) or the hypervolume (Zitzler and Thiele 1998) of the search space area defined
by the Pareto frontier (the quality of the solutions). Algorithms of the First Fit family
(e.g., First Fit decreasing, Random Fit, First Fit descent bin-balancing (Li et al. 2014))
tend to fail to satisfy the large number of constraints of the problem and have poor
results as soon as the instances of the problem become large enough (and realistic).
The state-of-the-art mono-objective machine reassignment algorithm, i.e., Constraint-

! Source: http://www.ovh.com/fr/backstage/—accessed on 16/05/2018.
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Based Large Neighbourhood Search (CBLNS) (Mehta et al. 2011) finds solutions that
improve the initial assignment, but these solutions lack diversity as they are focused
around one area of the search space (low quality). Pareto Local Search (PLS) (Angel
et al. 2004; Basseur 2006; Alsheddy and Tsang 2010) usually finds solutions but they
are grouped in one area of the search space (small hypervolume), and it is ‘by nature’ a
slow algorithm. NSGA-II (Deb et al. 2002) needs a good initial population to operate
properly, while here it gets only one solution: the initial assignment. GRASP (Feo
and Resende 1995) does not perform well either in such large search spaces and ends
up trying a lot of non-feasible combinations, eventually finding few or no solution at
all. We describe a novel hybrid algorithm called GeNePi (Saber et al. 2014a), which
uses successfully three steps: a first step (inspired from GRASP) to explore quickly the
whole search space, a second (using NSGA-II) to introduce some variety and quality in
the solutions and a last one (PLS-based) to increase the number of solutions. GeNePi
outperforms all the algorithms above and some classical bin packing ones, finding
nearly 5 times more non-dominated solutions on average than non-hybrid algorithms
and covering the search space better with more than 100% hypervolume on average
than the best non-hybrid techniques).

The comparison against other hybrid metaheuristics illustrates the importance of
having a three-step method (a greedy algorithm, a genetic algorithm and a local search)
with more than 2 times improvement in terms of number of non-dominated solutions
and nearly 16% increase in hypervolume when compared against the second best
hybrid metaheuristic.

Now, while we know that one hybrid metaheuristic outperforms the other algo-
rithms, it is difficult to assess the efficiency and effectiveness of GeNePi in absolute
terms. We have implemented an exact resolution (e-Constraints method (Mavrotas
2009)) of the problem in the same instances used for the comparison of the heuristic
algorithms. We ran our implementation for up to 30 days (depending on the instance of
the problem) on one node of a supercomputer. We observe that GeNePi gets more non-
dominated solutions than the exact resolution (+ 188%) and achieves a little more than
half the hypervolume of the exact resolution (52%). GeNePi also succeeds in keeping
its execution time low, as it is tens of thousands of times faster than e-Constraints.
GeNePi is even faster or in the same order of magnitude as a single iteration of e-
Constraints.

In summary, in this paper we make the following contributions:

— We formally define the multi-objective machine reassignment problem.

We show that classical multi-objective and state-of-the-art mono-objective solu-
tions do not perform well on the multi-objective optimisation version for the
machine reassignment problem.

We describe our novel three-step algorithm called GeNePi and show that GeNePi
outperforms the other algorithms in terms of number and quality of solutions.
We implement the e-Constraints exact method and run it for 30 days. We show that
GeNePi achieves good results in comparison to the e-Constraints method while
not requiring as much execution time.

In the rest of this paper we first start by reviewing some of the work related to
machine reassignment (Sect. 2), then we give a formal definition of the problem,
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with the constraints and the three objectives that we identified as the most relevant
(Sect. 3). Next, we describe GeNePi, our algorithm for solving this MOMRP (Sect. 4).
After this, Sect. 5 proposes an evaluation of the different state-of-the-art algorithms.
Next, we describe the e-Constraints method which provides an exact resolution of
the problem, and we compare GeNePi against it (Sect. 7). Finally, we make some
concluding remarks (Sect. 8).

2 Related work

In this section, we present a survey of the literature relevant to our study: d-dimensional
vector bin packing, machine reassignment and multi-objective reassignment.

2.1 d-Dimensional vector bin packing

The d-dimensional vector bin packing consists of packing a set of items of various
sizes, in the least number of homogeneous bins. In the case of VMs and servers, each
dimension of the space represents an independent resource. Vector bin packing has
been a very popular challenge in computer science and engineering, for instance in
the system domain (Graham 1972).

In the context of 2-dimensional vector bin packing, Caprara and Toth (2001) devel-
oped a set of heuristics and exact solutions, which were since outperformed by an
approximation algorithm proposed by Kellerer and Kotov (2003) with a performance
ratio of 2 in the worst-case.

Beck and Siewiorek (1996) modelled the problem with more than 2 resources and
made a thorough evaluation of different algorithms for assigning tasks in a multipro-
cessor computer—whereas Leinberger et al. (1999) focus on systems running tasks in
parallel.

Jansen and Ohring (1997) studied the d-dimensional vector bin packing with con-
flicting items and proposed some approximation algorithms, while Gendreau et al.
(2004) proposed several heuristics and lower bounds which take into consideration
this set of constraints.

Most Recent works deal with the d-dimensional vector bin packing for storing
multi-media content. They either study different algorithms (e.g., heuristics from the
First-Fit family (Panigrahy et al. 2011)) or try to find a better approximation algo-
rithm (Shachnai and Tamir 2012).

2.2 Machine reassignment

While the d-dimensional vector bin packing aims at reducing the number of bins, the
machine reassignment problem (MRP) considers moving items between an already
given set of bins (a.k.a., machines).

In the context of managing resources in cloud environments, several optimisation
problems have been defined and studied (Mann 2015). Doddavula et al. (2011) worked
on optimising resource utilisation by reassigning tasks to different machines by com-
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paring commonly used First Fit algorithms. Beloglazov et al. (2012) worked on the
reduction of data centres’ energy footprint and proposed resource allocation heuris-
tics to tackle this problem. Stillwell et al. (2012) pushed the boundaries further by
considering a resource allocation with heterogeneous machines.

Due to the increasing popularity and scale of the cloud, Google (one of the leaders on
the market) proposed a challenge at the ROADEF/EURO (2012) forum with a detailed
formulation for the MRP and a real-life instance scales. The challenge attracted many
participants, with algorithms of different types. Although the majority were based on a
local search Local Search (LS) (Gavranovié et al. 2012), Large Neighbourhood Search
(LNS) (Brandt et al. 2016), Variable Neighbourhood Search (VNS) (Butelle et al.
2016) or Multi-Start Local Search (MS-LS) (Masson et al. 2013), there were others
based on Greedy Randomized Adaptive Search (GRASP) (Gabay and Zaourar 2012),
Simulated Annealing (SA) (Portal et al. 2012), or a combination of either Constraints
Programming (CP) or Mixed-integer linear programming (MILP) solvers, with some
other optimisation solutions (e.g., Local Search with either a CP (Mehta et al. 2011),
or a MILP solver (Jaskowski et al. 2015)).

The problem proposed by Google to the ROADEF/EURO challenge continued to
attract researchers even years after its end to work on it and push the optimisation
boundaries set by the initial state-of-the-art. Some of the works tried to improve the
solutions that were submitted to the challenge while others designed and evaluated new
algorithms. Malitsky et al. (2013) enhance the work of Mehta et al. (2011) by finely
tuning parameters of the large neighbourhood search to get an effective Constraint Pro-
gramming Based Large Neighbourhood Search which achieves near-optimal results.
Hoffmann et al. (2015) propose a hyperheuristic (i.e., a combination of several meta-
heuristics) that is inspired by the Simulated Annealing algorithm and that is composed
of two levels of heuristics.

Recently, Turky et al. (2016) proposed an evolutionary parallel Late Acceptance
Hill Climbing algorithm. The same group of authors developed a year later an Evolu-
tionary Simulated Annealing (ESA) algorithm (Turky et al. 2017a) by replacing the
Late Acceptance Hill Climbing algorithm with a Simulated Annealing. In another
work from Turky et al. (2017b), the authors do not aim at finding the best solution
but instead study the different neighbourhood structures that are employed in Large
Neighbourhood Searches to generate and evaluate their neighbourhoods and show
that they have an impact on the performance of these algorithms. In their very latest
work on the topic (Turky et al. 2018), the authors combine several components in a
cooperative evolutionary heterogeneous simulated annealing (CHSA) which allows
them to achieve higher quality solutions.

2.3 Multi-objective machine reassignment

The multi-objective consolidation (reassignment) of processes/virtual machines
(VMs) in a data centre has been described recently as an essential research challenge
for data centres (Beloglazov et al. 2012). Although we can find many works dealing
with this problem in the literature (Saber 2017; Donyagard Vahed et al. 2019), most
of them either consider systems of small and unrealistic scales, or use a ‘weak’ multi-
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objective formulation (e.g., combining the objectives using a weighted-sum (Jung et al.
2010) or limiting their study to only a bi-objective resolution (Xu and Fortes 2011)).

The MOMRP is a novel optimisation problem. It is largely inspired by the MRP
proposed by Google but considers objectives that are relevant to data centres’ managers
in non-aggregated fashion. The first attempt at modelling it and creating an algorithm
to tackle it (Saber et al. 2014a) was quite recent. Saber et al. (2015b) proposed a linear
formulation for the same multi-objective problem and studied the usability of a MILP
solver, but was only limited to the smallest instances. The authors also extended the
work to a combination of metaheuristics and exact solutions (Saber et al. 2017). A
formulation similar to the MOMRP has also been studied in the context of decentralised
data centres (Saber et al. 2014b, 2015a), which considers that each site is independent
when making its machine placement. The study provides a full model of the MOMRP
in such infrastructures and conducts a thorough evaluation of several algorithms. The
most recent formation of the problem in a decentralised infrastructure (Saber et al.
2018b) considers the possibility of decommissioning workload to public clouds with
varying pricing schemes.

3 Problem definition

The Multi-Objective Machine Reassignment Problem consists of optimising the usage
of aset of machines M according to various objectives. Any reassignment has to satisfy
constraints (often in large number) of the system and find a new machine M (p) for
every process p in the set of existing processes P, initially placed in machine My(p).
The multi-objective reassignment tries to find non-dominated solutions (better than
every other solution in some directions of the space). In some cases My(p) = M(p),
which means that the process p € P does not move during the reassignment.

The model we describe below is loosely inspired by several works e.g., (Lopes et al.
2015) for an integer programming model, among which the problem definition of the
ROADEF challenge (2012) has an important place.

3.1 Reassignment problem

A machine m € M belongs to a location [ € L (the site where the server is located).
It is also in a neighbourhood N (m) € N with N (m) € M, which represents a set of
machines with which it is linked to by fast connections or with which it shares the same
protocol. Each machine belongs to one and only one location and one neighbourhood.
Every machine m has also several resources r € R (e.g., RAM, CPU, disk), in limited
capacities O, -. We consider that the quantity of resource r that the process p needs
is fixed to d), , and corresponds to a V M parameter/SLAZ. The first constraint of the
system describes the resource capacities of the machines m as limiting the resource

2 A Service-Level Agreement (SLA) is a contract agreed between a data centre provider and a customer
which describes the service provided (e.g., allocated resources, time to recover after an outage).
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demands of the processes p hosted on them.

> dpr £ Qmr YmeMVreR (1)
peP | M(p)=m

The reassignment of a process is achieved using a live migration, meaning that the
process is transferred to the final machine while keeping it running on its initial one.
Some resources are called transient: r € TR C R. Such resources (e.g., RAM and
disk) are needed on both machines (initial and final machines) during a live migration,
as the processes use the resources on both machines during the reassignment.

Z dpr < Omyr, Yme M,Vr e TR )
PEP|My(p)=mvM (p)=m

Other resources are called non-transient: r e NR = R\ TR.

Services/applications are often multi-tier (e.g., to separate concerns) and replicated
(for performance and security reasons), so it is realistic to assume here that processes
(the atomic element of workload) are organised by services. It is common for services
to have an anti-cohabitation constraint (Bin et al. 2011), i.e., the processes composing
a service cannot share the same host—for some reliability, security and performance
reasons. Let S the set of services, then the anti-cohabitation constraint can be expressed
as in (3).

Vpi,pj € Pyi # j,Vs €S, (pi, pj) € 5% = M(pi) # M(p;) )

For the same reasons of reliability, security and performance, services require that
the number of locations hosting at least one process has to be greater than a certain
number, called spread number and denoted o . This allows increasing the resilience in
case of failure of a data centre: the bigger the spread number oy, the safer the service
seS.

Y min(Ll{plpes A M(p)ell) 205, VseS @)
leL

Services can also depend on each other and in this case the processes of these services
need to be close to each other—to increase the performance of the system. Let D be the
set of service dependencies in the system and we denote any services dependency with
<. Of course, as the dependencies between services can be complex, the assignment
can be tricky: a process p € P, belonging to service s; € S which is dependent
on service s; € S and service sy € S, needs to be assigned to a machine M (p’) €
N(M(p)) such that p" € s; N sg.

Vsi,s; €S, si > 5; = VYpy s, Apy €55 | N(M(py)) = N(M(py)) (5)
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Service

—+ Depends
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— Assigned
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Fig. 1 Simple scenario of a correct assignment of processes to machines (spread= 2)

Figure 1 shows graphically a scenario (i.e., instance and initial solution) of the
problem. Note that resource capacities and demands are not represented here to make
it simpler to understand.

Definition 1 (Machine Reassignment) An assignment A of processes to machines is
a mapping: A : P — M, such that A(p, M) — m, which satisfies all the previous
constraints 1, 2, 3, 4 and 5.

A reassignment is a function that modifies an initial assignment: ReA : A — A and
gives a new assignment of processes to machines.

3.2 Objectives

As said in the introduction, there are several perspectives on the best optimisation,
which translate in our case into several objectives. Some studies (Purshouse and Flem-
ing 2007) show that a large number of objectives decreases drastically the performance
of evolutionary algorithms, and that decision-makers tend to favour a small number of
dimensions. We focus here on three objectives: electricity cost, VM migration cost and
reliability cost, as they are recognised in the literature (Filani et al. 2008; Voorsluys
et al. 2009; Schroeder and Gibson 2010) and make sense in practice. The multi-
objective variant of the Machine Reassignment Problem (see Definition 1) consists of
minimising the cost functions defined by the objectives.

There are many elements that can help data centre operators to predict the risk
of failure of a server: to name a few the age of a machine, the vendors of its parts
(e.g., processor maker) and the past history of similar machines. They are complex to
collect and understand, and we do not know exactly how to process them to obtain an
objective that the data centre operators and decision-makers could use (the literature
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seems uncertain on the matter (Schroeder and Gibson 2010)). One thing we know is that
as opposed to the risk of failure, the reliability is easier to compute and gathers fewer
questions. Machines do operate better when they are not too loaded, and reliability
can be estimated through the load: the more loaded a machine, the greater the risk of
performance issues or failures.

Definition 2 (Reliability Cost) A machine m € M is reliable if it is not loaded more
than a reliability value p (m, r) for each resource r € R, and we compute a reliability
cost of m, p(m), as:

p(m) = Zmax 0, Z dpr — p(m,r) (6)

reR peP | Mo(p)=m v M(p)=m

If the safety capacity’ of m for the resource r is higher than the sum of the demands,
then it does not impact the safety of the machine.

Migrating a process has a cost which is often neglected by research in the area
but is well known by practitioners (Voorsluys et al. 2009). Basically, this consists of
the time needed to prepare a process p for a migration (i1 (p, My(p))), to transfer p
(u2(p, My(p), M(p))) and to install p on a new machine (u3(p, M(p))). All these
costs are dependent on some process parameters (e.g., size of the data stored on disk
and RAM, complexity of the installation) and topology parameters (e.g., number of
hops, bandwidth), that we do not evaluate in this paper.

Definition 3 (Migration Cost) The cost of migrating a process p € P from a machine
Mo (p) to a machine M (p) is defined:

w(p, My(p), M(p)) = u1(p, Mo(p)) + p2(p, Mo(p), M(p)) + u3(p, M(p)) (7)

Electricity cost of running machines accounts for up to 50% of their operating
costs (Filani et al. 2008) and it is a burden for countries’ electricity production systems:
in 2007, Western European data centres consumed 56 TWh of electricity, and this is
expected to double (104 TWh, or about 4 times the annual production or Ireland) by
2020 (Commission 2007). There is a global trend towards more greener and power-
aware practices, and this will certainly lead to an increase in the electricity price and
other incentives for data centre managers to minimise their electricity consumption.
Modelling electricity cost is complex but we follow the general assumption that states
that it is a linear function of its CPU usage (Xu and Fortes 2010; Lien et al. 2007). We
then just define two parameters, «,, (linear factor) and B, (fixed cost of running m
with any given load on the CPU) for every machine m. This does not take into account
other elements that may be relevant but are somehow out of the scope of our study
here (e.g., cooling of data centres).

3 The concept of safety capacity is introduced in the Google/ROADEF/EURO challenge (2012): if one or
several resources of a machine are over-loaded then the machine may not be able to satisfy its SLAs.
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Definition 4 (Electricity Cost) The electricity cost of a machine m € M in the location
| € L depends on the variables «,,, B, (electricity consumption constants) and y;
(electricity cost in /), and is expressed by the following formula:

vy x|omx > dp.cru + ,3m> if m is running
€(m) = ( pePIM{p)=m ®)

otherwise

Note that a machine m € M is considered running if at least one process is
reassigned to it. Conversely, a machine m € M is considered off if and only if
no process is reassigned to it.

4 Description of our solution: GeNePi

GeNePi applies successively three optimisation algorithms: GRASP (modified),
NSGA-II and PLS. This idea of using three steps has successfully been used in differ-
ent (Saber et al. 2018a; Gandibleux 2017) areas for an approximate problem resolution,
but is new in the domain of machine reassignment and not implemented in an exact
way.

4.1 Ge: a variant of the constructive phase of GRASP

We use a variant of the constructive phase of Greedy Randomized Adaptive Search
Procedure (GRASP) (Feo and Resende 1995). Solutions are generated by trying to
reassign processes one after the other, according to a greedy heuristic which is slightly
relaxed to include a random factor. This method is commonly used for combinatorial
problems and applied to get some quick initial solutions with good objectives. After
ranking the processes according to their dependencies (if a service s» which contains
a process pp depends on a service s; which contains a process pi, then the process p»
is ordered after p;) and their resource requirements (a process with a larger resource
needs is ordered before a process with a smaller resource needs), they are selected
one by one. A decision of reassigning one per cent of the processes from their initial
hosts has been taken, because of the tightness of transient resource constraints that
limits the number of reassignments. We have noticed that without such a restriction,
most of the generated reassignments were unfeasible due to the violation of transient
constraints. Setting this one per cent limit reduces the number of transient constraint
violations and allows the generation of more feasible solutions. While this limit seems
restrictive and looks like a handicap, we saw interesting performance achievements
by Ge against the regular GRASP (see Sect. 6). Furthermore, this limit is dropped
in the following phases of GeNePi, which allows the second phase to compensate
for this restriction. Note that setting this value did not undergo a full-scale parameter
optimisation sweep. We believe that a better tuning of this parameter will likely yield
amore significant performance improvement. The choice of the reassignment of every
process is based on a linear combination of the three utility/objective functions (one
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per objective). Even if a linear combination of these utility functions allows us to
go beyond the objective types barrier, its static definition induces getting solutions
with them same objectives level of interest. This behaviour goes against the aim of
a multi-objective optimisation. That is why we adopted a panel of triplet weights
(Ai, Aj, Ag) in 0, 13, with apg = 1 — A; — Aj. They are chosen in such a way they
cover a maximum search space by optimising the objectives separately in addition to
their trade-offs. They will be used to introduce a diversification in the interest of each
objective, ensuring a trade-off between them. The random part of GRASP lays in the
assignment of a machine to each process, at each iteration. For each process, a set of
assignable machines RM that respect the constraints is computed. A utility value U/"
is also calculated for each machine m € RM which captures the effect of assigning
the process p on m with respect to the objective i € {1, 2, 3}. Then, a utility value U™
(the lower the better) is assigned to every machine m € RM using a weighted-sum:
Z?: 1 A;U". We consider minU and maxU as respectively the lowest and largest
utility obtained by any machine m € RM. Therefore, we define a set of interesting
reassignable machines / RM as the machines that belong to RM and have a utility
lower than or equal to (minU + (1 —r) % [maxU —minU]), withr € [0,1]. A
machine is randomly selected from this set of interesting machines I R M to assign the
process to it. During the assignment, it may happen that a process has no machine able
to host it. The solution is declared infeasible, and removed from the initial solutions.
Globally, at the end of this step, we expect to have a set of decent solutions spread
over the search space.

4.2 Ne: NSGA-II

We use for this step a genetic algorithm called Non-dominated Sorting Genetic
Algorithm-11 (NSGA-II) (Deb et al. 2002). This step is useful for the improvement of
the Pareto set* obtained from the first step. This metaheuristic allows to get a good
dissemination of the solutions around the Pareto frontier and prevent their accumula-
tion in some area of the search space. Hopefully, it allows GeNePi getting a smooth
frontier and increases the number and the quality of the non-dominated solutions. It
is a genetic algorithm, i.e., it runs an evolutionary process which matches individuals
(i.e., solutions or assignments) at each generation and mixes their features (as the
biological evolution would do with genes). The two main actions are crossover which
mixes genes from two parents, and mutation that randomly creates individuals with
new features. There exist several ways of doing crossovers, which is more or less a
cut and paste operation where assignments in the set of actual solutions are split into
regular length segments and swapped with one another (Falkenauer 1998). In our case,
crossovers consider the exchange of services (i.e., exchanging the assignments for all
the processes belonging to a same service s between the two given solutions a; and a;
by swapping the assignments of every process p; in s from the solution g; with the pro-
cess p; in s from the solution a;) rather than blocks of process assignments—which
minimises the number of crossovers that generate infeasible solutions. Of course the
diversity is less than with crossovers on processes, but we compensate with a bigger

4 Pareto set: a set of non-dominated solutions (i.e., better than all other solutions in one or more objectives).

@ Springer



130 T. Saber et al.

probability of mutations (i.e., random assignments in solutions to see whether this
improves the utilities). After a generation has “passed”, some new individuals are kept
(usually the fittest, those with the best objective values: low domination rank, but also
some other that allow introducing some variety: high crowding-measure (Deb et al.
2002)), and others are suppressed. Hence the global population of assignments only
improves (descendants worse than their parents are likely to be suppressed). Besides,
last generations tend to be well distributed over the Pareto frontier.

4.3 Pi: a Pareto local search

Finally, we try to improve the Pareto set by using a Pareto Local Search (PLS) (Alsheddy
and Tsang 2010). It consists of applying several local search operators on the solu-
tions belonging to the Pareto frontier. Few simple moves are chosen from the work of
Gavranovi¢ et al. (2012) to analyse the neighbourhood of actual solutions: (i) swap,
i.e., taking two processes and exchanging their assignments; (ii) 1-exchange, where
one process at a time is selected and reassigned to any machine that accepts it; (iii)
shift, where processes belonging to the same service are reassigned to the machine of
their following process in a chain rotation fashion (which maintains the satisfaction
on the dependency constraints). These moves allow probing of a large neighbourhood
around the current solutions, which may generate some redundancies if the solutions
are close of one another. To overcome this problem, we generate boxes by clustering
solutions and apply a local search to the most isolated solution in each of them (i.e.,
has the largest crowding-measure value). Only one neighbourhood is generated for
every selected solution at every iteration, even if new interesting solutions have been
found. This balances the improvement and reduces the execution time as redundancy
is less likely.

Figure 2 is a flowchart which shows the composition of GeNePi as three successive
steps. GeNePi receives a model of the MOMRP instance in addition to the initial
assignment. GeNePi uses Ge (a modified version of GRASP) as an initial step to
generate multiple solutions. Then, the best solutions among them (based on the ranking
and crowding metrics) are sent to Ne (an implementation of NSGA-II) to perform an
evolutionary process and get better solutions. The best solutions that result of Ne are
fed to the third and last step (i.e., Pe) which performs a PLS on some of the Pareto
solutions. All the non-dominated solutions that are found after Pe are returned by
GeNePi to the decision-makers as the final set of non-dominated solutions.

5 Experimental setups

In this section, we evaluate the performance of our solution against other state-of-
the-art multi-objective reassignment solutions, using several metrics: time, quantity
(number of solutions) and quality of solutions (hypervolume). We create a benchmark?
inspired by the ROADEF Challenge (2012).

5 Available at: http://galapagos.ucd.ie/wiki/OpenAccess/Saber2019Dataset MOMRP.
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Fig.2 Overview of the different components of GeNePi

5.1 Experimental setups

The ROADEEF challenge (2012) is particularly suited to our needs, as it is rather real-
istic (proposed by Google) and it is quite comprehensive: a lot of resources for the
machines/processes while many papers in the area only consider two (namely, RAM
and CPU), reasonably high number of machines and processes, complex dependen-
cies and constraints on the services and processes which make the assignments not
straightforward. The ROADEF dataset distinguishes three categories of instances (a_1
are considered ‘easy’, a_2 ‘medium’ and b ‘hard’).

In this paper, we pick up 14 instances (see Table 1), leaving out only the biggest
ones (as they require a large execution time). We have added variables «,,, and B, to
each machine m € M, and y; for every location / € £ in order to include electricity
consumption. All our algorithms have been developed in C++. Experiments were
run on a computing cluster with 24 cores 2.0GHz Intel Ivy Bridge CPU and 128GB
of RAM. Furthermore, experiments with algorithms having random parameters (all
algorithms except the exact e-Constraints method) were repeated 10 times. Note that
all our algorithms are fully sequential and do not take advantage of this parallelism
with the exception of the e-Constraints method which uses a mono-objective solver
(i.e., CPLEX) that has enabled multi-processing capabilities.

5.2 Metrics

Comparing multi-objective optimisation approaches is complex as the set of solutions
they give on a problem can be seen from different perspectives: coverage, closeness to
the Pareto frontier, variety, and many more (Zitzler et al. 2002). The problem probably
comes from the fact that the Pareto frontier is unknown most of the time, and that the
different objectives cannot be taken in isolation to give the quality of any solution.
In this paper, we decided to take only a few unary operators as metrics (for a more
comprehensive study of the various possible operators, see Zitzler et al. 2003): unary
as they take a set of solutions and give a single value, allowing to compare the different
approaches.
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Table 1 The dataset used for our evaluation (ID and size of the different instances)

Instance IR| |TR| IM]| L] |S| |P| IV |D|
a_1_1 2 0 4 4 79 100 1 0
a_l.2 4 1 100 4 980 1000 2 40
a_1.3 3 1 100 25 216 1000 5 342
a_l 4 3 1 50 50 142 1000 50 297
a_l_5 4 1 12 4 981 1000 2 32
a2 1 3 0 100 1 1000 1000 1 0
a2?2 12 4 100 25 170 1000 5 0
a23 12 4 100 25 129 1000 5 577
a2 4 12 0 50 25 180 1000 5 397
a5 12 0 50 25 153 1000 5 506
b_1 12 4 100 10 2512 5000 5 4412
b_2 12 0 100 10 2462 5000 5 3617
b_3 6 2 100 25 15,025 20,000 5 16,560
b_4 6 0 500 50 1732 20,000 5 40,485

|R|: the number of resources, |7 R|: the number of transient resources, |M|: the number of machines, |L|:
the number of locations, |S|: the number of services, |P|: the number of processes, |N|: the number of
neighbourhoods, and |D|: the number of dependencies

The first metric we use is the number of non-dominated (efficient) solutions and we
refer to it as the quantity of solutions in the non-dominated set. Finding a large number
of solutions is always better as it provides more alternatives to the decision-makers.

The other metric is the hypervolume (also known as the S metric) and was introduced
by Zitzler and Thiele (1998). We sometimes call it quality of the solutions. This is a
widely used metric in the area of optimisation to evaluate the performance of multi-
objective algorithms that aims at understanding how the output sets are spread in
the different dimensions. In short, the hypervolume measures the space (in the n
dimensions of the n objectives) defined by the set of non-dominated solutions and
a reference point, picked in the space as far as possible from the Pareto frontier.
The bigger the hypervolume, the more interesting are the solutions in the found non-
dominated solutions set, as they increase the dominated area. Fleischer (Fleischer
2003) proved that the maximisation of the hypervolume is equivalent to finding the
optimal Pareto frontier. Note that in order to compare the result sets of different
algorithms, we use the same reference points for each instance of the MOMRP.

5.3 Algorithms

In our study, we compare four different types of algorithms against the baseline results
when only considering the initial assignment (called Initial), running for the same
period of time. The first algorithms are from the First Fit family. These heuristics
are designed for Vector Bin Packing (Panigrahy et al. 2011) and they are considered
efficient. Each of them uses an ordered sequence (by resource demands) of processes
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they aim to place on machines as input. We chose among them First Fit (FF) which
selects the first machine that fits for every process; Random Fit (RF) which selects
randomly a machine among those which fit; and First Fit Descent Bin-Balancing (BB)
which selects the least loaded machine for each process.

The second set of algorithms is the state-of-the-art solutions from the multi-
objective optimisation field. The first of them is GRASP in its original definition,
i.e., the choice of reassigning processes to machines is based on a uniform probability
distribution of the possible machines. We also evaluate the first step of GeNePi (Ge)
as it is a variation of GRASP that we expect to be better than GRASP for our scenario.
The last algorithm in this family is a Pareto Local Search (PLS), with a number of
boxes at every iteration equals the number of solutions in the non-dominated solutions
set. Notice that we do not compare to a genetic algorithm (alone) here as we observe
that running one (e.g., NSGA-II) with a random generation of its initial population
could not make any improvement over the initial solution. The seed, i.e., the initial
population’s individuals are important for genetic algorithms.

The third set consists of the state-of-the-art mono-objective machine reassignment
algorithm that was designed for the Google/ROADEF/EURO 2012 challenge, i.e.,
Constraint-Based Large Neighbourhood Search (CBLNS) (Mehta et al. 2011). More
precisely, we use the finely tuned version of the algorithm (Malitsky et al. 2013) which
achieves near-optimal results. As its name indicates, CBLNS is a hybrid algorithm
which uses a combination of Large Neighbourhood Search metaheuristic (LNS) and
Constraint Programming (CP). CBLNS is not multi-objective (which is also the case
for other algorithms used for the ROADEF challenge) and it cannot be applied directly
to our multi-objective problem. To cope with this, we adapted CBLNS and came up
with a ‘weak’ multi-objective version using a weight-sum with a vector of equal
weights.

We also evaluate different hybrid metaheuristics: (i) GrNe where we reserve a third
of the execution time to GRASP in order to create an initial population and run NSGA-
IT'in the two remaining thirds of the execution time, (ii) GeNe with an initial population
obtained with our adapted greedy algorithms (i.e., Ge), and (iii) GeNePi with its three
successive steps.

5.4 Statistical analysis and tests

To validate the significance of our comparison, we perform the non-parametric two-
tailed Mann-Whitney U test (MWU). For two distinct algorithms, MWU takes in
the different performance values obtained on a given metric from each run (in our
case 10). MWU returns the p-value that the algorithms obtain different values. We
consider tests to be significant when the p-values are below the 0.05 significance
level. Furthermore, given the small number of runs in our experiment (due to the
long time each of them takes), and in order to reduce the chances of having incorrect
rejection of the true null hypothesis, we use a conservative but safe adjustment (i.e.,
the standard Bonferroni adjustment (Arcuri and Briand 2011)) which lowers the risk
of their erroneous rejection. Moreover, following the advice in the practical guide
proposed by Arcuri and Briand (2011), we measure the effect of size using the the
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non-parametric A, (Vargha and Delaney 2000) which evaluates the ratio of runs from
the first algorithm that outperform the second one. In the literature, it is considered
that when A1, is above 0.71 that differences between the algorithms are large. Given
that these significance tests can only be performed on two algorithms at a time, and
to avoid the combinatorial explosion when reporting the results in our manuscript, we
only report the results for GeNePi against the other best algorithm.

5.5 Tuning the steps of GeNePi

Each of the three steps composing GeNePi has several parameters that need to be
tuned, and globally we need to decide how many iterations or how much time we
allocate to each of them to make the best use of each. Note that our tuning has been
done on one instance (a_1_5), as tuning is computationally expensive and we think
the conclusions can be extended to the process in general.

The first step of GeNePi is Ge (based on GRASP), which has only one value to
tune: «, the factor leading to more randomised greedy search (bigger «) or local search
(smaller ). We conducted a thorough evaluation of the impact of different values of
o from 0.05 to 0.95 (repeated 10 times for each value).

Figure 3 shows the average hypervolume obtained using Ge over 10 runs on instance
a_1_5 when setting the parameter « to different values ranging from 0.05 to 0.95. We
see that low values of « lead to a bad hypervolume and that the hypervolume increases
until @« = 0.6 before decreasing slightly. Therefore, the best value of o seems to be
0.6 regardless of the number of iterations.

For Ne (i.e., NSGA-II), we combined 9 possible values {0.1,0.2, ..., 0.9} for P.
and P,,, obtaining 81 different variations of the parameters (we again run 10 times
each combination).

Figure 4 shows the average hypervolume obtained using GeNe over 10 runs on
instance a_1_5 when setting o to 0.6, size of the population to 50 and the number of
iterations to 100, while varying both P, and P,, within the interval [0.05, 0.95]. Since
results with P, < 0.5 and P, > 0.8 are not good and for readability, we only show
the evolution of the hypervolume for 0.5 < P, < 0.8.

We realise that P, (the probability of crossover) values between 0.6 and 0.7 give
better results, while the impact of P,, (the probability of mutation) seems less important
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Fig.4 Average hypervolume
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Table 2 Parameters for the different steps of GeNePi after a tuning study
Ge (1st step—GRASP) Ne (2nd step—NSGA-II) Pi (3rd step—PLS)
o 0.6 Probability of crossover 0.6 # zones (# boxes) 10
| Al 4 Probability of mutation 0.2 # iterations 1
# iterations 100 Size of population 50

# iterations 100

between 0.1 and 0.3. However, 0.2 gives slightly better results. We then decided to
use P, =0.6and P, = 0.2.

Pi has only one parameter that we can tune here: the number of zones (boxes)
that it can explore. This number of zones has an impact on the quality of the Pareto
frontier, and hence on the hypervolume. A small number of zones means less neigh-
bourhood probing, but also less redundancy and execution time, while more zones
allow analysing more neighbourhoods (and to find more solutions) but there is a cost
in redundancy and execution time. After performing a limited parameter sweep, we
decided to use 10 zones to search for potential local non-dominated solutions as this
value seems to be a good trade-off between finding more non-dominated solutions and
keeping the execution time low.

Table 2 summarises the tuning parameters for each step of GeNePi that we define
to provide decision-makers with a set of good solutions, covering the solutions space,
in a reasonable time.

6 Evaluation of GeNePi against other heuristics

In this section we compare our solution, GeNeP4i, against other heuristics (see Sect. 5.3)
in terms of quality (hypervolume) and quantity of solutions.

Table 3 summarises our evaluation, for all instances, all algorithms and both metrics.
We also put in bold the best value for each instance and each metric. Note that all
comparisons between GeNePi and the other best algorithm on every instance and
metric have an adjusted Bonferroni MWU value less than 5% and an Ay, score of 1.
At first glance, we see that GeNePi outperforms other algorithms in both number of
solutions and hypervolume.
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First Fit family algorithms (i.e., RF, FF and BB) only work on less constrained
problems as they tend to reassign many processes to machines different from their
initial ones—which is likely to generate constraint violations.

The same behaviour is observed for GRASP, which tends to reassign several pro-
cesses. GRASP generates a lot of solutions, but most of them end up being infeasible
and violating one or several constraints. Ge, the first step of GeNePi gets a good hyper-
volume but not an outstanding number of solutions. This was expected as it is only
an improvement of GRASP which itself suffers from a lack of solutions. Results for
PLS are contrasted as they can be good in terms of quantity (better than Ge at times)
but are poor in terms of quality.

GrNe, being dependent on the quality of the initial population, performs badly
as genetic algorithms require a good initial population to perform well. GeNe takes
advantage of the improvement made to GRASP by Ge to find ‘good’ and diverse
solutions as an initial population. CBLNS finds new non-dominated reassignment
on all instances. However, their overall hypervolume is at the same level as Ge on
average. GeNePi is by far the best algorithm, and we explain it by the composition of
its elements: Ge (i.e., modified GRASP) finds a large number of solutions in multiple
directions of the search space, allowing Ne (i.e., NSGA-II) to operate properly and to
find new solutions that balance all the objectives, while PLS, the last step, increases
the number of solutions around the previously found ones.

Table 4 summarises the improvement of GeNePi in comparison to the second best
algorithm on both hypervolume and number of non-dominated solutions. We show
these results with the hybrid methods (comparison done against all algorithms includ-
ing those combining more than one technique, i.e., GrNe, GeNe and CBLNS) and
without the hybrid methods (comparison done only against algorithms composed of
one technique, i.e., RF, FF, BB, GRASP, GE and PLS).

Table 4 shows that GeNePi significantly outperforms all non-hybrid algorithms
with an increase of nearly 400% in non-dominated solutions and of more than 100%
in hypervolume on average. It also shows that GeNePi achieves at least an improvement
of 50% in terms of number of non-dominated solutions and at least more than 49% in
terms of hypervolume against these same non-hybrid algorithms.

Table 4 shows that GeNePi also outperforms hybrid metaheuristics on every single
instance, both quantitatively (more than 108% non-dominated solutions on average)
and qualitatively (more than 15% increase in hypervolume on average).

One of the challenges here is that the execution time is limited: even if the reas-
signment is done on a monthly or a quarterly basis, as it often happens, the decision
process is complex and decision-makers cannot wait more than a few hours or days:
they verify and modify the solutions to suit their needs before making any decision.

Table 5 shows the average execution time over 10 runs of the studied algorithms on
the different instances to obtain the aforementioned results (i.e., shown in Table 3). We
notice that GeNePi works in a short time for the easy and medium instances, and in a
reasonable time for the bigger ones. The 17 hours of running GeNePi for the biggest
instance we consider (b_4) are totally justified if this can save money, increase the
reliability and do not put the data centre at risk by performing too many migrations.
Especially as GeNePi can give 118 solutions for this instance, i.e., 118 options for the
operators to make the most informed decision.

@ Springer



A comparative study of multi-objective machine... 139

Table 4 Summary of the improvement (in per cent) obtained using GeNePi on both number of non-
dominated solutions and hypervolume when applied on the different ROADEF instances

% Improvement of GeNePi against 2nd best algorithm

# Solutions Hypervolume

w/o hybrid w hybrid w/o hybrid w hybrid
a_l_1 157.47 111.32 63.15 11.90
a_l_2 600.00 313.64 76.91 21.05
a_1_3 594.74 355.17 49.46 15.26
a_l 4 240.00 81.33 77.80 2.95
a_l5 475.51 151.79 129.22 46.25
a2 1 234.78 51.97 5791 8.28
a22 795.45 380.49 78.39 11.53
a23 201.49 201.49 87.04 12.18
a2 4 803.57 216.25 120.90 17.26
a_2.5 685.71 189.47 155.54 11.29
b_1 520.51 317.24 139.64 10.13
b_2 1,204.35 222.58 91.28 23.59
b_3 50.00 50.00 139.64 7.00
b_4 436.36 280.65 150.00 25.00
Average 400.00 108.81 101.18 15.98

The table includes results with (w) and without (w/o) taking into account hybrid algorithms

Table5 Average execution time

(s) of GeNePi over 10 runs and Instance a_l_1 a_1.2 a_1_3 a_l_4 a_l_5

other evaluated algorithms on Time (s) 2 3106 441 309 332

the different instances Instance a2l a2?2 a?23 a2 4 a5
Time (s) 3905 600 695 342 347
Instance b_1 b_ 2 b_3 b_4

Time (s) 14,991 10,028 39,596 63,535

To give the reader a sense of what happens during the optimisation of the different
algorithms, we plot the hypervolume improvement curve for the different instances and
the different algorithms. Each point corresponds to one or several new non-dominated
solutions found (with the timestamp of this new solution in the x-axis and the new
hypervolume of the solution set in y-axis). We especially want to see here the relative
impacts of the 3 phases of GeNePi.

Figure 5 shows the average hypervolume improvement curves of the different algo-
rithms on the different instances.

We see from Fig. 5 that algorithms from the First Fit family are only making some
improvement for a limited number of instances.

GRASP has a somewhat similar behaviour, but achieves a better improvement
when it can make any. PLS finds many solutions, but they are somehow local and thus
have a marginal impact on the hypervolume in most instances. Ge brings a very good
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Fig.5 Average hypervolume improvement curves of the different algorithms over 10 runs on the different
instances
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improvement at the beginning (in the first third of the execution time), but finds fewer
solutions for the last 2 thirds of its execution time.

GrNe is penalised by the poor initial population obtained from the GRASP step,
thus taking a large time to reach a significant hypervolume. CBLNS shows a slow
but steady improvement of the hypervolume in the first half of the optimisation, but
we notice a quasi-stagnation after that due to the optimisation in one direction of the
search space. Algorithms which have the component Ge (i.e., GeNe and GeNePi)
show a good improvement in hypervolume at the beginning. However, they cope with
the lack of information between the different steps, by substituting Ge with a genetic
algorithm (i.e., NSGA-II), which shows huge improvements in hypervolume in a short
amount of time. However, in the same way as Ge, GeNe also plateau in most instances,
which makes sense to have a wisely used local search as a third component (such as
in GeNePi).

7 Evaluation of GeNePi against an exact resolution

In this section we compare the performance of GeNePi against an exact resolution
algorithm.

The aim of the multi-objective resolution is to find optimal non-dominated solutions
(Pareto optimal), which are solutions that cannot be strictly dominated by others. There
exist three different definitions of Pareto optimality (i.e., Pareto optimal, Weakly Pareto
Optimal, and Properly Pareto Optimal). These three types of Pareto optimality have
been defined by Marler and Arora (2004).

Based on the aforementioned definitions, the optimal non-dominated set can be
either (i) maximal: all the respective solutions of every image (codomain, or the objec-
tive values for the given placement) in the objective research space, (ii) minimal: one
solution for each image, or (iii) supported: only the solutions that have their image in
the convex hull of the objective search space.

Visée et al. (1998) showed on a knapsack problem that the number of supported
solutions grows linearly with the size of the problem, whereas the maximal non-
dominate set grows exponentially. Furthermore, finding multiple solutions with the
same objectives values might be interesting from an engineering point of view, but not
ideal for comparison purposes (the quality of the Pareto front is not improved when
finding multiple non-dominated solutions with the same objective values). Therefore,
we chose to use the most common definition of Pareto optimality (i.e., Pareto optimal)
and seek for the Minimal Optimal Pareto Front (Fig. 6).

Several methods exist in the literature to find the minimal optimal Pareto
front. In this paper we chose to compare our algorithm against the e-Constraints
method (Mavrotas 2009). In addition to finding the entire Pareto front (not only solu-
tions in the convex hull), the e-Constraints method does not need to aggregate the
objectives. It keeps the objectives of different types and scales independent through-
out the resolution.
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Fig.6 Execution time in number of days of the e-Constraints method on the ROADEF instances

7.1 Description of the e-constraints method

e-Constraints method is based on the transformation of multi-objective problem into
several mono-objective ones, by considering only one of the objectives and transform-
ing the others as constraints bounded by a vector of values £.

Let assume the following multi-objective problem:

min (f](x), fZ(-x)a f3(x)) (9)
s.t. xeX.

where f;, i € {1, 2, 3}, are three objective functions to be minimised, and &’ is the
set of feasible solutions represented in a form of a vector of decisions x.
After converting the model (9) into the following model:

min  f1(x)

st fo(x) <e
f3(x) < e (10)
x e X.

e-Constraints method solves iteratively different instances of (9) using a succession
of £ = {e7, €3} vectors, which probe the entire Pareto optimal front.

7.2 Implementation of our problem with e-constraints

We have implemented the e-Constraints method on our problem considering the objec-
tives mentioned in Sect. 3 (i.e., Reliability Cost, Migration Cost and Electricity Cost).
The nature of the reliability and the migration costs (i.e., integer values), makes it
easier to set an adequate ¢ for each of them (setting it to the last value of the objec-
tive minus one). However the electricity cost is a real value, which makes finding a
suitable € impossible without taking a risk of either not finding all the non-dominated
solutions (if € is set to be too large) or having computational rounding errors (if € is
set to be too small). That is why we choose to always keep the electricity cost as the
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main optimised objective, while generating constraints from the other objectives with
variable € values.

7.3 CPLEX solver

In our implementation of the e-Constraints method, we exploit the linear aspect of
our problem while solving iterative mono-objective problems. We use one of the best
MILP solvers on the market: /IBM ILOG CPLEX. In addition to its performance in
comparison to other MILP solvers, CPLEX has the advantage of solving problems in
a parallel fashion. Thus, fully exploiting the execution environment (i.e., one node of a
computing cluster with 24 cores 2.0GHz Intel Ivy Bridge CPU and 128GB of RAM).

7.4 Results obtained using e-constraints

We run e-Constraints on all instances used in the previous section, for a maximum
of 30 days, and we extracted performance counters every 10 days. We notice from
Table 6 that we only get optimal/complete Pareto front for four instances out of 14
during the 30 days (i.e.,a_1_1,a_1_5,a_2_1,b_1).

Table 6 shows the results in terms of hypervolume and number of non-dominated
solutions obtained when running the e-Constraints method on the different instances.
The hypervolume is measured every 10 days for a duration of 30 days. We see
that results obtained after 10 days of execution time for both hypervolume and
number of non-dominated solutions are very high in comparison to the initial assign-
ment/placement. However, this improvement depends on the instance we are trying to
solve as the required execution time for solving the iterative mono-objective problems
differs from an instance to another. The difference in execution time per mono-
objective problem can be noticed based on the number of new solutions found by
e-Constraints on the different instances at a given timestamp. We also notice that both
the quantity of solutions and their respective quality keep increasing with the execu-
tion time, which indicates that e-Constraints finds more solutions on the Pareto front.
However, we see that this increase in hypervolume is not linear. This is due to the
fact that the iterative mono-objective problems take more time to be solved optimally
using CPLEX. It is also due to the fact that they are located close to each other, making
the increase in hypervolume marginal (Fig. 6).

Table 7 shows a comparison of GeNePi and e-Constraints: the numbers say how
much (percentage) of the optimal solution found (within the 30 days) GeNePi per-
forms. A number lower than 100 means that GeNePi does not reach the value of the
exact resolution, while a number bigger than 100 means GeNePi outperforms the exact
resolution. Table 7 shows that GeNePi outperforms e-Constraints in terms of number
of non-dominated solutions with respectively more than 364% (10 days), 241% (20
days) and 188% (30 days). However if we take a look at the different instances in
more details, we observe that GeNePi does not always outperform e-Constraints (e.g.,
GeNePi does poorly on a_2_2 and a_2_3). It also shows that GeNePi gets a good
hypervolume compared to e-Constraints reaching more than 70% of e-Constraints’
hypervolume after 10 days. Moreover, GeNePi’s good performance w.r.t. e-Constraints
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Table 6 Number of non-dominated solutions (#sol) and hypervolume.10¥ (hyp) for GeNePi and e-
Constraints on the different instances

Initial GeNePi e-Constraints
10 days 20 days 30 days
a_l_1 #sol 1 224 1280 — -
hyp (el5) 3.34 3.98 9.55
a_l?2 #sol 1 182 37 54 78
hyp (e16) 7.49 9.22 9.99 10.06 10.12
a_l1.3 #sol 1 132 83 152 212
hyp (e16) 4.17 4.32 4.75 4.79 4.8
a_l 4 #sol 1 136 80 149 223
hyp (e16) 9.72 12.17 12.59 12.79 12.89
a_l>5s #sol 1 282 56 - -
hyp (el8) 2.42 3.15 4.12
a2 1 #sol 1 231 109 — -
hyp (e19) 4.57 5.93 6.25
a2?2 #sol 1 197 2994 4005 6603
hyp (e20) 1.33 1.72 2.77 2.81 2.88
a23 #sol 1 202 2890 3421 4173
hyp (e18) 2.02 2.66 2.93 2.94 2.95
a2 4 #sol 1 253 615 1034 1440
hyp (e18) 6.42 9.07 11.43 11.82 12.02
a2s5 #sol 1 220 1355 2478 3516
hyp (el8) 9.91 10.9 12.68 13.02 13.24
b_1 #sol 1 242 272 — -
hyp (e20) 8.20 8.53 10.15
b_ 2 #sol 1 300 31 61 89
hyp (e21) 1.43 1.53 1.52 1.52 1.53
b_3 #sol 1 162 246 478 714
hyp (e21) 6.25 6.3 7.04 7.05 7.06
b_4 #sol 1 118 5 8 11
hyp (e21) 3.65 3.7 3.66 3.69 3.69

— Indicates that the execution of e-Constraints finished

does not decrease over time: GeNePi still gets 54.85% after 20 days and 51.54% after
30 days of running e-Constraints.

Table 8 summarises the execution time of both GeNePi and e-Constraints. It
also includes the average execution time per solution found during the e-Constraints
method, when run for 10, 20, and 30 days. We see that GeNePi is 1000 times faster on
average than e-Constraints, without taking into account instance a_1_1, and almost
23,000 times faster on average when considering all the instances. It also shows that
despite having a big variation in the execution time ratio, GeNePi is always faster than
e-Constraints with at least one order of magnitude. It is even faster than a single solu-
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Table7 Comparison of GeNePi and e-Constraints, the latter running for 10, 20 and 30 days for both number
of non-dominated solutions and hypervolume on the different instances

Performance of GeNePi: % of the results of e-Constraints

# Solutions Hypervolume

10 days 20 days 30 days 10 days 20 days 30 days
a_1_1 17.50 17.50 17.50 22.49 22.49 22.49
a_l_2 491.89 337.04 233.33 69.10 67.42 65.67
a_1_3 159.04 86.84 62.26 26.00 24.31 23.76
a_l 4 170.00 91.28 60.99 85.48 79.90 77.19
a_l1_5 503.57 503.57 503.57 42.87 42.87 42.87
a2 1 211.93 211.93 211.93 80.71 80.71 80.71
a22 6.58 4.92 2.98 27.04 26.33 25.23
a23 6.99 5.90 4.84 70.50 69.21 68.65
a2 4 41.14 24.47 17.57 52.95 49.09 47.29
a_2.5 16.24 8.88 6.26 34.29 30.57 28.51
b_1 88.97 88.97 88.97 16.93 16.93 16.93
b_2 967.74 491.80 337.08 112.41 107.57 101.55
b_3 65.85 33.89 22.69 6.37 6.24 6.19
b_4 2360.00 1475.00 1072.73 340.64 144.18 114.51
Average 364.82 241.57 188.76 70.56 54.85 51.54

A number lower than 100 means GeNePi is outperformed by e-Constraints

tion found by e-Constraints in 9 instances out of 14, and always within the same order
of magnitude in the rest of the instances. This shows that GeNePi is getting not only
good results, but also with an execution time that is either faster than or in the same
order of magnitude as solving one mono-objective problem (i.e., only one solution
of e-Constraints) with one of the best commercial MILP solvers (i.e., CPLEX) while
running on a cluster node. We also notice from Table 8 that e-Constraints average
execution time per solution increases over time. This consolidates the aforementioned
result that the iterative mono-objective problems get harder to solve over time.

8 Conclusion

Reassigning processes to servers automatically is complex (a lot of dimensions and
constraints), large-scale for most of the real instances (data centres are usually big
computing facilities) and needs to consider different objectives.

Multi-objective approaches are good when the set of possible solutions is large and
extracting the ‘best solution’ is difficult. In this case, the system needs to be assisted by
decision-makers who can evaluate the different solutions with respect to their value in
the different dimensions of the problem. Here, we defined the machine reassignment in
the three-dimensional space defined by: (i) reliability of the assignment, (ii) migration
cost of the reassignment, and (iii) energy consumption of the assignment.
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In this paper we define the multi-objective machine reassignment problem and
compare different algorithms: classical heuristics, metaheuristics and hybrid meta-
heuristics. In particular GeNePi, a hybrid metaheuristic based on three successive
optimisation steps: Ge, a variant of the constructive phase of GRASP, which aims at
finding an initial population with solutions representing every objective; Ne, based on
a genetic algorithm called NSGA-II that mixes solutions of the initial population and
tries to find new solutions (more diverse ones); and Pi a local search that looks for
more solutions in the neighbourhood of those that GeNePi has already found.

We showed on a large experimental validation that GeNePi outperforms other non-
hybrid algorithms: it finds 4 times more non-dominated solutions that are scattered
over more of the search space (hypervolume is more than 100% better)—which is
desirable as we want to offer decision-makers a large variety of different solutions.
GeNePi also outperforms other hybrid metaheuristics (it finds more than double the
amount of non-dominated solutions and achieves a better hypervolume with over 15%
on average). A comparison of GeNePi against one of the well-known exact methods
for solving multi-objective problems (i.e., e-Constraints) shows that GeNePi gets more
than 188% non-dominated solutions and a hypervolume of more than 21% on average
than e-Constraints when it is run for 30 days. At the same time, GeNePi succeeds in
keeping its execution time relatively low. GeNePi is tens of thousands of times faster
on average than e-Constraints, and even faster or on the same order of magnitude as
one single mono-objective optimisation of the same problem.

There are three directions that we would like to explore further in the future: (i)
the sensitivity of GeNePi to the parameter tuning, (ii) electricity consumption which
will need to incorporate more parameters (such as cooling of data centres) and (iii)
Service Level Agreements.

Acknowledgements This work was supported, in part, by Science Foundation Ireland (SFI) grant
13/IA/1850 and grants 10/CE/I1855 and 13/RC/2094 to Lero-the Irish Software Research Centre (www.
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