
Vol.:(0123456789)

Genetic Programming and Evolvable Machines (2019) 20:245–283
https://doi.org/10.1007/s10710-019-09346-4

1 3

A multi‑level grammar approach to grammar‑guided
genetic programming: the case of scheduling
in heterogeneous networks

Takfarinas Saber1 · David Fagan2 · David Lynch2 · Stepan Kucera3 ·
Holger Claussen3 · Michael O’Neill2

Received: 29 June 2018 / Revised: 16 February 2019 / Published online: 1 March 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
The scale at which the human race consumes data has increased exponentially in
recent years. One key part in this increase has been the usage of smart phones and
connected devices by the populous. Multi-level heterogeneous networks are the
driving force behind this mobile revolution, but these are constrained with limited
bandwidth and over-subscription. Scheduling users on these networks has become
a growing issue. In recent years grammar-guided genetic programming (G3P) has
shown its capability to evolve beyond human-competitive network schedulers.
Despite the performance of the G3P schedulers, a large margin of improvement is
demonstrated to still exist. In the pursuit of this goal we recently proposed a multi-
level grammar approach to generating schedulers. The complexity of the grammar
was increased at various stages during evolution, allowing for individuals to add
more complex functions through variation operations. The goal is to evolve good
quality solutions before allowing the population to specialise more as the grammar
functionality increased in a layered learning way. In this paper the results of this
initial study are replicated, and confirmed, and it is seen that this approach improves
the quality of the evolved schedulers. However, despite the gain in performance, we
notice that the proposed approach comes with an acute sensitivity to the generation
at which the grammar complexity is increased. Therefore, we put forward a novel
seeding strategy and show that the seeding strategy mitigates the shortcomings
of the original approach. The use of the seeding strategy outperforms the original
approach in all the studied cases, and thus yields a better overall performance than
the state-of-the-art G3P generated schedulers.

Keywords Telecommunication · Heterogeneous network · Scheduling · Grammar-
guided genetic programming · Multi-level grammar · Seeding

 * Takfarinas Saber
 takfarinas.saber@ucd.ie

Extended author information available on the last page of the article

http://orcid.org/0000-0003-2958-7979
http://crossmark.crossref.org/dialog/?doi=10.1007/s10710-019-09346-4&domain=pdf

246 Genetic Programming and Evolvable Machines (2019) 20:245–283

1 3

1 Introduction

Technological advancements such as The Cloud and smartphones have shifted the
amount of interactions people have with their digital world [1, 2]: people upload
personal data to ‘The Cloud’, stream music and movies, use on-line banking, etc.
This shift permitted the download and streaming of multimedia content to out-
rank Voice over IP applications and services in terms of data exchange [3].

The number of smartphone users is in a continuous progression and is expected
to reach a 5 billion high by 2019 [4]. While the increasing amount of data and
processing power have been dealt with through the adoption of more suitable Big
Data techniques [5], the volume of interactions with the digital world and the
criticality of the on-line services continue to stress the wireless communication
network infrastructure. This has driven network operators away from operational
cost reduction to network capacity improvement [6]. Network operators value
any gain in performance as it allows them to deliver and improve on their Qual-
ity of Service levels. Improved Quality of Service often attracts new users, thus
keeps the company relevant in what is a highly competitive trillions of dollars
industry [7].

Network operators also upgrade their infrastructure to more performing tech-
nologies [2]. While investments in new wireless technologies allow significant
performance improvements, they also lead to the heterogeneity of their infra-
structure. Traditional cellular networks solely use Macro Cells (MCs) to provide
User Equipments (UEs, e.g., a smartphone, a tablet or a device that has a broad-
band adaptor) with a transmission capability. However, to cope with the increas-
ing number of devices, network operators introduce Small Cells (SCs, small and
low-powered cells) to their infrastructure. SCs are often deployed in areas with
recurrent traffic hot-spots (e.g., town squares and parks) to attract clustered UEs
in their surrounding, thus mitigating the performance deficit of MCs.

However, the introduction of SCs leads to a two-tiered infrastructure known as
heterogeneous network (HetNet) which requires optimisation [8]. Besides, SCs
share the same bandwidth as MCs, which makes them more prone to interfere
with each other. In order to mitigate this interference, the 3rd Generation Partner-
ship Project [9] has provisioned an enhanced Inter-Cell Interference Coordination
mechanism called Almost Blank Sub-frames (ABSs). During these Almost Blank
Sub-frames, MCs are muted for a defined duration, whereas SCs are allowed to
communicate with their attached UEs with no interference from MCs. Moreover,
the rapid and constant evolution of the demand and location of the users render
any non-real-time algorithm not applicable in production environments.

Our work addresses the particular problem of defining the Almost Blank
Sub-frames and scheduling the communication of UEs with their attached SCs.
The state-of-the-art for optimising the scheduling of transmissions in Het-
Nets in a real-time fashion is a Grammar-Guided Genetic Programming algo-
rithm (G3P [10]). G3P evolves individuals (i.e., expressions) that are then mapped
to transmission schedulers. The mapped schedulers are then deployed in a Het-
Net to generate transmission schedules (a matrix of Booleans which represents

247

1 3

Genetic Programming and Evolvable Machines (2019) 20:245–283

whether a UE i will communicate with its attached cell j at a given time) in a
millisecond timescale. Globally, G3P could be seen as a method for building a
millisecond transmission scheduler. While the authors achieve an important
improvement with respect to the quality of the former expert-designed state-of-
the-art scheduler (with the quality of schedulers assessed based on the fairness of
their generated schedules as shown in Sect. 2), they also showed a large potential
for further improvements as they have shown the existence of better transmission
schedules using a genetic algorithm with no execution time restriction. This large
potential is the main motivator to further their work and the premise for ours.

We have proposed in a recent work [11] to use a succession of grammars with
incremental granularities during the evolution instead of a single grammar as a
mean to improve the quality of schedules that are generated by the schedulers that
are mapped from the G3P’s evolved expressions, thus improving the overall per-
formance of G3P. The multi-level grammar approach is based on: (1) starting with
a grammar that contains fewer terminals with the aim of guiding the optimisation
towards individuals with ‘ideal’ forms, and (2) introducing a larger and more thor-
ough grammar after some generations with the aim of increasing the search space
and thus improving the quality of the individuals further. We have adapted the G3P
algorithm from Lynch et al. [10] to start with a small grammar, before introducing a
more thorough grammar. During the grammar update, G3P ‘ports’ the entire popu-
lation that resulted from the first grammar level as an initial population to the next
grammar level.

We confirm in the current work that G3P with a multi-level grammar approach
achieves better results than with a single grammar. However, we also show that the
multi-level grammar approach using the population porting strategy is highly sen-
sitive to the phase (i.e., generation) at which the large grammars are introduced.
Therefore, we propose an alternative that uses the multi-level grammar approach
with the seeding of the best individual at the end of every level. G3P with the multi-
level grammar approach using the seeding strategy is demonstrated (1) to achieve
better results, as well as (2) to be more resilient towards the introduction phase than
using the previous population porting strategy.

The rest of this manuscript is organised as follows: Sect. 2 formally defines
the scheduling in the heterogeneous networks problem. Section 3 presents the
work related to both the scheduling in heterogeneous networks and the multi-level
grammar-based genetic programming. Section 4 presents the multi-level grammar
approach, while Sect. 5 describes the experimental design and the testbed used
throughout our evaluation. Section 6 shows the improvement that could be achieved
using the multi-level grammar instead of the unique grammar and identifies the
shortcomings of using the population porting strategy during the grammar update.
Section 7 introduces the seeding strategy and shows that it successfully covers the
shortcomings observed using the population porting strategy. Section 8 concludes
this work.

248 Genetic Programming and Evolvable Machines (2019) 20:245–283

1 3

2 Problem definition

Let us consider a heterogeneous network  which is composed of a set of cells  .
The set of cells  contains both a set of macro cells  and a set of small cells  .
Furthermore, we consider a set of user equipements  with each UE ui ∈  receiv-
ing a wireless signal strength of �j

i
 from every cell cj ∈ .

2.1 Heterogeneous networks

UEs are usually greedy as they customarily attach to the cell that has the strongest
wireless signal at the UEs’ geographical location. Given that SCs are low powered
devices, only a limited number of UEs attach to SCs based on signal strength. There-
fore, to increase the range at which UEs attach to SCs, the 3rd Generation Partner-
ship Project provisioned a bias mechanism i.e., Range Expansion Bias (REB). This
mechanism enables SCs to attach UEs even beyond the area where their signal is
stronger than near-by MCs. This is achieved through the biasing of the signal �j

i
 of

every cell cj ∈  to a UE ui ∈  by a value �j , with �j = 0 for every cj ∈  . Hence,
every UE ui attaches to a cell cj ∈  such that:

Every cell cj ∈  attach a set of UEs j:

Definition 1 Expanded Region Ej of a SC cj ∈  is the area in which UEs would
attach to cj when using the bias �j , but the same UE would not attach to cj with no
use of bias. Therefore, a UE ui belongs to the expanded region Ej of a SC cj ∈  if
and only if:

MCs and SCs use the same communication channel. This shared communication
channel exasperates the interference at the edge of the expanded regions. Therefore,
the 3rd Generation Partnership Project puts in place a time domain (i.e., a frame ).
Each of the frames is composed of 40 sub-frames (SF) of 1ms time interval each.
Using this time domain and the Almost Blank Sub-frames mechanism, transmission
of MCs could be muted at some of the sub-frames. Muting MCs would mitigate
the interference and allow near-by SCs to communicate with UEs at their expanded
region with low disturbance. However, while UEs at the expanded regions experi-
ence a large decrease in interference when muting MCs for some SFs, UEs that are

(1)cj =
||

argmax
k=1

(�k
i
+ �k)

(2)j =

{
||

argmax
k=1

(�k
i
+ �k) = cj

}

(3)cj =
||

argmax
k=1

(�k
i
+ �k) ∧ cj ≠

||
argmax

k=1

(�k
i
)

249

1 3

Genetic Programming and Evolvable Machines (2019) 20:245–283

attached to MCs can no longer receive data from their respective cells during that
period.

Figure 1 shows a HetNet example with one MC, one SC and 21 UEs. The
upper part (i.e., part 1) shows that the SC is not powerful enough to attach the
clustered UEs. Therefore, these UEs are attached to the MC, creating a hot-spot
with a high interference and a poor connectivity. In the lower left part (i.e., part
2), the SC uses the signal bias to expand its region to reach the clustered UEs,
thus, improving the connectivity of the clustered UEs and reducing the load on
the MC. However, this creates a severe interference at the edge of the expanded

Fig. 1 Example of a heterogeneous network with one macro cell, one small cell, and over 20 user equip-
ments. Part 1 shows few UEs in the reach of the SC, while the rest of UEs are attached to the MC. There-
fore, clustered UEs experience high interference and poor connectivity. Part 2 shows the SC expanded
region which allows the SC to attach clustered UEs and improve their connectivity. However, this leads
to a large interference at the edge of the expanded region between the MC and the SC. Part 3 shows the
muting of MC which lowers the interference at the edge of the SC expanded region. However, reducing
the communication time of UEs attached to the MC at the same time

250 Genetic Programming and Evolvable Machines (2019) 20:245–283

1 3

region. The lower right part (i.e., part 3) shows the muting of the MC which miti-
gates drastically the interference at the edge of the SC expanded region.

2.2 Scheduling in heterogeneous networks

The downlink rate Rf

i
 is a measure (in bit per second) of the amount of data that a UE ui

is able to download during the SF Sf . R
f

i
 is commonly described in the literature using

Shannon’s formula [12]. The downlink rate depends on: (1) the bandwidth B, (2) the
number Nf of UEs communicating during the same SF Sf and (3) the Signal to Interfer-
ence and Noise Ratio (SINR):

On one hand, the high signal of MCs makes UEs attached to them experience high
Signal to Interference and Noise Ratio. Therefore, conferring UEs attached to MCs
high downlink rates whenever the MC is active (i.e., not muted) and not overloaded.
Hence, all the UEs that are attached to MCs could be scheduled for transmission dur-
ing all SFs at which the MCs are active, making their scheduling trivial. On the other
hand, SCs are low powered devices, making UEs that are attached to them experience
a relatively weak signal. Additionally, UEs attached to SCs would be subject to a large
interference by MCs during their active SFs.

The bandwidth is known to be an expensive and a scarce resource, which makes it
hard to improve. However, we could aim to improve the two remaining elements: (1)
the SINR and (2) the number of transmitting UEs Nf . We could improve significantly
the SINRf

i
 by simply muting MCs at more sub-frames of a given frame  . Despite the

possible improvement in the signal to noise ratio, exaggerating the muting of MCs
would substantially reduce the overall downlink rate of their attached UEs as they
would not receive any data in the meantime. Additionally, the number of UEs attached
to MCs are often more numerous. Therefore degrading their connectivity and worsen-
ing significantly the overall performance of the HetNet. Similarly, we could also reduce
the number of UEs scheduled for communication at the same SF. Fewer communicat-
ing UEs would improve the downlink rate for the UEs that are scheduled for transmis-
sion. However, it would also mean that non-scheduled UEs would not be receiving any
data.

The combination of all these aspects makes scheduling transmissions in a HetNets a
non-trivial problem, requiring an autonomic scheduling system. The scheduling system
would have to define the SFs when MCs are active or muted, in addition to the schedul-
ing of communication between UEs and their respective cells (most importantly SCs)
at each SF.

2.3 Evaluating the quality of a transmission schedule

Every UE ui ∈  experiences an average downlink rate R̄i over all SFs of the same
frame such that:

(4)R
f

i
=

B

Nf

× log2(1 + SINR
f

i
)

251

1 3

Genetic Programming and Evolvable Machines (2019) 20:245–283

Operators of HetNets commonly aspire to generate schedules that optimise
fairness of downlink rates experienced by the various UEs connected to their net-
work [13]. This is also the aim of the state-of-the-art work [10] against which we are
comparing to in our paper. The fairness in downlink rate could be expressed as the
sum of average downlink logs (i.e., log(R̄i)) of the various UEs:

We assume in our work that the quality of the transmission schedules is a good
estimate for the quality of the scheduler that generated them. Therefore, we consider
that the quality of a scheduler is equal to the fairness of its generated schedules.

In our work, we aim at generating a scheduler that schedules communications
M[j][i][f] between the cells cj ∈  and UEs ui ∈ j at every sub-frame sf , while
maximising the fairness in Eq. 6 as the fitness function. The scheduler set M[j][i][f]
to 1 to allow the communication between the cell cj and the UE ui at the sub-frame
sf , or 0 otherwise. Improving the logs of average downlinks is highly affected by
UEs with low average downlink rates. At the same time, it does not reward UEs with
excessively high average downlink rates.

3 Related work

In this section, we first review the work related to the use of genetic programming
(GP) in scheduling, then we study the optimisation techniques that were brought to
scheduling in heterogeneous networks from the simple heuristic- (rule-) based ones
to the more recent evolutionary techniques like grammar-based GP. Last, we review
different works on developmental evaluation and layered learning in GP and explain
their difference with our proposed multi-level grammar approach.

3.1 Genetic programming in scheduling

There exist multiple scheduling problems that arise across various application
domains [14] such as timetabling, cloud computing and traffic control. While the
research usually explores the search space through enumeration of the solutions
using metaheuristics, these solutions are rarely applied in real production environ-
ments as they are slow and cannot perform the optimisation in a timely manner.

Jakovocic and Marasovic [15] showed the shortcomings of both enumeration-
based and search-based approaches to tackle scheduling problems where the exe-
cution time is limited. The authors put forward meta-algorithms that were manu-
ally designed to handle the specific job-shop scheduling environment at hand. The

(5)R̄i =
1

| |
∑

Sf∈

R
f

i

(6)Fairness =
∑

ui∈

log
(
R̄i

)

252 Genetic Programming and Evolvable Machines (2019) 20:245–283

1 3

meta-algorithms also come with priority functions that are evolved using genetic
programming techniques to operate within them. Therefore, the structure of the
solution is informed by the domain knowledge brought by the authors while design-
ing their meta-algorithms. Whereas the genetic programming technique captures
the underlying complex mappings of statistical features to fitness functions. Branke
et al. [16] put an emphasis on the effort and care that need to be taken when design-
ing the meta-algorithm to fit the given problem. The authors also recognise the value
of meta-algorithms and automated techniques in general given that the design of
heuristics to optimise specific problems is also a hard task.

Genetic programming has since been applied on numerous scheduling prob-
lems [17]. Nguyen et al. [17] argue that genetic programming is a powerful tech-
nique for an automated design of production scheduling heuristics. The authors
claim that in addition to outperforming many manually designed heuristics in the lit-
erature, they also discover very sophisticated ones, thus dealing with more dynamic
and more complex environments. Nguyen et al. developed a unified framework
under which they then survey and compare the literature on automating the design
of scheduling heuristics using genetic programming.

3.2 Scheduling in heterogeneous networks

The most recurrent works in the literature of scheduling in heterogeneous networks
hand-craft the algorithm design by expert agents. Most employed techniques parti-
tion UEs that are attached to SCs into two different groups [13, 18, 19] according to
sub-frames (i.e., a standardised time window) they are scheduled to communicate at:
(1) ABS sub-frames: sub-frames during which MCs are forbidden from transmitting
or (2) non-ABS sub-frames; sub-frames during which all MCs are allowed to trans-
mit/receive data from their attached UEs.

Weber and Stanze [13] designed two different schedulers by hand: (1) strict
scheduler: where all UEs at the centre of the cell are sacrificed during all the sub-
frames that are flagged as either ABS or protected and (2) dynamic scheduler: where
UEs at the edge of the cell are allowed to transmit/receive data regardless of the flag
of the sub-frame being ABS or non-ABS. Strict scheduler provides UEs at the edge
of cells with an improved bandwidth when having the highest channel quality, but
mutes these cells during non-ABS sub-frames. The authors showed experimentally
that a better trade-off between download rate and spectral efficiency is achieved by
the dynamic scheduler at UEs in cell edges. Pang et al. [18] put forward a distributed
scheduling method that determines through dynamic programming which UEs to
protect by ABS for a given number of frames. Their technique also finds the best
number of ABS sub-frames through an evaluation of the global system utility. Jiang
and Lei [20] model the scheduling problem as a two-player bargaining game seeking
to find a Nash equilibrium. The game is organised between ABS and Non-ABS sub-
frames with each of them trying to attract UEs in order to transmit in a given time
interval. Lopez et al. [19] place UEs into either an overlapping queue or a non-over-
lapping queue according to their mean Signal to Interference and Noise Ratios. The
algorithm repeatedly identifies UEs with the lowest average Signal to Interference

253

1 3

Genetic Programming and Evolvable Machines (2019) 20:245–283

and Noise Ratio in each queue, estimates the queue sizes that would balance the
rates between the worst performing UEs, before transferring UEs between queues.
This process is repeated until a balancing of the downlinks in both queues is
achieved. The proposed heuristic improves the 5th percentile downlink by 55% for
UEs attached to small cells in comparison to the baseline. Finally, Deb et al. [21]
model the scheduling problem as a Mixed-Integer Non-Linear Program and develop
a novel algorithm to solve it with a provable guarantee of optimality. Their approach
takes into account the network traffic load, the topology, and the interference in the
Small and the Macro cell range.

Fagan et al. [22] propose a hybrid algorithm (i.e., Deep Learning Through Evo-
lution) which combines a deep learning technique with an evolutionary algorithm.
The authors use a genetic algorithm to generate a set of optimised solutions (human-
competitive solutions). Then, they use a deep learning technique (i.e., Deep Feed
Forward Neural Network with 4 hidden layers) to learn the model underlying within
the solutions. The learned neural net allows the authors to achieve a similar perfor-
mance as the genetic algorithm while only requiring almost a 100 times less execu-
tion time. Despite the performance of the learned neural network and its fast execu-
tion, the approach proposed by Fagan et al. [22] suffers from the excessive learning
time (i.e., several runs of an already expensive Genetic Algorithms, combined with
time-consuming deep neural networks).

3.3 Genetic programming for scheduling in heterogeneous networks

Genetic programming has been applied on various scheduling problems [17] from
different domains. Furthermore, genetic programming has also been used in hetero-
geneous networks prior to the work of Lynch et al. [10]. However, it has not been
applied specifically on the scheduling of transmissions. For instance, Ho et al. [23]
apply genetic programming in order to improve the coverage during the deployment
of femtocells1 in industrial companies. Their study represented a proof of concept
that it is possible to automatically evolve controllers for wireless networks. Hemberg
et al. [24] also aim at optimising femtocell coverage in heterogeneous networks. The
authors use a Grammatical Evolution algorithm to evolve symbolic expressions that
are then mapped to solutions that outperform humanly designed heuristics on two
out of three objectives.

There are only a limited and fairly recent number of works in the field of auto-
nomic scheduling in heterogeneous networks which use genetic programming
techniques to design and learn interesting scheduling heuristics. Motivated by the
claims of Dempsey [25] that genetic programming methods yield robust solutions
in dynamic environments, Lynch et al. [10] are the first to apply a version of genetic
programming (i.e., a grammar-guided genetic programming) for the scheduling
in heterogeneous networks. Their technique evolves individuals (i.e., expressions)
that are then mapped to transmission schedulers. The mapped schedulers are then

1 Femtocells are small cells with only few meters in tranmission range.

254 Genetic Programming and Evolvable Machines (2019) 20:245–283

1 3

deployed in a HetNet to generate transmission schedules in a millisecond timescale.
The authors showed that their approach successfully evolves robust human-compet-
itive schedulers. Additionally, the authors claim that their approach can automati-
cally discover good solutions and could even tackle corner cases (i.e., finely tune
their algorithm to cities with specific HetNets that are different from the standard
ones) providing the use of an appropriate fitness function. The authors also apply a
genetic algorithm with no time restriction (at least not in a millisecond) and showed
the existence of large potential improvements. Lynch et al. [26] expand on their ini-
tial work [10] and compare two different fitness functions: (1) evaluative feedback:
the industry standard utility heuristic for downlink rates and the state-of-the-art and
(2) instructive feedback: which is obtained through an offline optimised scheduler
learned using genetic programming and acting as a semantic for evolving models.
The authors also compare two approaches for mapping trees to schedules and show
that their approach outperforms the previous industry state-of-the-art.

We have recently proposed a multi-level approach for G3P [11]. We designed mul-
tiple grammars—each with its own granularity (i.e., small, medium and full). We
showed that the two-level G3P approach (lower level: running G3P with the small
grammar for a few generations, and upper level: introducing and continuing the evolu-
tion with the full grammar) outperforms the classical G3P (i.e., with a unique gram-
mar from the beginning to the end) on the Scheduling in HetNets. In our current work,
we extend [11] as we identify the shortcomings of the taken strategy (using all the
last population of evolved individuals at the lower level, as an initial population of
individuals in the evolution at the upper level). We also propose an alternative strategy
(i.e., seeding of the best individual from the lower level to a newly generated popula-
tion in the higher level) to cope with them and evolve better scheduling expressions.
Recently, we have evaluated the use of a hierarchical grammar strategy to the multi-
level G3P [27]. We start our algorithm with multiple runs of G3P with small gram-
mars (each run with a different small grammar), before aggregating the best individu-
als and continuing the evolution with the full grammar. This new strategy has shown,
providing an adequate number of small grammars at the lower level, to yield better
scheduling expressions. However, this work also uses a population porting strategy.

Fenton et al. [7] also apply a genetic algorithm approach to design heuristics for
the scheduling in heterogeneous networks. However, they consider an environment
where the knowledge is partial and that the algorithm is not fully aware of the per-
formance at each UE. The last work from Fenton et al. [2] uses genetic program-
ming for optimising not only the scheduling in heterogeneous networks but also the
power setting and the bias selection at the small cell level, in addition to the manage-
ment of the macro cells duty cycle.

3.4 Multi‑level learning

Optimisation techniques commonly use hybridisation as a multi-level strategy
to improve their results (either metaheuristics with metaheuristics [28, 29] or
metaheuristics with exact solvers [30, 31]). However, the majority of evolutionary
algorithms are monolithic. There exist few works that challenge this monolithism

255

1 3

Genetic Programming and Evolvable Machines (2019) 20:245–283

in evolutionary algorithms (and GP in particular) through various strategies. In
this part, we try to summarise the most-known amongst them in four categories:
(1) developmental evaluation, (2) layered learning, (3) transfer learning and (4) the
newly introduced multi-level grammars.

3.4.1 Developmental evaluation GP

McKay et al. [32] are the first to investigate what they called the developmental
evaluation of genetic programming. The authors propose to use a different and more
complex fitness at every generation, while simultaneously evaluating a larger part
of the tree based genotype—without modifying it in any way though. The same
authors argued in [33, 34] that it is necessary to perform the evaluation during the
development to allow the emergence of structural regularities. The authors expand
on their initial developmental evaluation and propose a new representation called
Developmental Tree Adjoining G3P (DTAG3P [34]). Their DTAG3P representa-
tion encodes tree adjoining grammar (TAG) derivation trees using L-systems. The
authors showed that their approach could improve the performance of a regular GP
on benchmark problems e.g., polynomial symbolic regression, Fourier series fit-
ting and parity problems [35], but not on many other ones. Furthermore, despite the
improvement, DTAG3P is not directly comparable to a standard GP as it requires
more domain knowledge in the design of the developmental fitnesses.

McPhee et al. [36] also propose a developmental evaluation approach to linear-
GP style programs by expanding the Estimation of Distribution Algorithm (i.e.,
N-Gram GP systems) with an Incremental Fitness-based Development (IFD).

3.4.2 Layered learning GP

Layered learning is similar to developmental evaluation in the way that it creates inter-
mediary fitness functions. The relationship between the two approaches has already
been investigated by Hoang et al. [37]. Layered learning differs from developmental
evaluation as only a few and finely designed fitness functions are used. Furthermore,
in layered learning, the evolutionary algorithm is allowed a larger computational cost
(i.e., more generations) in order to improve its fitness with regards to the given fitness
function. In other words, in layered learning, the problem is decomposed into few sub-
problems. GP is then applied to the sub-problems one after the other while porting the
population resulting of a sub-problem as an initial population to the next one.

Gustafson and Hsu [38] are the first to propose a layered leaning GP algorithm to
evolve agents capable of playing keep-away soccer. Their layered learning approach
allowed them to create better agents than those created by a standard GP. Moreo-
ver, their approach was also faster. Jackson and Gibbons [39] proposed a two-lay-
ered approach in order to optimise basic problems (i.e., Boolean logic, even-par-
ity and majority) and showed that their approach outperforms a standard GP. Hien
et al. [40] combine both layered learning and incremental sampling in GP to address
a symbolic regression problem. The authors showed that their approach outperforms
the standard GP on twelve benchmark problems and is faster. Despite this improve-
ment, the authors do not compare their approach to the basic layered approach and

256 Genetic Programming and Evolvable Machines (2019) 20:245–283

1 3

do not justify the added value of incremental sampling. Even worse, the sampling
adds extra parameters that need to be tuned. Afterwards, Hien and Nguyen [41]
extend their work to include a parameter setting technique inspired by progressive
sampling, thus coping with their hyper-parameters issue.

3.4.3 Multi‑level grammars‑guided GP

We have recently proposed a novel multi-level grammar approach to grammar-
guided genetic programming [11]. Unlike what has been done with the two previ-
ous approaches (i.e., developmental evaluation and layered learning GP), we do not
design multiple fitness functions, but rather design different grammar levels.

The main difference is that we do not modify the fitness functions at the different
levels. We have the same fitness function for all the grammars, thus we maintain the
shape of the fitness landscape when passing from a grammar to another.

Grammars are designed with different complexities/granularities in terms of termi-
nals. Therefore, evolution with a less restricted grammar can only generate individuals
with a small set of functionalities (terminals). Therefore, while evolution with a small
grammar navigates the same search space as evolution with a full grammar, it can only
navigate parts of it (parts that can be navigated with the limited number of terminals).

We use a small grammar for a certain number of generations to evolve interesting
individuals in a restricted search space. Then, we add more functionality at different
grammar levels to increase the search space and allow the evolution to evolve indi-
viduals with a better fitness.

3.4.4 Transfer learning and reuse of extracted knowledge GP

While the aforementioned approaches are all embedded within a single evolution-
ary process, transfer learning and the reuse of extracted knowledge happen between
multiple evolutionary processes of different problems or even different domains.

Transfer learning is the application of skills and knowledge learned from a for-
mer problem domain to a novel one. While transfer learning is well-known and used
in many areas of machine learning such as image analysis, it did not attract many
works in GP [42, 43].

Dinh et al. [42] put forwards some transfer learning techniques for GP whereby they
transfer a number of good quality individuals or part of them from the known problems
to the new ones. The authors showed on two symbolic regression problems that their
methods help GP to achieve smaller training errors. The authors also showed a perfor-
mance improvement over GP when dealing with validation data. Moreover, the authors
noticed that transferring individuals of a limited size reduces bloat and limits code
growth. Haslam et al. [43] investigate in more details the performance of the meth-
ods proposed by Dinh et al. [42]. More particularly, they analyse the influence of key
parameters on performance. They also study the effect of transfer learning on the evolu-
tion process. They show that transfer learning provides the GP in the new problem with
a good initial population. This allows the learning to speed up the convergence while
achieving a better performance. However, the authors acknowledge that the benefits of
transfer learning vary from a scenario to another. Iqbal et al. [44] push the boundaries

257

1 3

Genetic Programming and Evolvable Machines (2019) 20:245–283

further as they use transfer learning to help GP address the more complex problem of
classifying noisy and rotated images. The authors designed a mechanism to automati-
cally discover, extract and reuse blocks of knowledge and information from similar
image classification problems and injecting them into the problem at hand. In their pro-
posed approach, the selection of interesting information consists of sub-trees common
to the different problems. They showed that their solution outperforms the state-of-the-
art classifier while GP alone could not achieve any satisfactory performance.

4 Multi‑level grammar‑guided genetic programming

In this section, we describe both the state-of-the-art grammar-guided genetic pro-
gramming algorithm for scheduling in HetNets and our multi-level grammar-guided
genetic programming approach.

4.1 State‑of‑the‑art: grammar‑guided genetic programming

Lynch et al. [10] designed a Grammar-Guided Genetic Programming algorithm for
the scheduling in HetNets. The state-of-the-art algorithm G3P is an adaptation of a
grammar-based form of GP [45] as implemented in the PonyGE 2 framework [46].
The algorithm proposed by Lynch et al. evolves an expression in a tree form. Each
evolved expression maps the Signal to Interference and Noise Ratio related statis-
tics and attachment information of the UEs  and cells  to transmission scheduler
using Algorithm 1 which generates a binary decision for each UE per SF. The binary
decision defines whether or not to schedule the UE and allow it to transmit to its
attached cell (macro or small cell) at a given SF.

Lynch et al. [10] use a grammar in a Backus-Naur Form (BNF) to incorporate
domain knowledge to their algorithm. The authors use a grammar that is thorough in
terms of networks-related statistics, from the beginning to the end of the G3P process:

<expr> ::= <reg> | <reg> | <reg> | <Terminal>
<reg> ::= <expr><op><expr> | <expr><op><expr> | <expr><op><expr> |

<expr><op><expr> | <non-linear>(<expr>) | <non-linear>(<expr>)
<reg> ::= <expr><op><expr> | <expr><op><expr> | <expr><op><expr> |
<expr><op><expr> | <non-linear>(<expr>) | <non-linear>(<expr>)

<op> ::= + | - | * | / (protected)

<non-linear> ::= sin | log (protected) | sqrt (protected) | step

<Terminal> ::= <sign><const> | <statistic>

<sign> ::= - | +

<const> ::= 0.0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1.0

<statistic> ::= downlink | num viable | num att | airtime | congestion |

avg downlink frame | max downlink frame | min downlink frame |

avg downlink SF | max downlink SF | min downlink SF |

avg downlink cell | max downlink cell | min downlink cell

258 Genetic Programming and Evolvable Machines (2019) 20:245–283

1 3

Table 1 Description of the network communication statistics used as terminals in the grammar of the
state-of-the-art G3P

Statistic Description

downlink Amount of data (bit/s) that could be transferred in a unit of time

log
2
(1 + SINR

f

i
)

num_variable The noise is too high for a UE to communicate

| {SINRf

i
≥ 1} |f

num_att Number of UEs that are attached to the Small Cell
|j|

airtime Number of sub-frames at which a given UE is allowed to transmit
| {Sf ∈  |Mj[j][i][f] = 1} |

congestion Number of UEs transmitting at the same sub-frame
| { ui ∈  |M[j][i][f] = 1} |

avg_downlink_frame Average downlink of a UE over all sub-frames
1



∑
Sf∈

log
2
(1 + SINR

f

i
)

max_downlink_frame Maximum downlink of a UE over all sub-frames

max
Sf∈

log
2
(1 + SINR

f

i
)

min_downlink_frame Minimum downlink of a UE over all sub-frames

min
Sf∈

log
2
(1 + SINR

f

i
)

avg_downlink_SF Average downlink of UEs attached to a SC at a given sub-frame
1

j

∑
ui∈j

log
2
(1 + SINR

f

i
)

max_downlink_SF Maximum downlink of UEs attached to a SC at a given sub-frame

max
ui∈j

log
2
(1 + SINR

f

i
)

min_downlink_SF Minimum downlink of UEs attached to a SC at a given sub-frame

min
ui∈j

log
2
(1 + SINR

f

i
)

avg_downlink_cell Average downlink per cell of average downlink per sub-frame

1

j

∑
ui∈j

�
1



∑
Sf∈

log
2
(1 + SINR

f

i
)

�

max_downlink_cell Maximum downlink per cell at any given sub-frame

max
ui∈j

�
1



∑
Sf∈

log
2
(1 + SINR

f

i
)

�

min_downlink_cell Minimum downlink per cell at any given sub-frame

min
ui∈j

�
1



∑
Sf∈

log
2
(1 + SINR

f

i
)

�

259

1 3

Genetic Programming and Evolvable Machines (2019) 20:245–283

Most production rules in the aforementioned grammar are well-known to the GP
community and are easy to understand. However, <statistic> contains terminals that
are from the communications network domain. Despite not being important for the
understating of this work, we describe briefly each of them in Table 1.

Lynch et al. [10] use Algorithm 1 to do the mapping from tree expressions to
transmission schedulers, which are then used to generate transmission schedules,
before evaluating their fitness function using Eq. 6. Their approach evaluates the
expression as many times as they have to decide whether to schedule a UE to trans-
mit at a given sub-frame. In addition to the UE and the sub-frame, the evaluation of
the expression is joined with the current state of the network (i.e., before scheduling
the current UE). The evaluation process returns a value of interest out of which it is
decided to allow the UE to communicate or not. A UE is set scheduled to commu-
nicate providing a positive interest and an ability to communicate (i.e., noise is not
too large).

Note that the fitness of each individual (i.e., expression) that is evolved by G3P is
computed as the Fairness (Eq. 6) of the transmission schedules that are obtained by
the scheduler that they map to using Algorithm 1.

Parameters : E: Expression
input : C: Cells, U : UEs
output : M : Schedule Matrix
for cj ∈ S do

M [j] ← zeros(|Aj | × |F|) // define a matrix of ‘not scheduled’
for Sf ∈ F do

for ui ∈ Aj do
interest ← evaluate(E,M [j], i, f, C,U) // evaluate expression for ui

in f with current Schedule M

if interest > 0 and SINRf
i ≥ 1 then

M [j][i][f] ← 1 // set as ‘scheduled’
end

end
end

end
return N ;
Algorithm 1: Mapping of a tree expression to a transmission schedule.

4.2 Multi‑level grammar approach

In our multi-level grammar approach, we also keep the full and more thorough
grammar (i.e., F: full) that was defined by the state-of-the-art. Moreover, we define
two new grammars (i.e., S: small and M: medium) through the modification of the
two production rules which contain only terminals (i.e., <const> and <statistic>).
The two grammars are created by restricting and increasing the list of available ter-
minals at each grammar in an incremental fashion, so that S is included in M and M
is included in F.

In the small grammar S, we restrict and reduce the number of terminals to the
minimum. We only keep a small list of well-spread constants (i.e., 0, 0.5 and 1). We

260 Genetic Programming and Evolvable Machines (2019) 20:245–283

1 3

also only keep a selection of the most critical communications network statistics.
The downlink is what we aim to optimise through our work. On the other hand,
improving the min_downlink_frame is likely to drive the smallest downlinks up, and
thus lead to an improvement in fairness (i.e., improve the fitness function).

<const> ::= 0.0 | 0.5 | 1.0

<statistic> ::= downlink | min downlink frame

We also define the medium grammar through an increment of six terminals to
the <const> and <statistic> production rules from the previously defined small
grammar. We add four constants (two signs × two constants) that are spread in a
dichotomic way to the <const> production rule. We also add to the <statistic> pro-
duction rule two communications network statistics (i.e., max_downlink_frame and
min_downlink_cell) that are also closely related to the downlink.

<const> ::= 0.0 | 0.3 | 0.5 | 0.8 | 1.0

<statistic> ::= downlink | min downlink frame | max downlink frame |

min downlink cell

In conjunction with the definition of the three grammars (i.e., S, M and F), we
extend the state-of-the-art G3P algorithm, by making it capable of taking one gram-
mar at the start of the experiment and dynamically updating its grammar to more
complex ones (e.g., from S to M, M to F, or S to F). All individuals obtained using
a given grammar are ported as an initial population [47] to G3P using the follow-
ing grammar. We do not require any modification in the representation of the indi-
viduals when updating the grammar as they are represented in a tree form and the
grammars are included within each other. This means that an individual has both the
same representation and interpretation (in terms of schedule) both before and after
changing the grammar. Given that we do not modify the fitness function during the
evolution, the individuals also have the same fitness before and after updating the
grammar. Therefore, the multi-level grammar approach does not add any computa-
tional cost to the regular G3P algorithm (with the exception of the computationally
cheap grammar substitution).

Note that we do not update any of the evolutionary parameters (e.g., mutation
rate, crossover rate, etc.) while modifying the grammar. We take this decision in
order to avoid any impact that changing the values of these parameters could have.
Thus, we only leave one varying element at a time (i.e., either the grammar or
the number of individuals that are kept for the evolution after introducing a new
grammar).

Figure 2 shows an example of the multi-level grammar approach with a popu-
lation porting strategy. G3P randomly generates an initial population using the
small grammar S. The initial population is then evolved using that same grammar
for a certain number of generations to obtain the last population with S. Then, G3P

261

1 3

Genetic Programming and Evolvable Machines (2019) 20:245–283

substitutes the grammar from S to F. However, instead of generating a new popula-
tion, the last population with S is used as an initial population with F without any
modification. Last, G3P evolves its population using the grammar F to obtain a last
population (in this case, the last population for the entire evolution process).

5 Experiment design

In this section, we briefly describe the dataset and the setup we use to perform our
experiment. Furthermore, we describe the statistical test that we use to assess the
significance of our evaluations.

5.1 Dataset

We use in our experiment three scenarios corresponding to three different simulated
HetNets which were generated following the same process as in [10, 26]. All three
scenarios cover the same geographical area that encompasses the 3.61 km2 of Dublin
city centre shown in Fig. 3. MCs are placed on a grid by network operators, while
SCs are typically deployed in an ad-hoc fashion to serve hotspots. Therefore, we
arrange MCs in a hexagonal pattern and we randomly scattered SCs on the map.
We also randomly place UEs on the map in the simulated HetNets. Note that in
our simulations, UEs occupy static positions and transmit whenever they are sched-
uled. While this assumption might not be realistic for long simulations, it is accurate
enough given the millisecond time-frame at which our algorithms must work (our
algorithms have to create a transmission schedule that is best for the current environ-
ment in milliseconds).

All the HetNets have exactly 21 MCs that are distributed in a hexagonal pattern.
However, they contain a different number of SCs each. The first HetNet has 21 SCs
and is the scenario with the smallest density (1 SC per MC on average). The second

Fig. 2 Example of the multi-level grammar approach with the population porting strategy. G3P generates
individuals using the grammar S and evolves them for a few generations using that same grammar. Then,
G3P takes the population that resulted from the evolution with S and evolves it further using the gram-
mar F

262 Genetic Programming and Evolvable Machines (2019) 20:245–283

1 3

HetNet has 63 SCs and is three times denser than the previous HetNet (3 SCs per
MC on average). The third and last HetNet has 105 SCs and is the densest amongst
the different HetNets (5 SCs per MC on average). Moreover, the three scenarios sim-
ilarly scatter 1250 UEs in the covered geographical area and attach each of them to
the cell with the largest signal strength plus bias at their location (i.e., either MCs or
SCs).

Note that all MCs, SCs and UEs are statically placed on the used map of Dublin
city. Furthermore, the signal strength and noise that are experienced by UEs, while
being realistic (dependent of the environment), are not stochastic. This enables us to
analytically evaluate the fitness of an evolved expression.

5.2 Setup

We use in our experiment the state-of-the-art G3P algorithm that is put at our dis-
posal by its authors. Furthermore, we define the various evolutionary parameters
in the same way as in [11]. We set the size of the population to 100 and run the
algorithm for 100 generations. Moreover, we generate the initial population of indi-
viduals with a maximum tree depth of 20, using the ramped half–half (RHH [48])
algorithm. We use the sub-tree crossover with a probability 0.7 and undergo a sub-
tree mutation once for every individual. We set all the other parameters as shown in

Fig. 3 The 3.61 km2 area of Dublin city centre that is covered in our experiment. Streets and town
squares are in white. Buildings are sketched boxes. Green parks are in green and water points are in light
blue (Color figure online)

263

1 3

Genetic Programming and Evolvable Machines (2019) 20:245–283

Table 2. Additionally, we repeat every experiment 100 times to minimise the effect
of randomness.

5.3 Significance

The inspection of the results obtained from each of our algorithms over the multi-
ple runs (i.e., in our case, 100 runs) do not follow a normal distribution (assessed
using the Shapiro-Wilk normality test [49]) and do not have a homogeneous vari-
ance (assessed using Levene’s test of homogeneity of variances [50]) in most cases.
Therefore, we perform a statistical significance test using a non-parametric test: the
two-tailed Mann–Whitney U test (MWU). MWU is given the different performance
values (best fitness) achieved by two algorithms at a time from each run for a par-
ticular experiment case. MWU returns the p value that one of the algorithms obtains
different values than the other. We also consider the standard Bonferroni adjust-
ment [51] in order to reduce threats of having type I errors (rejecting a true null
hypothesis incorrectly in case of multiple comparisons). Therefore, we consider that
our tests are significant when their p value is below 5%.

Furthermore, we measure the substantive significance using Cohen’s d Effect
Size [52] between two given sets of performance values. The Effect Size refers to the
magnitude of the difference between the two sets, which corresponds to the differ-
ence between their mean outcomes. As general guidelines, the effect size is considered
small, medium and large when its value is respectively larger than 0.2, 0.5 and 0.8.

6 Multi‑level grammar through population porting

In this section, we would like to confirm that using the multi-level grammar
approach with the population porting strategy could improve the performance of the
grammar-guided GP algorithm. Furthermore, we investigate the sensitivity of the

Table 2 Evolutionary
parameters used for both the
state-of-the-art G3P and the
multi-level G3P

Initialisation Ramped half–half

Max initial tree depth 20
Overall max tree depth 20
Population size 100
Number of generations 100
Selection Tournament
Tournament size 10% of population
Replacement Generational with elites
Elite size 1% of population
Crossover type Sub-tree with a 70% probability
Mutation type Sub-tree once per individual
Number of runs 100

264 Genetic Programming and Evolvable Machines (2019) 20:245–283

1 3

approach to the phase at which grammars are introduced, before delving into the
reasons that lead to this sensitivity.

6.1 Performance of the multi‑level grammar approach with population porting

In order to show the relevance of combining different grammars, we compare 6
grammar configurations on the three instances (21 SCs, 63 SCs, and 105 SCs). We
designed 6 different grammar configurations:

• S: use the small grammar from the beginning to the end.
• M: use the medium grammar from the beginning to the end.
• F: use the full grammar from the beginning to the end.
• S10M: start with S and introduce M at generation 10.
• S10F: start with S and introduce F at generation 10.
• S10M20F: start with S and introduce M and F at generations 10 and 20, respec-

tively.
• M10F: start with M and introduce F at generation 10.

In the configurations which use a succession of grammars (i.e., S10M, S10F,
S10M20F and M10F), the entire population that is obtained from the evolution pro-
cess using the small grammar is ‘ported’ as an initial population to the evolution
with the larger grammar when performing the update of the grammar.

Figure 4 shows the evolution per generation of the best fitness on each instance,
obtained by G3P when using the different grammar configurations (results are aver-
aged over 100 runs).

We see from Fig. 4 that the algorithm G3P improves the best fitness function in
all instances with each of the grammar configurations it is applied with (G3P con-
stantly improves its initial best performance). We also see that limiting the num-
ber of generations to 100 does not seem to allow to achieve a full convergence for
the various algorithms. Therefore, increasing the number of generations is likely to
yield a better overall performance—but necessitates a larger computational cost.

We see that starting with the small grammar and introducing the full grammar
at generation 10 (i.e., S10F) achieves the best results in all instances. This shows
clearly the importance of using a multi-level grammar strategy rather than a full one
from the beginning to the end. This behaviour is somewhat surprising when we look
at the shape of the curve. S10F starts to converge to the worst results around gen-
eration 10, before drastically improving its performance and outperforming all the
other configurations. This indicates that the algorithm takes advantage of the small
grammar to evolve individuals that are not interesting from the fitness point of view,
but that are interesting to the evolutionary process. S10F is followed by the configu-
ration which uses only the full grammar (i.e., F) and indicates that while not being
the most performing configuration, F achieves good results nonetheless. While S10F
outperforms slightly F on the instance 21 SCs, the margin increases on 63 SCs and
105 SCs.

265

1 3

Genetic Programming and Evolvable Machines (2019) 20:245–283

Starting with the medium grammar and introducing the full one at generation
10 (i.e., M10F) has a quasi-similar behaviour as F. This shows that starting and
using the medium grammar for 10 generations does not help the optimisation as
much as with the small grammar. We should note that using M for the first 10
generations does not act as a handicap either. Unlike, in generation 10 of S10F,
we do not see any inflection point. This could be explained by either (1) the early
introduction of the full grammar, or (2) the medium grammar is large enough to
cover the lack of elements from the full grammar. However, looking at the curve
with only the medium grammar, we see that using M alone achieves way worse
results than F. This allows as to discard the first hypothesis and confirm that the
lack of inflection point in M10F is likely due to the early introduction of the full
grammar. Therefore, if we increase the phase at which the grammar F is intro-
duced (e.g., M20F or M30F) we are likely to start noticing that inflection point as
well.

Starting with the small grammar and using the medium instead of the of the full
one at generation 10 (i.e., S10M) does not perform as well as S10F. S10M performs
actually worse than M alone. In addition to the fact that M is not broad enough as a
grammar to allow a convergence to good individuals, the configuration S10M suf-
fers as well from the time/computation wasted using the small grammar. Despite
having the same inflection point as S10F, the improvement that is obtained after
introducing the medium grammar is not as intense as with the full grammar.

Fig. 4 Mean over 100 runs of the evolution of the best fitness obtained by G3P on the different instances
(i.e., 21, 63 and 105 SCs) using various grammar configurations (i.e., S, M, F, S10M, S10F, S10M20F
and M10F)

266 Genetic Programming and Evolvable Machines (2019) 20:245–283

1 3

The three-level grammar S10M20F shares the same behaviour as S10M until
generation 20 with an inflection point at generation 10 and a small improvement
of the fitness after the introduction of M. Introducing F at generation 20 compen-
sates for the weakness of M. However, given the time/computation wasted with M,
S10M20F is not able to catch up with the performance of S10F. While S10M20F
does not achieve the best results, it shows little sign of convergence and seems likely
to continue its improvement with more generations.

Looking at the individual grammar configurations (i.e., S, M and F), we see that
S achieves the worst results, M achieves average results and only F allows achieving
a good performance. This clearly indicates that most terminals in F that are not in M
are necessary for a better performance despite not being the most important for the
practitioners. Therefore, as a rule of thumb, we can say that having the full grammar
at the end of the grammar configuration is mandatory for achieving a good perfor-
mance—without guaranteeing a good performance though (we do not achieve the
best results with the grammar configuration S10M20F). This also applies to M and
S: given that M converges to better individuals than S, we can say that most termi-
nals in M that are not in S are necessary for a better performance.

Table 3 shows the mean, min, max and standard deviation over 100 runs of the
best fitness function on the different instances, achieved by G3P when using the
aforementioned grammar configurations. It also includes the p value and Effect Size

Table 3 Mean, min, max and standard deviation over 100 runs of the best fitness obtained by G3P when
using different grammar configurations (i.e., S, M, F, S10M, S10F, S10M20F and M10F). In addition, we
include the p value (Mann–Whitney U test with Bonferroni adjustment) and the effect size in comparison
to the results obtained against G3P with the grammar F. We put in bold the best mean, min, max, signifi-
cant p values and positive medium/large effect sizes (i.e., larger than 0.5)

Instance Metric S M F S10M S10F S10M20F M10F

21 SCs Mean 232.334 232.673 232.957 232.609 232.995 232.837 232.937
Min 232.007 232.658 232.880 232.208 232.868 232.414 232.392
Max 232.401 232.695 233.040 232.693 233.102 233.127 233.184
Sd 0.0516 0.0093 0.0509 0.0712 0.0627 0.1621 0.1447
p value 3.22E−25 4.36E−20 – 2.90E−25 3.10E−03 3.80E−06 1.00E+00
Effect size − 12.044 − 8.374 – − 5.206 0.647 − 0.844 − 0.155

63 SCs Mean 320.200 320.986 321.334 320.888 321.443 321.211 321.296
Min 320.037 320.934 321.206 320.416 321.238 320.428 320.610
Max 320.290 321.031 321.467 321.033 321.681 321.675 321.691
Sd 0.053 0.026 0.075 0.118 0.131 0.267 0.270
p value 3.22E−25 4.36E−20 – 3.98E−25 4.73E−05 1.25E−02 1.00E+00
Effect size − 18.807 − 6.542 – − 4.103 0.971 − 0.525 − 0.162

105 SCs Mean 617.583 619.273 619.799 619.080 620.101 619.661 619.760
Min 617.314 619.179 619.537 618.237 619.708 618.009 618.326
Max 617.635 619.382 620.107 619.370 620.598 620.557 620.718
Sd 0.038 0.058 0.160 0.241 0.244 0.531 0.530
p value 4.94E−25 4.36E−20 – 3.58E−25 1.93E−09 4.60E−01 1.00E+00
Effect size − 24.688 − 4.634 – − 3.220 1.400 − 0.297 − 0.086

267

1 3

Genetic Programming and Evolvable Machines (2019) 20:245–283

when comparing every approach against G3P with the grammar configuration F. All
G3P algorithms which run multi-level grammar configurations use the population
porting strategy when updating the grammar.

Table 3 confirms results that were observed in Fig. 4 as it shows that using G3P
with the grammar configuration S10F achieves the best mean results in all instances.
In addition, Table 3 consolidates these results as it demonstrates that G3P achieves
statistically better results when using S10F rather than F alone, with an Effect Size
that is always larger than 0.5 (medium on 21 SCs, and large on 63 and 105 SCs).

Unlike the mean results, G3P with M10F achieves the best max fitness function
in all instances. Furthermore, looking at Fig. 5 which show a violin plot of best fit-
ness functions obtained by G3P with each grammar configuration over the 100 runs,

Fig. 5 Violin plot of the best fitness achieved by G3P with the various grammar configurations over the
different 100 runs

268 Genetic Programming and Evolvable Machines (2019) 20:245–283

1 3

we see a non-marginal density of solutions with M10F close to the max result with
that same grammar configuration. This seems to indicate that the fact that M10F
achieves the maximum best fitness over the 10 runs is not the effect of an outlier
run. Therefore, in a situation where it is allowed multiple runs, the user might favour
M10F as M10F managed to find the individual with the best fitness in all scenarios
when run 100 times. Regarding the min results, we do not see a clear winner. G3P
achieves two times out of three the best min results using S10F, while achieving
one time out of three the best min results using F. Despite not being as important
as mean results, min results can be important as a measure to lower regret when
the user is only allowed one run and wants to have a ‘guarantee’ on the minimum
performance.

When it comes to the standard deviation, we see rather high values with respect
to the difference in mean values. We notice a tendency for S and M to have the low-
est standard deviation which could be explained by the smaller search space due
to the restricted grammars. We also see an average standard deviation in case of F,
S10M and S10F. The largest standard deviations are observed with S10M20F and
M10F which we believe is due to the lack of convergence in their populations.

As a summary, we can say that there is a multi-level grammar that is beneficial
in most scenarios. In particular, the two-level grammar which starts with the small
grammar before introducing the full one at generation 10 is the grammar configura-
tion that outperforms the use of a single grammar in our case.

6.2 Sensitivity of the approach to the introduction phase

After showing that G3P with the multi-level grammar approach can statistically out-
perform G3P with a single grammar, using the two-level grammar S10F particularly
showed significantly better mean results than F in all instances. We seek in this sec-
tion to analyse the degree to which the results are sensitive to the introduction phase
of the full grammar. In other words, we study how do results vary when modifying
the generation at which we change from the small to the full grammar.

To this end, we design 6 configurations SxF with x ∈ {1, 5, 10, 20, 30 and 50}
which all start with the small grammar and introduce the full grammar at a given
generation while porting the entire population. We, therefore, compare G3P on the
different instances (i.e., 21, 63 and 105 SCs) using the following grammar configu-
rations: S1F, S5F, S10F, S20F, S30F and S50F. Note that while we choose to study
the sensitivity of SxF, the same process could have been performed on MxF (M10F
achieves best max results). Choosing SxF is based on the fact that S10F achieves
statistically best mean results, which ‘ensures’ a good quality of results with a lesser
regret for its users.

Figure 6 shows the evolution of the best fitness obtained by G3P on the different
instances (i.e., 21, 63 and 105 SCs) starting with the small grammar S and introduc-
ing the full one F at various generations (i.e., 1, 5, 10, 20, 30 and 50). Results are
averaged over 100 runs. G3P uses the population porting strategy when changing
the grammar from the small to the full one.

269

1 3

Genetic Programming and Evolvable Machines (2019) 20:245–283

We see in Fig. 6 a similar trend as in Fig. 4 whereby the G3P algorithm
improves the best fitness function in all instances with all the grammar introduc-
tion phases it is applied with. We also see that limiting the number of genera-
tions to 100 does not seem to allow to achieve a full convergence for the various
algorithms and increasing this parameter is likely to yield a better overall perfor-
mance. We notice that S10F is the only multi-level grammar configuration which
clearly outperforms F. The second best result is obtained when introducing F at
generation 5 (i.e., S5F) and it already has mixed results in comparison to F: while
G3P achieves slightly better results with S5F than with F on 63 and 105 SCs,
G3P achieves worse results on 21 SCs with S5F than with F.

We clearly see that the rest of the introduction phases (i.e., 1, 20, 30 and
50) are performing poorly. Introducing the full grammar after generation 1 acts
mostly as a handicap where the initiation population is generated using a limited
number of terminals and is not evolved using that grammar to find interesting
individuals (thus losing the advantage of using a multi-level grammar approach).
When it comes to introduction phases strictly larger than 10 (i.e., 20, 30 and 50),
we see a clear trend whereby the more the introduction of the full grammar is
delayed the worse are the results. This could be explained by either: (1) the intro-
duction phase is too late to allow G3P to achieve good results or (2) the popula-
tions that result from the small grammar are too converged leading G3P to waste
too much computation to introduce diversity after introducing the full grammar.

Fig. 6 Mean over 100 runs of the evolution of the best fitness obtained by G3P on the different instances
(i.e., 21, 63 and 105 SCs) starting with the small grammar S and introducing the full one F at various
generations (i.e., 1, 5, 10, 20, 30 and 50) with the population porting strategy

270 Genetic Programming and Evolvable Machines (2019) 20:245–283

1 3

This is what we will study below by analysing what happens to the populations
when introducing the full grammar at different generations.

Before moving to the population analysis, we report in Table 4 the mean, min,
max and standard deviation of the performance achieved by G3P when starting
with the small grammar and introducing the full one at various generations (i.e.,
1, 5, 10, 20, 30 and 50). We also include the p value and Effect Size when com-
paring every approach against G3P with the grammar configuration F.

Table 4 confirms what we noticed in Fig. 6 and shows that S1F, S20F, S30F and
S50F are significantly worse than F in all instances, with Effect Sizes that are either
medium (2 out of 12 cases) or large (10 out of 12 cases). It also shows that in addi-
tion to S5F being significantly worse than F on 21 SCs with a large Effect Size, it
is not even statistically better on 105 SCs. Therefore, an analysis of what makes the
two-level approach with the population porting strategy so sensitive to the phase at
which the full grammar is introduced is needed.

6.3 Analysing reasons of the sensitivity to the introduction phase

We would like to analyse what makes G3P with the two-level grammar using the
population porting strategy so sensitive to the phase at which the full grammar is

Table 4 Mean, min, max and standard deviation (Sd) over 100 runs of the best fitness obtained by G3P
when starting with S and introducing F at different generations (i.e., 1, 5, 10, 20, 30 and 50) with a popu-
lation porting strategy. We also include the significance test p value (Mann–Whitney U test with Bonfer-
roni adjustment) and the effect size for each grammar configuration against F. We put in bold the best
mean, min, max, significant p values, and positive medium/large effect sizes (i.e., larger than 0.5)

Instance Metric F S1F S5F S10F S20F S30F S50F

21 SCs Mean 232.957 232.862 232.898 232.995 232.925 232.793 232.726
Min 232.880 232.700 232.756 232.868 232.811 232.685 232.598
Max 233.040 232.977 233.010 233.102 233.037 232.912 232.845
Sd 0.051 0.077 0.072 0.063 0.067 0.068 0.079
p value – 1.52E−08 2.33E−04 3.10E−03 4.44E−02 5.62E−16 2.47E−17
Effect size – − 1.434 − 0.937 0.647 − 0.539 − 2.687 − 3.455

63 SCs Mean 321.334 321.202 321.364 321.443 321.216 321.051 320.984
Min 321.206 320.941 321.169 321.238 321.029 320.799 320.719
Max 321.467 321.379 321.556 321.681 321.445 321.208 321.165
Sd 0.075 0.123 0.117 0.131 0.121 0.124 0.120
p value – 2.32E−07 8.20E−01 4.73E−05 1.12E−05 3.55E−17 2.47E−17
Effect size – − 1.281 0.302 0.971 − 1.158 − 2.726 − 3.457

105 SCs Mean 619.799 619.426 619.880 620.101 619.650 619.473 619.047
Min 619.537 618.967 619.514 619.708 619.246 619.009 617.882
Max 620.107 619.833 620.380 620.598 620.040 619.889 619.522
Sd 0.160 0.234 0.263 0.244 0.214 0.253 0.367
p value – 2.60E−11 8.99E−01 1.93E−09 1.44E−03 1.52E−08 2.47E−17
Effect size – − 1.842 0.366 1.400 − 0.780 − 1.524 − 2.626

271

1 3

Genetic Programming and Evolvable Machines (2019) 20:245–283

introduced. Therefore, we plot the fitness function of each individual in the popula-
tion at each generation from the run with the median best fitness and study both their
performance and diversity.

Figure 7 shows the fitness of every individual at each generation extracted from
the run with the median best fitness, with G3P starting by the small grammar and
introducing the full grammar at various introduction phases (i.e., 1, 5, 10, 20, 30 and
50).

We see in the top row of Fig. 7 the fitness of individuals when starting G3P with
the small grammar and introducing the full one at the first generation without allow-
ing much evolution with the small grammar. We notice that the fitness of the initial
population is relatively well-spread. However, we see a period of fast convergence of
the population following the introduction of the full grammar (until generation 20,
10 and 10 for instances 21, 63 and 105 SCs respectively). We clearly see that G3P
loses in the diversity of the population during that period and uses several genera-
tions to bring it to a level that it will then keep until the end of the evolution. We
also see that the algorithm has a marginal improvement of the best performance dur-
ing the period of low diversity, while the performance spikes when the diversity is
brought to the desired level.

We see in the second and third rows of Fig. 7 the fitness of individuals when
starting G3P with the small grammar and introducing the full one at the generations
5 and 10 respectively. We see that with the exception of S5F on 105 SCs, the popu-
lations do not converge too much and keep a decent level of diversity allowing G3P
to either maintain or easily increase the diversity (e.g., such as in S10F on 21 SCs)
to a ‘suitable’ level.

Figures in row four correspond to the introduction of the full grammar in gen-
eration 20. In these figures, we see a regular distribution from the beginning to the
end of the evolution. we also see a continual improvement of the best fitness. These
two elements let us think that, in this particular context, the late introduction of the
full grammar is the main reason for the poor performance of G3P using the S20F
grammar configuration and a larger number of generation might improve the results.
Another issue that we notice is that the improvement of the best performance does
not happen directly after the introduction of the full grammar at generation 20, but
in a slightly delayed generation (around generation 25). This exhibits a weakness of
the population porting strategy to introduce new terminals from the new grammar in
a fast pace.

The last two rows of Fig. 7 correspond to the introduction of the full grammar at
generations 30 and 50 respectively. We see a similar behaviour as in row four (intro-
ducing the full grammar at generation 20) as the improvement of the best fitness
does not appear directly after the introduction of the full grammar. This is mainly
due to the time it takes for G3P to introduce new terminals from the full grammar to
the population. This is also due, in some cases, to the lack of diversity in the popula-
tion (e.g., S30F and S50F on 105 SCs) that is exacerbated by multiple generations
using the small grammar.

Figure 8 shows the evolution of the diversity (measured as the distance between
the best fitness and average fitness) in the population of every generation of G3P

272 Genetic Programming and Evolvable Machines (2019) 20:245–283

1 3

with the various grammar configurations on the different instances (i.e., 21, 63 and
105 SCs). Results are averaged over 100 runs.

We see in Fig. 8 a similar trend as with Fig. 7. The initial populations that are
generated with each grammar configuration are of a high diversity. Although, the
initial populations generated with the grammar S are slightly more diverse than
those with the grammar F. We see that, with all the grammar configurations, the
diversity drops drastically after the first generation of G3P. However, the diversity
with the grammar configuration F seems to stabilise at a descent level afterwards.
In the contrary, the diversity with the two-level grammars drop further than with the
grammar configuration F, before increasing to reach its level in later generations.

We notice three trends with the two-level grammar configurations. The first trend
is with S1F where the diversity drop at the first generation and increases directly
afterwards. However, it takes G3P with S1F several generations to level the diversity
with the grammar configuration F. The second trend is with the grammar configura-
tions S5F, S10F and S20F where the diversity drops even further after few genera-
tions (from generation 1 to the generation at which the grammar F is introduced).
However, the diversity with these grammar configurations levels the diversity with
the grammar configuration F quickly (in few generations after the introduction of
the grammar F). The last trend we see is with the grammar configurations S30F and
S50F. After a diversity drop at the first generation, this drop continues even further
until the introduction of the grammar F. Unlike with S5F, S10F and S20F, after the
introduction of grammar F, the diversity takes longer to reach the level of diversity
with the grammar configuration F.

As a summary, we can say that starting with S and introducing F at a later gen-
eration with population porting is highly sensitive to the generation at which the
grammar is updated. When introducing the full grammar at early generations, we
take the risk of lacking diversity in the population. Whereas, when introducing the
full grammar at a later generation, we take the risk of lack of execution budget, lack
of diversity / convergence of the population, and slow introduction of new terminals
from the full grammar into the population.

7 Multi‑level grammar through seeding

In the previous multi-level grammar approach, we were ‘porting’ the entire popu-
lation when performing the grammar update. We saw that it leads to an undesir-
able evolutionary behaviour. The population that follows the introduction of the new
grammar either lacks diversity or spends many generations to introduce new termi-
nals instead of using this computational power to improve the performance.

In this section, we replace the population porting strategy with the seeding strat-
egy, whereby only the best individual obtained from the small grammar is kept, and

Fig. 7 Fitness of every individual at each generation from the median run, with G3P starting with the
small grammar and introducing the full grammar at various introduction phases (i.e., 1, 5, 10, 20, 30 and
50) using the population porting strategy

▸

273

1 3

Genetic Programming and Evolvable Machines (2019) 20:245–283

274 Genetic Programming and Evolvable Machines (2019) 20:245–283

1 3

the rest of the population is generated randomly using the Ramped Half-Half tech-
nique on the full grammar. The seeding approach makes the multi-level approach act
in a similar way as the transfer learning approach. However, the transfer is within
the same evolutionary process (in the same evolutionary run) and corresponds to a

Fig. 8 The evolution of the diversity (measured as the distance between the best fitness and average fit-
ness) in the population of every generation of G3P with the various grammar configurations on the dif-
ferent instances (i.e., 21, 63 and 105 SCs). Results are averaged over 100 runs

Fig. 9 Example of the multi-level grammar approach with the seeding strategy. G3P generates individu-
als using the grammar S and evolves them for a few generations using that same grammar. Next, G3P
takes the best individual that resulted from the evolution with S and generates the remaining individuals
to fill a population using the grammar F. The G3P evolves this population using the grammar F for the
remaining generations

275

1 3

Genetic Programming and Evolvable Machines (2019) 20:245–283

knowledge that is learned on the same problem. The seeding approach could also
be seen as an extinction event that would enhance the diversity in the search pro-
cess [53] while keeping the elite (though we only keep one elite individual in this
work).

Figure 9 shows an example of the multi-level grammar approach where the popu-
lation porting strategy is replaced with the seeding one. Unlike in the population
porting, the population that resulted of the evolution with the small grammar S is
not used as an initial population to the evolution with the full grammar F. Instead,
only the best individual from S is selected and injected (seeded) to a randomly gen-
erated initial population with F.

We expect that the randomly generated individuals using the full grammar will
bring the diversity to an adequate level, while at the same time, introducing indi-
viduals with terminals from the new grammar immediately after the grammar modi-
fication. Therefore, the seeding strategy seems to cope with the shortcomings of the
population porting strategy that was used earlier. We anticipate that the new ran-
domly generated individuals to be of a rather poor quality in terms of fitness. How-
ever, we believe that the individual that will be kept from the previous grammar as a
seed would act as an attractor and a driver for the improvement of the new popula-
tion. Additionally, randomly regenerating an entire population has a computational
cost. This process consumes an entire generation (minus one individual). However,
we believe that wasting one generation would still have a smaller impact on the evo-
lution than the numerous generations wasted by the population porting strategy.

7.1 Comparing the seeding and the population porting strategies

Figure 10 shows the evolution of the best fitness over generations on the different
instances (i.e., 21, 63 and 105 SCs) with G3P starting with the small grammar and
introducing the full one at different phases (i.e., generations 1, 5, 10, 20, 30 and
50). Results are averaged over 100 runs. In each of the 18 cases in Fig. 10 which
combine the grammar configuration and the instance, we plot the results obtained
when using either the population porting or the seeding strategy. We also plot results
obtained using the full grammar for reference.

The first thing we notice from Fig. 10 is that similarly to the population porting
strategy, G3P successfully improves the performance when using the seeding strat-
egy with all the grammar configurations and in all instances.

We also see that while the seeding strategy starts with the same performance as
the population porting one from the initial generation until the generation at which
the full grammar is introduced, the seeding achieves a better performance than the
population porting in all the 18 studied cases (grammar configuration by instance).
This is a clear indication that the seeding strategy is the element which leads to this
improvement. The seeding strategy achieves a slight improvement over the popula-
tion porting strategy when using the grammar configurations S5F and S10F. How-
ever, the improvement is larger when it comes to other grammar configurations. It
also seems to be more important the later the full grammar is introduced. In other

276 Genetic Programming and Evolvable Machines (2019) 20:245–283

1 3

words, seeding outperforms population porting more on S30F than on S20F, and
more on S50F than on S30F.

When comparing results obtained using the seeding strategy to those obtained
with full grammar configuration, we see that with the exception of two cases with
S50F (i.e., 21 and 63 SCs), seeding achieves either similar or better results in all
the other 16 cases. Among these 16 cases, seeding achieves similar results than the
full grammar configuration on 7 cases, while significantly outperforming it on the 9
other cases. This is a significant improvement from the population porting strategy
which only achieves similar or better results than the full grammar configuration in 7
cases (i.e., 5 similar and 2 better results), and worse results on 11 cases.

We see that the seeding is an efficient way to improve results of the two-level
grammar especially on S1F, S20F and S30 where the population porting strategy
achieved worse results than the full grammar, whereas using the seeding strat-
egy allows those two-level grammars to equalise or outperform the full one in all
instances. We see that in the two latter grammar configurations (i.e., S20F and
S30F), the seeding improves on the full grammar, whereas in S1F, it only equalises
it as the initial population is regenerated at generation one without seeding any inter-
esting individual.

After examining the evolution of the population for the median run of G3P with
the seeding approach when starting with S and introducing F at the aforementioned
phases, we notice that the seeding approach quickly introduces a desired diversity
to the population after the grammar update. At the same time, the seeding strategy
shortens the time wasted by the approach as it starts improving the best fitness only
a few generations after introducing the new grammar, which indicates a fast intro-
duction of the new terminals.

Table 5 shows the mean, min, max and standard deviation obtained by G3P using
either the grammar configuration F or by starting with the small grammar and intro-
ducing the full one at various generations (i.e., 1, 5, 10, 20, 30 and 50) with both
population porting and seeding strategies on the different instances (i.e., 21, 63 and
105 SCs). Table 5 also includes the p value significance test (computed using the
Mann–Whitney U test with Bonferroni adjustment) and the substantive significance
(using Cohen’s d Effect Size) between the seeding strategy and either of the two
other techniques (i.e., F or population porting) in each of the 18 scenarios (gram-
mar configuration by instance). It shows in bold the best result between the differ-
ent strategies in each scenario in addition to the significant p values and positive
medium/large Effect Sizes (i.e., larger than 0.5).

Table 5 confirms the supremacy of the seeding strategy over the population port-
ing one as it shows that the seeding strategy achieves statistically better mean results
than the population porting strategy in 12 out of 18 scenarios (only 6 cases out of
18 where results are not statistically significant), with an effect that is medium (3

Fig. 10 Mean over 100 runs of the evolution of the best fitness obtained by G3P using both the popula-
tion porting and the seeding strategies on the different instances (i.e., 21, 63 and 105 SCs) starting with
the small grammar S and introducing the full one F at various generations (i.e., 1, 5, 10, 20, 30 and 50).
Results obtained with G3P using the full grammar configuration are also shown for comparison

▸

277

1 3

Genetic Programming and Evolvable Machines (2019) 20:245–283

278 Genetic Programming and Evolvable Machines (2019) 20:245–283

1 3

Ta
bl

e
5

 M
ea

n,
 m

in
, m

ax
 a

nd
 st

an
da

rd
 d

ev
ia

tio
n

(S
d)

 a
ch

ie
ve

d
by

 G
3P

 w
ith

 F
 o

r s
ta

rti
ng

 w
ith

 th
e

sm
al

l g
ra

m
m

ar
 a

nd
 in

tro
du

ci
ng

 th
e

fu
ll

on
e

at
 v

ar
io

us
 g

en
er

at
io

ns
 (i

.e
.,

1,
 5

, 1
0,

 2
0,

 3
0

an
d

50
) w

ith
 b

ot
h

po
pu

la
tio

n
po

rti
ng

 a
nd

 s
ee

di
ng

 s
tra

te
gi

es
 o

n
th

e
di

ffe
re

nt
 in

st
an

ce
s

(i.
e.

, 2
1,

 6
3

an
d

10
5

SC
s)

. W
e

al
so

 in
cl

ud
e

th
e

p
va

lu
e

si
gn

ifi
ca

nc
e

te
st

(M
an

n–
W

hi
tn

ey
 U

 te
st

w
ith

 B
on

fe
rr

on
i a

dj
us

tm
en

t)
an

d
Eff

ec
t S

iz
e

be
tw

ee
n

th
e

po
pu

la
tio

n
po

rti
ng

 a
nd

 s
ee

di
ng

 s
tra

te
gi

es
 in

 e
ac

h
sc

en
ar

io
. I

n
bo

ld
 a

re
 b

es
t r

es
ul

ts

be
tw

ee
n

F,
 s

ee
di

ng
 a

nd
 p

op
ul

at
io

n
po

rti
ng

, i
n

ad
di

tio
n

to
 s

ig
ni

fic
an

t p
 v

al
ue

s
an

d
po

si
tiv

e
m

ed
iu

m
/la

rg
e

eff
ec

t s
iz

es
 (i

.e
.,

la
rg

er
 th

an
 0

.5
) b

et
w

ee
n

se
ed

in
g

an
d

th
e

ot
he

r
str

at
eg

ie
s

G
ra

m
m

ar
Fu

nc
tio

n
21

SC
s

63
SC

s
10

5S
C

s

F
Po

rti
ng

Se
ed

in
g

F
Po

rti
ng

Se
ed

in
g

F
Po

rti
ng

Se
ed

in
g

S1
F

M
ea

n
23
2.
95
7

23
2.

86
2

23
2.

95
4

32
1.
33
4

32
1.

20
2

32
1.
33
4

61
9.

79
9

61
9.

42
6

61
9.
80
1

M
in

23
2.
88
0

23
2.

70
0

23
2.

83
7

32
1.
20
6

32
0.

94
1

32
1.

07
6

61
9.
53
7

61
8.

96
7

61
9.

28
7

M
ax

23
3.

04
0

23
2.

97
7

23
3.
05
5

32
1.

46
7

32
1.

37
9

32
1.
58
6

62
0.

10
7

61
9.

83
3

62
0.
37
3

Sd
0.

05
1

0.
07

7
0.

06
5

0.
07

5
0.

12
3

0.
16

0
0.

16
0

0.
23

4
0.

32
4

p
va

lu
e

1.
00

E+
00

4.
40
E−

07
–

1.
81
E−

03
1.

00
E+

00
–

1.
84
E−

07
1.

00
E+

00
–

Eff
ec

t s
iz

e
−

 0
.0

51
1.
27
2

–
0.

00
1

0.
91
5

–
0.

00
6

1.
31
3

–
S5

F
M

ea
n

23
2.

95
7

23
2.

89
8

23
2.
97
5

32
1.

33
4

32
1.

36
4

32
1.
39
4

61
9.

79
9

61
9.

88
0

62
0.
11
9

M
in

23
2.
88
0

23
2.

75
6

23
2.

87
4

32
1.
20
6

32
1.

16
9

32
1.

17
6

61
9.

53
7

61
9.

51
4

61
9.
64
4

M
ax

23
3.

04
0

23
3.

01
0

23
3.
07
1

32
1.

46
7

32
1.

55
6

32
1.
60
4

62
0.

10
7

62
0.

38
0

62
0.
46
4

Sd
0.

05
1

0.
07

2
0.

06
0

0.
07

5
0.

11
7

0.
13

4
0.

16
0

0.
26

3
0.

26
8

p
va

lu
e

4.
50

E−
01

5.
42
E−

06
–

7.
03

E−
01

1.
43

E−
01

–
6.
61
E−

05
1.
64
E−

07
–

Eff
ec

t s
iz

e
0.

31
4

1.
14
2

–
0.
54
8

0.
23

8
–

1.
43
2

0.
89
0

–
S1

0F
M

ea
n

23
2.

95
7

23
2.

99
5

23
3.
02
9

32
1.

33
4

32
1.

44
3

32
1.
48
9

61
9.

79
9

62
0.

10
1

62
0.
27
5

M
in

23
2.

88
0

23
2.

86
8

23
2.
93
1

32
1.

20
6

32
1.
23
8

32
1.

22
7

61
9.

53
7

61
9.

70
8

61
9.
83
9

M
ax

23
3.

04
0

23
3.

10
2

23
3.
11
6

32
1.

46
7

32
1.
68
1

32
1.

67
4

62
0.

10
7

62
0.

59
8

62
0.
65
2

Sd
0.

05
1

0.
06

3
0.

05
1

0.
07

5
0.

13
1

0.
14

4
0.

16
0

0.
24

4
0.

22
6

p
va

lu
e

4.
08
E−

08
1.
42
E−

02
–

2.
82
E−

02
8.
97
E−

07
–

3.
84
E−

04
9.
28
E−

14
–

Eff
ec

t s
iz

e
1.
40
6

0.
58
6

–
1.
33
5

0.
33

3
–

2.
40
0

0.
72
9

–

279

1 3

Genetic Programming and Evolvable Machines (2019) 20:245–283

Ta
bl

e
5

 (c
on

tin
ue

d)

G
ra

m
m

ar
Fu

nc
tio

n
21

SC
s

63
SC

s
10

5S
C

s

F
Po

rti
ng

Se
ed

in
g

F
Po

rti
ng

Se
ed

in
g

F
Po

rti
ng

Se
ed

in
g

S2
0F

M
ea

n
23

2.
95

7
23

2.
92

5
23
2.
96
8

32
1.

33
4

32
1.

21
6

32
1.
46
3

61
9.

79
9

61
9.

65
0

62
0.
19
4

M
in

23
2.
88
0

23
2.

81
1

23
2.

82
4

32
1.

20
6

32
1.

02
9

32
1.
21
0

61
9.

53
7

61
9.

24
6

61
9.
64
5

M
ax

23
3.

04
0

23
3.

03
7

23
3.
10
7

32
1.

46
7

32
1.

44
5

32
1.
69
5

62
0.

10
7

62
0.

04
0

62
0.
56
0

Sd
0.

05
1

0.
06

7
0.

09
3

0.
07

5
0.

12
1

0.
14

7
0.

16
0

0.
21

4
0.

26
8

p
va

lu
e

1.
00

E+
00

7.
59

E−
02

–
1.
35
E−

10
3.
10
E−

05
–

4.
51
E−

13
3.
76
E−

10
–

Eff
ec

t s
iz

e
0.

14
6

0.
53
2

–
1.
10
0

1.
82
3

–
1.
76
8

2.
21
8

–
S3

0F
M

ea
n

23
2.

95
7

23
2.

79
3

23
2.
98
7

32
1.

33
4

32
1.

05
1

32
1.
43
1

61
9.

79
9

61
9.

47
3

62
0.
14
3

M
in

23
2.

88
0

23
2.

68
5

23
2.
88
4

32
1.

20
6

32
0.

79
9

32
1.
21
6

61
9.

53
7

61
9.

00
9

61
9.
69
0

M
ax

23
3.

04
0

23
2.

91
2

23
3.
08
6

32
1.

46
7

32
1.

20
8

32
1.
65
8

62
0.

10
7

61
9.

88
9

62
0.
86
7

Sd
0.

05
1

0.
06

8
0.

05
8

0.
07

5
0.

12
4

0.
13

6
0.

16
0

0.
25

3
0.

26
3

p
va

lu
e

4.
53
E−

02
6.
99
E−

17
–

2.
12
E−

17
1.
77
E−

03
–

1.
20
E−

15
2.
55
E−

09
–

Eff
ec

t s
iz

e
0.
54
8

3.
02
3

–
0.
87
3

2.
89
0

–
1.
56
1

2.
56
8

–
S5

0F
M

ea
n

23
2.
95
7

23
2.

72
6

23
2.

89
5

32
1.
33
4

32
0.

98
4

32
1.

30
2

61
9.

79
9

61
9.

04
7

61
9.
96
3

M
in

23
2.
88
0

23
2.

59
8

23
2.

75
1

32
1.
20
6

32
0.

71
9

32
1.

05
1

61
9.
53
7

61
7.

88
2

61
9.

33
7

M
ax

23
3.

04
0

23
2.

84
5

23
3.
08
0

32
1.

46
7

32
1.

16
5

32
1.
64
4

62
0.

10
7

61
9.

52
2

62
0.
59
8

Sd
0.

05
1

0.
07

9
0.

08
8

0.
07

5
0.

12
0

0.
16

8
0.

16
0

0.
36

7
0.

38
4

p
va

lu
e

1.
02
E−

03
2.
83
E−

12
–

3.
56
E−

14
4.

09
E−

01
–

5.
40
E−

16
2.

82
E−

01
–

Eff
ec

t s
iz

e
−

 0
.8

52
2.
01
1

–
−

 0
.2

43
2.
15
7

–
0.
55
1

2.
41
3

–

280 Genetic Programming and Evolvable Machines (2019) 20:245–283

1 3

out of 18 cases) and large (13 out of 18 cases). It also shows that the seeding strat-
egy achieves better min and max results than the population porting one in all sce-
narios. Regarding the standard deviation, we see that both strategies have similar
standard deviation values despite being slightly larger for the seeding in 13 out of 18
scenarios.

Table 5 confirms that G3P with the seeding strategy using S10F achieves statisti-
cally better mean results with large Effect Sizes over F and the other grammar con-
figurations in all instances. It also shows that S10F achieves better min results than
F in all instances. However, S10F with seeding only achieves best max results on
instance 21 SCs, whereas this position is taken by S20F and S30F with seeding on
63 and 105 SCs respectively. As the problem complexity increases (more SCs in the
instance) it seems better to delay the introduction phase to achieve the best max per-
formance (S10F, S20F and S30F achieve best max results on 21, 63 and 105 SCs).
Table 5 also shows that in addition to S10F with seeding being statistically better
than F, three other grammars with seeding are better than F, i.e., S5F, S20F and
S30F despite not achieving the best overall results. Having four grammar configura-
tions outperforming the use of a single full grammar is another indicator that the
seeding strategy is a better alternative to the population porting one. Additionally,
using the grammar configuration F does not outperform clearly the two remaining
grammar configurations with seeding (i.e., S1F and S50F). F does not achieve sta-
tistically better results than S1F with seeding on any of the instances. Furthermore,
it is also statistically worse than S50F with seeding on the instance 105 SCs, with a
medium Effect Size.

8 Conclusion

While the grammar-guided genetic programming approach has recently proven its
capability to evolve efficient transmission schedulers in heterogeneous networks,
some works have shown that there is still room for improvement.

We confirmed in this work that using a multi-level grammar approach allows
improving the quality of the schedules obtained by the G3P algorithm. Our pro-
posed approach consists of starting the optimisation with a short and more compact
grammar containing only the most important terminals in order to direct the search
towards ‘ideal’ individuals. Then, to introduce a full grammar during the evolution
to probe a larger part of the search space and improve the performance. However,
despite the improvement, we have shown that multi-level grammar approach is sen-
sitive to the phase at which grammars are introduced.

After studying the way the fitness of individuals evolves from a generation to
another, we have identified that the lack of diversity and the delayed introduction
of new terminals, combined with the late update of the grammar are the major fac-
tors for this sensitivity. Therefore, we proposed to substitute the original population
porting strategy with a new one (i.e., the seeding strategy). The population port-
ing strategy consists of taking all individuals from the last population that resulted
from the evolution using the small grammar and using them as the initial population
for the evolution with the larger grammar. Whereas in the seeding strategy, we only

281

1 3

Genetic Programming and Evolvable Machines (2019) 20:245–283

take the best individual as a seed to a new randomly generated population using the
new grammar. Moving to the seeding strategy alleviated the shortcomings of the
population porting strategy and mitigated the sensitivity of the multi-level grammar
approach to the introduction phase of the larger grammar. In addition to mitigat-
ing this sensitivity, using the seeding strategy outperforms the use of the population
porting in all the studied scenarios and thus improves the performance of the multi-
level grammar G3P over a regular G3P algorithm.

Our ultimate goal is to create a reactive multi-level approach that is agnostic of
the problem domain. To achieve this, we endeavour to answer many questions in
our future work: (1) How to automatically design the restricted grammars? (2) How
many grammars to use per level? (3) When to introduce the grammars? and (4) How
many individuals to seed from a grammar to another?

Acknowledgements This research is based upon works supported by the Science Foundation Ireland
under Grant No. 13/IA/1850.

References

 1. T. Saber, J. Thorburn, L. Murphy, A. Ventresque, VM reassignment in hybrid clouds for large
decentralised companies: a multi-objective challenge. Future Gener. Comput. Syst. 79, 751–764
(2018)

 2. M. Fenton, D. Lynch, S. Kucera, H. Claussen, M. O’Neill, Multilayer optimization of heterogeneous
networks using grammatical genetic programming. IEEE Trans. Cybern. 47, 2938–2950 (2017)

 3. V.N.I. Cisco, Global mobile data traffic forecast update, 2016–2021. White paper (2017)
 4. Statista: forecast of mobile phone users worldwide (2018). www.stati sta.com/stati stics /27477 4/forec

ast-of-mobil e-phone -users -world wide/
 5. H.E. Ciritoglu, T. Saber, T.S. Buda, J. Murphy, C. Thorpe, Towards a better replica management for

hadoop distributed file system, in BigData Congress (2018), pp. 104–111
 6. A. Tall, Z. Altman, E. Altman, Self organizing strategies for enhanced ICIC (eICIC), in WiOpt

(2014), pp. 318–325
 7. M. Fenton, D. Lynch, D. Fagan, S. Kucera, H. Claussen, M. O’Neill, Towards automation & aug-

mentation of the design of schedulers for cellular communications networks. Evol. Comput. 3, 1–30
(2018)

 8. J.G. Andrews, S. Buzzi, W. Choi, S.V. Hanly, A. Lozano, A.C. Soong, J.C. Zhang, What will 5G be?
IEEE J. Sel. Areas Commun. 32, 1065–1082 (2014)

 9. 3GPP: the 3rd generation partnership project. www.3gpp.org
 10. D. Lynch, M. Fenton, S. Kucera, H. Claussen, M. O’Neill, Scheduling in heterogeneous networks

using grammar-based genetic programming, in EuroGP (2016), pp. 83–98
 11. T. Saber, D. Fagan, D. Lynch, S. Kucera, Claussen, H., O’Neill, M., Multi-level grammar genetic

programming for scheduling in heterogeneous networks, in EuroGP, (2018), pp. 118–134
 12. C.E. Shannon, Communication in the presence of noise. IRE 37, 10–21 (1949)
 13. A. Weber, O. Stanze, Scheduling strategies for HetNets using eICIC, in ICC (2012), pp. 6787–6791
 14. A. Allahverdi, The third comprehensive survey on scheduling problems with setup times/costs. Eur.

J. Oper. Res. 246, 345–378 (2015)
 15. D. Jakobović, K. Marasović, Evolving priority scheduling heuristics with genetic programming.

Appl. Soft Comput. 12, 2781–2789 (2012)
 16. J. Branke, S. Nguyen, C.W. Pickardt, M. Zhang, Automated design of production scheduling heuris-

tics: a review. IEEE Trans. Evol. Comput. 20, 110–124 (2016)
 17. S. Nguyen, Y. Mei, M. Zhang, Genetic programming for production scheduling: a survey with a uni-

fied framework. Complex Intell. Syst. 3, 41–66 (2017)

http://www.statista.com/statistics/274774/forecast-of-mobile-phone-users-worldwide/
http://www.statista.com/statistics/274774/forecast-of-mobile-phone-users-worldwide/
http://www.3gpp.org

282 Genetic Programming and Evolvable Machines (2019) 20:245–283

1 3

 18. J. Pang, J. Wang, D. Wang, G. Shen, Q. Jiang, J. Liu, Optimized time-domain resource partitioning
for enhanced inter-cell interference coordination in heterogeneous networks, in WCNC (2012), pp.
1613–1617

 19. D. López-Pérez, H. Claussen, Duty cycles and load balancing in HetNets with eICIC almost blank
subframes, in PIMRC Workshops (2013), pp. 173–178

 20. L. Jiang, M. Lei, Resource allocation for eICIC scheme in heterogeneous networks, in PIMRC
(2012), pp. 448–453

 21. S. Deb, P. Monogioudis, J. Miernik, J.P. Seymour, Algorithms for enhanced inter-cell interference
coordination (eICIC) in LTE HetNets. IEEE/ACM Trans. Netw. 22, 137–150 (2014)

 22. D. Fagan, M. Fenton, D. Lynch, S. Kucera, H. Claussen, M. O’Neill, Deep learning through evolu-
tion: a hybrid approach to scheduling in a dynamic environment, in IJCNN (2017), pp. 775–782

 23. L.T. Ho, I. Ashraf, H. Claussen, Evolving femtocell coverage optimization algorithms using genetic
programming, in PIMRC (2009), pp. 2132–2136

 24. E. Hemberg, L. Ho, M. O’Neill, H. Claussen, A comparison of grammatical genetic programming
grammars for controlling femtocell network coverage. Genet. Program. Evolvable Mach. 14, 65–93
(2013)

 25. I. Dempsey, M. O’Neill, A. Brabazon, Foundations in Grammatical Evolution for Dynamic Envi-
ronments, vol. 194 (Springer, New York, 2009)

 26. D. Lynch, M. Fenton, S. Kucera, H. Claussen, M. O’Neill, Evolutionary learning of scheduling heu-
ristics for heterogeneous wireless communications networks, in GECCO (2016), pp. 949–956

 27. T. Saber, D. Fagan, D. Lynch, S. Kucera, H. Claussen, M. O’Neill, A hierarchical approach to
grammar-guided genetic programming: the case of scheduling in heterogeneous networks, in TPNC
(2018)

 28. T. Saber, A. Ventresque, X. Gandibleux, L. Murphy, GeNePi: a multi-objective machine reassign-
ment algorithm for data centres, in HM (2014), pp. 115–129

 29. T. Saber, F. Delavernhe, M. Papadakis, M. O’Neill, A. Ventresque, A hybrid algorithm for multi-
objective test case selection, in CEC (2018)

 30. T. Saber, A. Ventresque, J. Marques-Silva, J. Thorburn, L. Murphy, MILP for the multi-objective
VM reassignment problem, in ICTAI (2015), pp. 41–48

 31. T. Saber, J. Marques-Silva, J. Thorburn, A. Ventresque, Exact and hybrid solutions for the multi-
objective VM reassignment problem. Int. J. Artif. Intell. Tools 26, 1760004 (2017)

 32. R.I.B. McKay, T.H. Hoang, D.L. Essam, X.H. Nguyen, Developmental evaluation in genetic pro-
gramming: the preliminary results, in EuroGP (2006), pp. 280–289

 33. T.H. Hoang, R.I. McKay, D. Essam, X.H. Nguyen, Developmental evaluation in genetic program-
ming: a position paper, in FBIT (2007), pp. 773–778

 34. T.H. Hoang, D. Essam, N.X. Hoai et al., Developmental evaluation in genetic programming: the tag-
based frame work. Int. J. Knowl. Intell. Eng. Syst. 12, 69–82 (2008)

 35. T.H. Hoang, D. Essam, B. McKay, N.X. Hoai, Building on success in genetic programming: adap-
tive variation and developmental evaluation, in ISCIA (2007), pp. 137–146

 36. N.F. McPhee, E. Crane, S.E. Lahr, R. Poli, Developmental plasticity in linear genetic programming,
in GECCO (2009), pp. 1019–1026

 37. T.H. Hoang, R.I. McKay, D. Essam, N.X. Hoai, On synergistic interactions between evolution,
development and layered learning. IEEE Trans. Evol. Comput. 15, 287–312 (2011)

 38. S.M. Gustafson, W.H. Hsu, Layered learning in genetic programming for a cooperative robot soccer
problem, in EuroGP (2001), pp. 291–301

 39. D. Jackson, A.P. Gibbons, Layered learning in Boolean GP problems, in EuroGP (2007), pp.
148–159

 40. N.T. Hien, N.X. Hoai, B. McKay, A study on genetic programming with layered learning and incre-
mental sampling, in CEC (2011), pp. 1179–1185

 41. T.H. Nguyen, X.H. Nguyen, Learning in stages: a layered learning approach for genetic program-
ming, in RIVF (2012), pp. 1–4

 42. T.T.H. Dinh, T.H. Chu, Q.U. Nguyen, Transfer learning in genetic programming, in CEC (2015),
pp. 1145–1151

 43. E. Haslam, B. Xue, M. Zhang, Further investigation on genetic programming with transfer learning
for symbolic regression, in CEC (2016), pp. 3598–3605

 44. M. Iqbal, B. Xue, H. Al-Sahaf, M. Zhang, Cross-domain reuse of extracted knowledge in genetic
programming for image classification. IEEE Trans. Evol. Comput. 21, 569–587 (2017)

283

1 3

Genetic Programming and Evolvable Machines (2019) 20:245–283

 45. R.I. Mckay, N.X. Hoai, P.A. Whigham, Y. Shan, M. O’neill, Grammar-based genetic programming:
a survey. Genet. Program. Evolvable Mach. 11, 365–396 (2010)

 46. M. Fenton, J. McDermott, D. Fagan, S. Forstenlechner, E. Hemberg, M. O’Neill, PonyGE2: gram-
matical evolution in python, in GECCO (2017), pp. 1194–1201

 47. T. Saber, D. Brevet, G. Botterweck, A. Ventresque, Is seeding a good strategy in multi-objective
feature selection when feature models evolve? Inf. Softw. Technol. 61, 33–51 (2017)

 48. C. Ryan, R.M.A. Azad, Sensible initialisation in grammatical evolution, in GECCO (2003), pp.
142–145

 49. P. Royston, Approximating the shapiro-wilk W-test for non-normality. Stat. Comput. 2, 117–119
(1992)

 50. G.D. Garson, Testing Statistical Assumptions (Statistical Associates Publishing, Asheboro, 2012)
 51. A. Arcuri, L. Briand, A practical guide for using statistical tests to assess randomized algorithms in

software engineering, in ICSE (2011), pp. 1–10
 52. G.M. Sullivan, R. Feinn, Using effect size—or why the p value is not enough. J. Grad. Med. Educ.

4, 279–282 (2012)
 53. J. Lehman, R. Miikkulainen, Enhancing divergent search through extinction events, in GECCO

(2015), pp. 951–958

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Affiliations

Takfarinas Saber1 · David Fagan2 · David Lynch2 · Stepan Kucera3 ·
Holger Claussen3 · Michael O’Neill2

 David Fagan
 david.fagan@ucd.ie

 David Lynch
 david.lynch@ucd.ie

 Stepan Kucera
 stepan.kucera@nokia-bell-labs.com

 Holger Claussen
 holger.claussen@nokia-bell-labs.com

 Michael O’Neill
 m.oneill@ucd.ie

1 School of Computer Science, University College Dublin, Dublin, Ireland
2 Natural Computing Research and Applications Group, School of Business, University College

Dublin, Dublin, Ireland
3 Bell Laboratories, Nokia, Dublin, Ireland

http://orcid.org/0000-0003-2958-7979

	A multi-level grammar approach to grammar-guided genetic programming: the case of scheduling in heterogeneous networks
	Abstract
	1 Introduction
	2 Problem definition
	2.1 Heterogeneous networks
	2.2 Scheduling in heterogeneous networks
	2.3 Evaluating the quality of a transmission schedule

	3 Related work
	3.1 Genetic programming in scheduling
	3.2 Scheduling in heterogeneous networks
	3.3 Genetic programming for scheduling in heterogeneous networks
	3.4 Multi-level learning
	3.4.1 Developmental evaluation GP
	3.4.2 Layered learning GP
	3.4.3 Multi-level grammars-guided GP
	3.4.4 Transfer learning and reuse of extracted knowledge GP

	4 Multi-level grammar-guided genetic programming
	4.1 State-of-the-art: grammar-guided genetic programming
	4.2 Multi-level grammar approach

	5 Experiment design
	5.1 Dataset
	5.2 Setup
	5.3 Significance

	6 Multi-level grammar through population porting
	6.1 Performance of the multi-level grammar approach with population porting
	6.2 Sensitivity of the approach to the introduction phase
	6.3 Analysing reasons of the sensitivity to the introduction phase

	7 Multi-level grammar through seeding
	7.1 Comparing the seeding and the population porting strategies

	8 Conclusion
	Acknowledgements
	References

