
Swarm and Evolutionary Computation 64 (2021) 100896 

Contents lists available at ScienceDirect 

Swarm and Evolutionary Computation 

journal homepage: www.elsevier.com/locate/swevo 

Survey Paper 

Grammatical evolution for constraint synthesis for mixed-integer linear 

programming 

Tomasz P. Pawlak 

a , ∗ , Michael O’Neill b 

a Institute of Computing Science, Poznan University of Technology, Pozna ń , Poland 
b School of Business, University College Dublin, Dublin, Ireland 

a r t i c l e i n f o 

Keywords: 

Mathematical programming 

Model acquisition 

Constraint learning 

High-level modeling language 

Operations research 

a b s t r a c t 

The Mixed-Integer Linear Programming models are a common representation of real-world objects. They support 

simulation within the expressed bounds using constraints and optimization of an objective function. Unfortu- 

nately, handcrafting a model that aligns well with reality is time-consuming and error-prone. In this work, we 

propose a Grammatical Evolution for Constraint Synthesis (GECS) algorithm that helps human experts by synthe- 

sizing constraints for Mixed-Integer Linear Programming models. Given relatively easy-to-provide data of avail- 

able variables and parameters, and examples of feasible solutions, GECS produces a well-formed Mixed-Integer 

Linear Programming model in the ZIMPL modeling language. GECS outperforms several previous algorithms, 

copes well with tens of variables, and seems to be resistant to the curse of dimensionality. 

1

1

 

a  

p  

a  

l  

o  

f  

t  

b  

o  

e  

i  

b  

f  

t

 

l  

c  

n  

o  

i  

d  

a  

f  

t  

m  

a  

r  

a  

c

 

f  

e  

e  

Z  

s  

Z

 

a  

h  

p  

f  

s  

i  

o  

i  

d  

s  

h

R

A

2

. Introduction 

.1. Background 

The Mixed-Integer Linear Programming (MILP) models [1] are

 common representation for a real-world object that consists of three

arts: (1) variables of the object specified with domains (real or integer)

nd bounds on their values, (2) linear constraints representing the re-

ationships between these variables, and (3) a linear objective function

f these variables representing the outcome of this object. For instance,

or a diet plan, the variables may represent the quantities of food items,

he constraints might represent the lower bounds on nutrients delivered

y the food items, and the objective function could represent the cost

f the food. MILP models are quite popular in business and academia,

.g., the NEOS Solver Server [2] reports 36% of the submitted models

n 2019 were MILP. A solver is a software tool that solves the model

y assigning values to variables that minimize (maximize) the objective

unction subject to the constraints. For example, it finds the diet plan of

he minimal cost that meets the nutritional constraints. 

MILP models are typically handcrafted by a modeling expert in col-

aboration with domain experts. This is because sharing the competen-

ies in modeling, and the object being modeled by a single expert is

ot common in practice. The modeling expert gains information on the

bject by interviewing the domain experts. As things like personal feel-

ngs, and incomplete knowledge of the domain experts may hide some

etails from the modeling expert, modeling often requires several iter-
∗ Corresponding author. 

E-mail addresses: tpawlak@cs.put.poznan.pl (T.P. Pawlak), m.oneill@ucd.ie (M. O

ttps://doi.org/10.1016/j.swevo.2021.100896 

eceived 15 August 2020; Received in revised form 2 April 2021; Accepted 21 April 

vailable online 28 April 2021 

210-6502/© 2021 Elsevier B.V. All rights reserved. 
tions to bring satisfactory alignment of MILP models with reality. To

urther complicate matters, many real-world objects are not linear and

he non-linear relationships need to be linearized or approximated to

eet the requirement of the MILP model. These are advanced techniques

nd implementing them is error-prone. The errors in MILP models often

emain undetected until the optimal solution to the model turns out in-

pplicable in practice, requiring another iteration of modeling. All these

hallenges increase the cost of modeling and optimization services. 

ZIMPL [3] is a high-level modeling language for MILP models that

acilitates modeling by compactly representing common constructs,

.g., sums and quantifiers. The ZIMPL interpreter automatically lin-

arizes common non-linear functions, e.g., absolute value, min, max.

IMPL transforms into an LP format [4] , a low-level modeling language

upported by all major solvers. Therefore, a MILP model specified in

IMPL can be solved by virtually any solver. 

ZIMPL, though helpful, does not diminish all challenges in modeling

nd the burden on the experts remains high. In this study, we propose to

elp the experts further. Rather than handcraft the MILP model, we pro-

ose an approach to automate the synthesis of MILP models in ZIMPL

rom underlying data about the problem. We assume that the dimen-

ion sets, the parameters, and the variables of the object are given. For

nstance, for the diet plan, one dimension is a set of food items and an-

ther is a set of nutrients, the parameters consist of volumes of nutrients

n food items, and the variables represent quantities of food items in the

iet plan. We also assume that a training set of examples of feasible

olutions is available, e.g., the set of exemplary diet plans meeting all
’Neill). 

2021 

https://doi.org/10.1016/j.swevo.2021.100896
http://www.ScienceDirect.com
http://www.elsevier.com/locate/swevo
http://crossmark.crossref.org/dialog/?doi=10.1016/j.swevo.2021.100896&domain=pdf
mailto:tpawlak@cs.put.poznan.pl
mailto:m.oneill@ucd.ie
https://doi.org/10.1016/j.swevo.2021.100896


T.P. Pawlak and M. O’Neill Swarm and Evolutionary Computation 64 (2021) 100896 

n  

h  

p

 

i  

d  

d  

a  

w

1

 

t  

t  

[

 

 

 

 

t  

t  

t  

m

 

i  

l  

o  

s  

t  

a  

e  

o  

S  

p  

G  

S  

c  

p

 

A

2

2

 

i  

t  

M  

a  

u  

i  

o

2

 

p  

𝑥  

𝑐  

a  

d  

m  

W  

m  

o  

𝑥  

𝑔  

A  

t  

s  

b

 

w  

t  

𝑔

 

z

 

a  

t  

a  

t  

e  

g

 

a  

a  

i  

n  

t  

i  

t  

p  

o

2

 

𝑃  

S

𝐹

𝑟

𝑞

w  

p

utrition constraints. A diet advisor may easily collect such data during

er service, however, transforming this data into a MILP model requires

roper technical training. 

Building a MILP model can be decomposed into two largely-

ndependent tasks, (1) the design of the objective function, and (2) the

esign of the constraints. The latter task of constraint design is more

emanding because the number of constraints is usually large, while

 typical model consists of only one objective function. Hence, in this

ork, we focus our attention towards constraint synthesis. 

.2. Contributions 

The primary contributions of this study relate to the verification of

he main research hypothesis: the MILP constraints in ZIMPL can be syn-

hesized from the underlying problem data using Grammatical Evolution (GE)

5] . 

More precisely, the contributions are: 

• The formalization of the Constraint Synthesis Problem (CSP) in

Section 2.3 
• The proposition in Section 4 of the Grammatical Evolution for Con-

straint Synthesis (GECS) algorithm for CSP 
• The empirical verification of the properties of GECS using fourteen

real-world and four synthetic CSPs in Section 5 . 

GECS first generates a problem-specific context-free grammar from

he input data, then runs GE to synthesize the constraints. GE is an evolu-

ionary algorithm that uses integer vectors as genotypes and transforms

hem into code using the given grammar. GE has proved effective in

any code synthesis problems [5–7] . 

GECS is not the first algorithm for CSP, however, to our knowledge it

s the first one that synthesizes MILP constraints in a high-level modeling

anguage. The use of the high-level language allows for the generation

f constraints that automatically adapt to the data and facilitates the

ynthesis of large sets of related constraints. This offers a great advan-

age over contemporary algorithms, most of which fine-tune the weights

nd produce independent constraints stuck to the training examples. As

mpirical evidence shows, this also makes GECS resistant to the curse

f dimensionality [8] that all other referenced algorithms suffer from.

ection 3 discusses the variants of CSP and compares GECS to contem-

orary algorithms. Section 5.3 confirms empirically the superiority of

ECS to two other algorithms in the terms of the test-set performance.

ection 6 discusses the advantages and disadvantages of GECS in the

ontext of other algorithms. Section 7 concludes this work and outlines

ossible extensions to GECS. 

Appendix A shows the best models synthesized by GECS in this work.

ppendix B lists the abbreviations and the symbols used in the text. 

. Constraint synthesis problem 

.1. Terminology 

We define several distinct formal objects that share common names

n the literature. To make things clear, we use the term problem to refer

o the Constraint Synthesis Problem (CSP), the term model to refer to the

ILP model that in fact consists of the input and the output of the CSP,

nd the term solution to refer to the solution of the MILP model. We also

se the terms model and set of constraints interchangeably, as the latter

s an essential part of the former and we do not synthesize other parts

f the model. 

.2. Definitions 

Let 𝑚 = ( 𝑃 , 𝑆, 𝐱, 𝑔, 𝐶) be a model in ZIMPL [3,9] , where 𝑃 is a set of

arameters 𝑝 , 𝑆 is a set of dimension sets 𝑠 , 𝐱 is a vector of variables

 , 𝑔( 𝐱) ∶ ℝ 

𝑛 → ℝ is an objective function, and 𝐶 is a set of constraints

( 𝐱) ∶ ℝ 

𝑛 → {0 , 1} . In ZIMPL, 𝑃 and 𝑆 are inputs to 𝑚 . Parameter 𝑝 ∈ 𝑃 is
2 
 number or a string literal or an array thereof indexed using 𝑠 ∈ 𝑆. The

imension set 𝑠 consists of numbers or string literals or tuples thereof; 𝑠

ay be indexed by another 𝑠 ′ ∈ 𝑆 ⧵ { 𝑠 } and parameterized using 𝑝 ∈ 𝑃 .

e use the adjective dimension because 𝑠 typically corresponds to a di-

ension of a modeled object. Variable 𝑥 ∈ 𝐱 attains either real or integer

r binary value or is an array thereof indexed using 𝑠 ∈ 𝑆. The domain of

 may be ranged by numeric constants and 𝑝 ∈ 𝑃 . The objective function

( 𝐱) and the constraints 𝑐( 𝐱) ∈ 𝐶 are piecewise linear functions w.r.t. 𝐱.

 specific value of 𝐱 such that ∀𝑐∈𝐶 𝑐( 𝐱) = 1 is referred to as feasible solu-

ion , and the set 𝑓 ( 𝐶) = { 𝐱 ∶ ∀𝑐∈𝐶 𝑐( 𝐱) = 1} as feasible region . The optimal

olution to 𝑚 is 𝐱 ∈ 𝑓 ( 𝐶) that minimizes 𝑔( 𝐱) . For 𝑓 ( 𝐶) = ∅, 𝑚 is infeasi-

le. 

Note that 𝑔 is optional in 𝑚 : if not given, 𝑔 can be simply substituted

ith a constant function 𝑔( 𝐱) = 1 and all other definitions apply respec-

ively, e.g., all feasible solutions are optimal w.r.t. 𝑔. As we do not use

, we skip it later on. 

The below snippet shows the diet plan model in ZIMPL (namely the

diet model from Section 5 ): 

In the above model snippet in ZIMPL, 𝑃 = { need , data } 
𝑆 = { Food , Nutr , Attr } ; Food stands for the dimension set of avail-

ble food items, Nutr for nutrients, Attr for food attributes, need stores

he minimum daily intake of nutrients, and data stores the values of the

ttributes of food items. x[Food] is an array of variables representing

he numbers of food items f ∈ Food to eat. The constraint1 verifies for

ach nutrient whether the food items in the diet plan provide an intake

reater than is required. 

To solve a ZIMPL model 𝑚 , the ZIMPL interpreter transforms it into

n equivalent model in LP format 𝑚 

′ (cf. [4] ), and then 𝑚 

′ is fed into

 solver (in this work [4] ). The transformation to 𝑚 

′ may introduce auxil-

ary variables 𝐱 ′ and set 𝐶 

′ of auxiliary linear constraints that implement

on-linear features of ZIMPL, e.g., absolute value, min and max func-

ions, and conditional expressions. 𝐱 ′ and 𝐶 

′ do not change the mean-

ng of the solution to 𝑚 , i.e., 𝐱 ∈ 𝑓 ( 𝐶) ⟺ ∃𝐱 ′ ∶ [ 𝐱 , 𝐱 ′] ∈ 𝑓 ( 𝐶 ∪ 𝐶 

′) . For

hat reason, we assume that the transformation to the LP format is

urely technical and continue discourse using ZIMPL. For more details

n ZIMPL, the reader is referred to [3,9] . 

.3. Problem 

Let 𝑋 be a set of examples of feasible solutions 𝐱. Given the inputs

 , 𝑆, 𝐱 as a ZIMPL snippet, and the input 𝑋 as a matrix, the Constraint

ynthesis Problem (CSP) is to find a set of constraints 𝐶 that maximizes: 

 1 ( 𝐶) = 2 𝑟𝑞 ∕ ( 𝑟 + 𝑞) (1) 

 = |𝑓 ( 𝐶) ∩𝑋|∕ |𝑋| (2) 

 = |𝑓 ( 𝐶) ∩𝑋|∕ |𝑓 ( 𝐶) | (3) 

here 𝐹 1 ( 𝐶) is 𝐹 1 -score, 𝑟 is recall, and 𝑞 is precision [10, Ch.10] of the

artitioning of solution space induced by 𝐶. 



T.P. Pawlak and M. O’Neill Swarm and Evolutionary Computation 64 (2021) 100896 

 

𝐱  

t  

b  

a  

a  

𝑞  

o  

a

𝑞

𝑓

𝑑

w  

t  

t  

m  

n  

t  

a  

a  

d

2

 

t

 

 

 

 

 

 

[  

d  

b  

s  

h  

2

 

f  

o  

m

 

s  

2  

1  

o

2

 

i  

r  

c  

f  

t  

b  

r  

r

 

l  

𝛼  

v  

𝑋  

f  

H  

𝛼  

d  

C

 

t  

b  

r  

i  

c  

t  

t  

r  

m  

c

𝐹  

T  

t  

𝐹  

r  

p  

n  

i

3

 

d  

s

3

 

f  

t  

l  

i  

1 Abuse of notation for brevity; 𝛼( 𝑋) is the feasible region of the set of con- 
−1 
𝑟 does not require calculating 𝑓 ( 𝐶) and reduces to the fraction of

 ∈ 𝑋 that satisfies the constraints in 𝐶. This reduction does not apply

o 𝑞, where the cardinality of 𝑓 ( 𝐶) is important. Note that 𝑓 ( 𝐶) may

e infinite even if it is bounded, e.g., when real variables exist. Using

n infinite 𝑓 ( 𝐶) and a finite 𝑋 at the same time results in 𝑞 = 0 and

 negatively biased assessment. For that reason, we substitute 𝑓 ( 𝐶) in
with its sample 𝑓 ( 𝐶) ⊆ 𝑓 ( 𝐶) . Since 𝑓 ( 𝐶) may be arbitrarily small part

f 𝑓 ( 𝐶) and it may happen that 𝑓 ( 𝐶) ∩𝑋 = ∅ even if 𝑓 ( 𝐶) ∩𝑋 ≠ ∅, we

lso use an intersection operator with tolerance ∩𝑡 . This results in: 

̂ = |𝑓 ( 𝐶) ∩𝑡 𝑋|∕ |𝑓 ( 𝐶) | (4) 

 ̂( 𝐶) ∩𝑡 𝑋 = 

{ 

𝐱 ∈ 𝑓 ( 𝐶) ∶ min 
𝐱 ′∈𝑋 

𝑑( 𝐱 , 𝐱 ′) ≤ 𝑡 

} 

(5) 

( 𝐱 , 𝐱 ′) = 

∑
𝑖 

|𝑥 𝑖 − 𝑥 ′
𝑖 
|

|𝑥 𝑖 | + |𝑥 ′
𝑖 
| (6) 

here 𝑑 is Canberra distance [11] , the divisions in 𝑑 and 𝑞 return 0 if

he divisor is 0, 𝑡 is a threshold on the distance between 𝐱 ∈ 𝑓 ( 𝐶) and

he closest 𝐱 ′ ∈ 𝑋. Canberra distance is a weighted 𝐿 1 metric that nor-

alizes the magnitudes of values of individual variables to avoid domi-

ation of a single variable with large magnitude in the value of the dis-

ance. Thanks to normalization, we found in a preliminary experiment

 single formula 𝑡 = 

𝑛 

ln |𝑋| that for |𝑓 ( 𝐶) | = |𝑋| provides 𝐹 1 ( 𝐶 

∗ ) ≈ 1 for

ll ground truth 𝐶 

∗ in this study and smaller 𝑡 decreases 𝐹 1 ( 𝐶 

∗ ) ; 𝑛 is the

imensionality of 𝐱. 

.4. Sampling the feasible region 

To obtain a uniformly distributed sample 𝑓 ( 𝐶) of 𝑓 ( 𝐶) for an arbi-

rary 𝐶 and for large 𝑛 we use the Hit-and-Run (HaR) algorithm [12] : 

1. Relax the domains of integer variables in 𝐱 to real 

2. Calculate the initial example 𝐱 0 as the optimal solution to 𝐶 sup-

plemented with a random objective function 𝑔( 𝐱) = 𝐰 ⋅ 𝐱, where

𝐰 ∼  ([−1 , 1] 𝑛 ) ;  ( 𝑍 ) stands for the uniform distribution over 𝑍 

3. Draw uniformly a random vector Δ𝐱 ∼  ([−1 , 1] 𝑛 ) 
4. 𝐱 𝑖 +1 ← 𝐱 𝑖 + 𝜆Δ𝐱, where 𝜆 ∼  ([ 𝜆min , 𝜆max ]) and 𝜆min and 𝜆max are ex-

treme values for which 𝐱 𝑖 +1 ∈ 𝑓 ( 𝐶) 
5. Round 𝐱 𝑖 +1 on integer variables to the closest feasible solution

w.r.t. 𝐿 1 metric and store 𝐱 𝑖 +1 in 𝑓 ( 𝐶) 
6. Increment 𝑖 and go back to step 3 unless 𝑓 ( 𝐶) reached the requested

cardinality. 

Note that the above HaR algorithm differs from the definition in

12] in that it begins in step 2 from the optimal solution w.r.t. a ran-

om objective function rather than a randomly drawn solution. This is

ecause for large 𝐶 and 𝑛 drawing a feasible solution is virtually impos-

ible and it must be constructed somehow. Steps 1 and 5 are added for

andling integer variables, as HaR in [12] is defined for the real domain.

.5. Example 

We show a practical instance of a CSP by synthesizing the constraints

or the diet plan MILP model. The inputs 𝑃 , 𝑆, 𝐱 are given in the form

f lines 1–14 of the above ZIMPL snippet and the input 𝑋 is given as the

atrix: 

x[Oatmeal] x[Chicken] x[Eggs] x[Milk] x[Pie] x[Pork] 

0 0 0 4 2 2 

0 0 2 2 2 2 

0 3 0 2 2 2 

0 0 2 8 0 2 

0 0 0 8 2 2 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

s

3 
For the sake of argument, assume that |𝑋| = 400 , but for brevity, we

how only the first five examples. Lines 16–17 of the snippet in Section

.2 show the output — the best 𝐶 found in this study that scores 𝐹 1 ( 𝐶) =
 . 𝐶 is equivalent to the ground truth 𝐶 

∗ in the zdiet model and differs

nly in the names of the constraint and the temporary variables. 

.6. Properties 

CSP is a kind of one-class classification problem [13] , where the aim

s to identify the inherent properties of the positive class (the feasible

egion) using examples of this class rather than separating it from other

lasses. The main difficulty in CSP lies in finding the boundary of the

easible region expressed using constraints. Given no information about

he shape of the ground truth feasible region, it can be only estimated

ased on the input to the CSP. The threshold 𝑡 on 𝑑 in Eq. (5) plays the

ole of the estimator by locating the optimal boundary of the feasible

egion in the minimal distance 𝑡 from all examples in 𝑋. 

Assuming 𝑋 = 𝑓 ( 𝐶 

∗ ) , i.e., the training set consists of all feasible so-

utions to the optimal model, CSP is a problem of finding the 𝛼-shape

( 𝑋 ) of 𝑋 [14] for some 𝛼 ∈ ℝ . 𝛼( 𝑋) is a generalization of the con-

ex hull 𝑐𝑜 ( 𝑋) that for 𝛼 = 0 reduces to 𝑐𝑜 ( 𝑋) , for 𝛼 > 0 it holds that

 ⊆ 𝑐𝑜 ( 𝑋) ⊆ 𝛼( 𝑋) , and for 𝛼 < 0 it holds that 𝑋 ⊆ 𝛼( 𝑋) ⊆ 𝑐𝑜 ( 𝑋) . The

acets of 𝛼( 𝑋) are piecewise linear constraints and 𝑋 = 𝛼( 𝑋) for some 𝛼.

ence, 𝛼 exists such that 𝑟 ( 𝛼( 𝑋)) = 𝑞( 𝛼( 𝑋)) = 𝐹 1 ( 𝛼( 𝑋)) = 1 . 1 Calculating

( 𝑋) relies on Delaunay triangulation and this has 𝑂( |𝑋|⌊𝑛 ∕2 ⌋) facets in

imension 𝑛 [15] , hence finding 𝛼( 𝑋) for arbitrary 𝑛 is NP-hard and so

SP is. 

A CSP is ill-posed, since two different models 𝐶 1 and 𝐶 2 may be op-

imal w.r.t. the same instance of the CSP. Some constraints in 𝐶 1 , 𝐶 2 , or

oth may be redundant and do not contribute to the shape of the feasible

egion, i.e., it may hold that 𝑓 ( 𝐶 1 ) = 𝑓 ( 𝐶 2 ) and so 𝐹 1 ( 𝐶 1 ) = 𝐹 1 ( 𝐶 2 ) even

f 𝐶 1 ≠ 𝐶 2 . Dropping redundancy directly is difficult because a single

onstraint in ZIMPL may correspond to many hyperplanes in the solu-

ion space, some of which may be redundant and others may not. Rather

han redundancy removal at all costs, we focus on the simplicity of rep-

esentation and incorporate this preference into the fitness function by

ixing two criteria: 𝐹 1 and the number of characters 𝐿 in the ZIMPL

ode: 

 ̂1 ( 𝐶) = 𝐹 1 ( 𝐶) − 10 −6 𝐿 (7)

he constant 10 −6 is small enough to ensure the lexicographic order of

hese criteria in all the CSPs in this study, i.e., for any 𝐶 1 and 𝐶 2 if

 1 ( 𝐶 1 ) < 𝐹 1 ( 𝐶 2 ) then 𝐹 1 ( 𝐶 1 ) < 𝐹 1 ( 𝐶 2 ) holds, and if 𝐹 1 ( 𝐶 1 ) = 𝐹 1 ( 𝐶 2 ) the

elative ranks of 𝐶 1 and 𝐶 2 depend only on 𝐿 . This may affect the search

ath in the space of models visited by a synthesis algorithm, but should

ot prevent it from finding any 𝐶 

∗ optimal w.r.t. 𝐹 1 and then reducing

ts size. 

. Related work 

In this section we first discuss the alternatives to ZIMPL, then review

ifferent formulations of a CSP, and finally survey the works on the

ynthesis of Mathematical Programming (MP) models. 

.1. Modeling languages 

Arguably, the most widespread and recognized high-level language

or MP models is AMPL [16] , e.g., the NEOS Solver Server [2] reports

hat 58% of jobs submitted in 2019 used AMPL. Another well-recognized

anguage is GAMS [17] , with an 18% market share in 2019 accord-

ng to [2] . Both, AMPL and GAMS support Linear Programming and
traints 𝐶 = 𝑓 ( 𝛼( 𝑋)) . 



T.P. Pawlak and M. O’Neill Swarm and Evolutionary Computation 64 (2021) 100896 

N  

e  

d  

t  

c

3

 

i  

b  

t  

p  

a  

s  

p  

f  

e  

i  

a  

a  

o

 

w  

u  

c  

t  

w  

o  

t

 

o  

t  

f  

o  

h  

a  

[  

M

 

a  

t  

a  

b  

o

 

e  

e  

s  

u  

p

 

p

3

 

r  

t  

[

L

 

t  

fi  

s  

v

 

a  

p  

w  

o

 

v  

c  

 

b  

C  

v  

v

 

s  

C  

s

 

p  

Q  

O  

t

 

i  

[  

m  

s  

w  

e

 

o  

u  

p  

o

 

G  

[  

t

 

f  

l  

o  

s

 

v  

d  

t  

i  

d

C

 

g  

p  

b  

s

 

c  

a  

e  

b  
on-Linear Programming (LP/NLP) models, transcode to other formats,

.g., LP format [4] , and integrate well with many solvers. However, we

o not use AMPL and GAMS in this study because the AMPL and GAMS

ools, in contrast to ZIMPL, are proprietary software and we require ac-

ess to the internals of the language interpreter. 

.2. Similar problems 

A one-class CSP, as posed in Section 2.3 , was previously formulated

n several other works e.g., [18–21] . However, the qualitative difference

etween this work and the previous art [18–21] lies in the generality of

he resulting constraints. In this work, the constraint is a high-level ex-

ression made of symbols of dimension sets from 𝑆, parameters from 𝑃 ,

nd variables from 𝐱, and so valid for any 𝑆, 𝑃 , and 𝐱 with the same

ymbols. In contrast, the constraint in [18–21] is a low-level linear ex-

ression of a fixed vector of variables. Consider for instance the best-

ound constraint for the zdiet CSP from the previous section. It is general

nough to model any set of lower bounds for nutrients in the diet plan

nvolving any set of food items and any set of nutrients. On the contrary,

 single constraint in [18–21] would represent a single lower bound for

 single nutrient in the diet plan with a fixed number and characteristics

f food items. 

A CSP is sometimes formulated in a two-class way, e.g., in [22–25] ,

here examples of feasible and infeasible solutions are to be separated

sing constraints. It might be considered a simpler problem than a one-

lass CSP, as the location of the boundary between classes lies between

he examples. However, as shown in [26] the problem of determining

hether a fixed number 𝑘 ≥ 2 of linear constraints separating two sets

f examples exist is NP-complete. It is NP-complete even if 𝑘 varies in

he range [2 , 𝑛 2 ] , where 𝑛 is the number of variables [27] . 

Syntax-guided program synthesis (SyGuS) [28] tackles the problem

f synthesis of a program in an arbitrary language, where background

heory, a correctness predicate, and grammar are given in a predefined

ormat as input. SyGuS is similar to a CSP in that both restrict the syntax

f the output. In contrast to a CSP, the training set is optional in SyGuS,

owever, it may involve a verification oracle that produces counterex-

mples for invalid models. The algorithms for SyGuS from the work

28] are restricted to integer variables and cannot produce some of the

ILP models in this study. 

CSP is similar to learning polytopes [29] in the sense that the facets

nd the interior of the polytope correspond to the MILP constraints and

he feasible region in CSP, respectively. However, the constraints in CSP

re high-level, i.e., every single constraint may correspond to any num-

er of facets of the polytope and so by synthesizing a single constraint

ne can learn the entire polytope at once. 

Rather than synthesizing an explicit model from examples, Galassi

t al. [30] construct a new feasible solution directly from the feasible

xamples. They teach the deep neural network to produce solutions con-

istent with the examples provided. This type of problem formulation is

seful when one seeks other solutions than already known, but cannot

rovide explanations nor insight on the object the solutions refer to. 

De Raedt et al. [31] survey other variants of the constraint synthesis

roblem, its applications, and algorithms. 

.3. Synthesis of MP models 

We classify the works on the synthesis of MP models based on the

epresentation, and begin from these on LP/NLP [1] as the closest to

he topic of this study, then advance to Constraint Programming (CP)

32] and Satisfiability Modulo Theories (SMT) [33] . 

inear/Non-Linear Programming 

GOCCS [34] is a strongly-typed genetic programming (GP) [35] sys-

em that from a one-class training set produces a set of constraints con-
4 
gurable within LP/NLP. GOCCS is susceptible to the curse of dimen-

ionality [8] and its performance decreases rapidly for more than five

ariables. 

ESOCCS [19,36] produces user-configurable LP/NLP models from

 one-class training set using evolutionary strategy [37] . ESOCCS out-

erforms GOCCS when compared using several synthetic benchmarks. It

as successfully applied to fully-automated modeling and optimization

f a rice farm. 

CMA-ESOCCS [21] is a similar to ESOCCS algorithm based on co-

ariance matrix adaptation evolutionary strategy [38] . It has smaller

omputation cost than ESOCCS and offers similar learning performance.

CSC4.5 [18] creates MILP models from one-class data using a hy-

rid of expectation-maximization [39] and C4.5 decision tree [40] .

SC4.5 produces oversize models with constraints involving a single

ariable each, hence unable to represent relationships between the

ariables. 

OCCALS [20] synthesizes MILP models using x-means [41] and local

earch [42] from one-class data. It outperforms GOCCS, ESOCCS, and

SC4.5, however, it still suffers from the curse of dimensionality for

even or more variables. 

EOCCA [43] is a fast constructive approach backed by Principal Com-

onents Analysis [44] and x-means [41] that produces Mixed-Integer

uadratic Constraints from one-class data. EOCCA consistently beats ES-

CCS on 𝐹 1 -score and computation time, however, it still suffers from

he curse of dimensionality for over 7–9 variables. 

Lombardi et al. [24] propose to learn ordinary machine learn-

ng models: C4.5 decision tree [40] and a multilayer neural network

45] and then transform them into Mixed-Integer NLP, CP, and SMT

odels. It uses two-class training sets of exemplary feasible and infea-

ible schedulings to learn the scheduling model. The downsides of this

ork are a lack of tuning of the learning algorithms to a CSP and an

xperimental evaluation limited to a single problem domain. 

Pawlak and Krawiec [22] encode the problem of two-class synthesis

f LP/NLP constraints using the MILP problem and solves it optimally

sing an off-the-shelf solver. However, this method overfits and is com-

utationally costly, often requiring terminating the solver before the

ptimum is reached. 

GenetiCS [23] is another strongly-typed GP system. In contrast to

OCCS, GenetiCS requires two classes of examples. The evaluation in

34] shows that GenetiCS requires up to 60% more training information

han GOCCS to achieve similar performance. 

IncaLP [25] is another algorithm that hybridizes the MILP encoding

rom the work [22] with incremental learning of INCAL [46] (see be-

ow). It achieves similar test-set-based performance to [22] but works

ne-two orders of magnitude faster. Despite the speed improvement, it

till suffers from the same issues as [22] . 

The above-mentioned algorithms produce low-level constraints in-

olving weights specific to the training examples. In contrast, GECS pro-

uces high-level constraints configurable using sets and parameters, and

hus adaptable to different objects of the same class by simply provid-

ng new values for the parameters. See Section 6 for a more detailed

iscussion. 

onstraint Programming 

Model Seeker [47] finds CP-like constraints expressed in Prolog lan-

uage using a one-class training set and a handcrafted library of tem-

lates of constraints. This library is a piece of domain knowledge to

e supplied with the problem, and Model Seeker is limited to the con-

traints available in this library. 

Conacq [48] uses version space learning [49] to learn a single CP

onstraint using a two-class training set. An extension [50] adds inter-

ctive queries of an expert for the classification of artificially-created

xamples. Another extension [51] adds support for arguments provided

y the expert to explain her decisions. Conacq is limited to finite-domain



T.P. Pawlak and M. O’Neill Swarm and Evolutionary Computation 64 (2021) 100896 

v  

t

 

t  

o

S

 

S  

t  

e  

c

 

v  

c  

s

 

o  

a  

c  

e  

c  

e

4

 

t  

T  

t  

m  

f  

o  

w

 

Z  

f  

s

 

 

i  

g  

d

4

 

o  

(  

i  

b  

t  

a  

Z  

s

 

c

Table 1 

Descriptors of symbols extracted from ZIMPL snippet for zdiet CSP; refers to 

empty list, n/a to “not applicable ”. 

Name Type Indexes Values Domain 

Food Set S n/a 

Nutr Set S n/a 

Attr Set S n/a 

need Parameter S n/a n/a 

data Parameter SS n/a n/a 

x Variable S n/a Z 

4

 

N  

c  

t

4

 

a  

t  

a

 

s

 

o  

t  

n  

d  

t  

c  

c

4

 

e  

 

 

d  

a  

e  

i  

v  

d  

t  

 

a  

u  

r  

𝑡  
ariables and does not support weights nor nonlinear transformations of

he variables. The resulting constraint is NP-hard to solve. 

QuAcq [52] synthesizes CP models using a two-class set and interac-

ive queries to an expert. QuAcq is asymptotically optimal in the number

f queries for constraints involving only = and ≠ comparisons. 

atisfiability Modulo Theories 

Learning Modulo Theories [53] is a framework for the synthesis of

MT models from one-class data and linear real arithmetic background

heory. The assessment using two synthetic problems shows a consid-

rable amount of background knowledge required to synthesize effi-

iently. 

INCAL [46] is an exact algorithm that synthesizes SMT models in-

olving linear real arithmetic from a two-class training set. INCAL en-

odes the synthesis problem as an SMT and solves it using an off-the-

helf solver. 

The work [54] employs inductive logic programming to learn a set

f first-order clauses for weighted MAX-SAT theories using one-class ex-

mples of solutions and user preferences. The proposed system learns

lauses and their weights compliant with the underlying models. The

valuation using relatively easy problem instances shows that the ac-

uracy of this method highly depends on the amount of the available

xamples and noise. 

. Constraint synthesis algorithm 

Grammatical Evolution for Constraint Synthesis (GECS), the main con-

ribution of this study, is the algorithm solving CSP posed in Section 2.3 .

he input to GECS is the ZIMPL snippet consisting of the definitions of

he sets of parameters 𝑃 , dimension sets 𝑆, and variables 𝐱, and the

atrix of examples, in the reference implementation given in the CSV

ormat. GECS assumes that the ZIMPL snippet is complete and consists

f all symbols available for use in the model. GECS yields a ready-to-use

ell-formed MILP model in ZIMPL. 

GECS is based on the PonyGE2 tool [55] and extends it with the

IMPL interpreter, problem-specific grammars, and a custom fitness

unction. Fig. 1 shows the flowchart of GECS. It operates in three

teps: 

1. Extract symbols from the given ZIMPL snippet 

2. Generate a problem-specific grammar using these symbols 

3. Run PonyGE2 employed with that grammar and the custom fitness

function. 

Section 4.1 details how we extend the ZIMPL interpreter to extract

nput information from the ZIMPL snippet in step 1. Section 4.2 discusses

rammar generation in step 2. Step 3 runs the PonyGE2 tool, briefly

iscussed in Section 4.3 . The implementation of GECS is open-source. 2 

.1. Symbol extraction 

We extend the ZIMPL interpreter [3,9] to extract descriptors

f the symbols from the ZIMPL code. A descriptor is a tuple of

 name , type , indexes , values , domain ) , where name is the symbol name, type

s either the parameter, set, or variable, indexes is the list of types of sym-

ol indexes ( S for string, N for number), values applies to sets only and is

he list of the types of set elements ( S , N , or tuple thereof), and domain

pplies to variables only and consists of the variable domain ( R for real,

 for integer). Table 1 shows the descriptors extracted from the ZIMPL

nippet for the zdiet CSP from Section 2.2 . 

Technically, the extended ZIMPL interpreter transcodes the ZIMPL

ode into a Python class for processing by GECS. 
2 https://github.com/tomash87/GECS Z

5 
.2. Problem-specific grammar generation 

GECS generates a problem-specific context-free grammar in Backus-

aur form (BNF) based on the descriptors extracted from the ZIMPL

ode, such that the models derivable from this grammar correctly use

he types of the symbols in indexes and constraints. 

.2.1. Grammar template 

GECS generates the grammar from the template designed such that

ll benchmark models in Section 5 are derivable. The main parts of the

emplate are briefly discussed below and the full template is available

s supplementary online material 3 due to its size. 

The axiom of the grammar is < subto > non-terminal and the corre-

ponding < subto > rule has two productions: 

Both productions produce a single constraint, however, the second

ne recursively calls < subto > to produce another constraint. This way

he total number |𝐶| of produced constraints is unbounded, but |𝐶| is

egatively biased by the exponentially decreasing probability of pro-

ucing exactly |𝐶| constraints: ( 1∕ 2) |𝐶|. The successive occurrences of

he term name in the resulting model are replaced by sequential names

onstraint1 ,..., constraint |𝐶| after model generation to drop dupli-

ates. 

.2.2. Hierarchy of constraints 

The template divides each constraint into a hierarchy of four lev-

ls of constraint expressions and allows for different structures at each

level, e.g., quantifier, operator, conditional expression,

linear expression, etc. The quantifier, and the operator by

efinition iterate over a set expression and introduce temporary vari-

bles or tuple thereof. The temporary variables store elements of that set

xpression and index the arrays of variables, parameters, and other sets

n the next level constraint expression. A newly introduced temporary

ariable is assigned with the first unused name from the list i , j ,..., and

uplicate symbols are disallowed by design. The number and types of

emporary variables are extracted from the descriptor of the set symbol

in that expression. Every use of the quantifier is followed with

 non-terminal of the next constraint level and the successive levels may

se temporary variables introduced in the previous levels. The rule car-

ies the information on the level 𝑙 and the types of temporary variables

 introduced in the previous levels of the expression in the name of the
3 https://github.com/tomash87/GECS/blob/master/grammars/ 

IMPL-dedicated.bnf

https://github.com/tomash87/GECS
https://github.com/tomash87/GECS/blob/master/grammars/ZIMPL-dedicated.bnf


T.P. Pawlak and M. O’Neill Swarm and Evolutionary Computation 64 (2021) 100896 

Fig. 1. The flowchart of GECS. The ZIMPL snippet and 

the matrix of examples are the input, and the ZIMPL 

model is the output. 

l  

e

w  

a  

a  

l  

c  

a  

m  

i

4

 

p

 

s  

o  

d  

t  

n  

v  

s  

l  

H  

w  

t

 

v  

i  

p  

a  

d  

s

 

d  

r

 

t  

b  

t  

m  

i

t  

s  

n

 

<  

o  
eft-hand side non-terminal: < constr 𝑙_ 𝑡> . The templates for constraint

xpressions at levels 1–4 are shown below: 

here 𝑣 is a comma-separated list of temporary variables introduced

t the current level, 𝑡 is a string of types of these variables, and 𝑖 is

 string of types of temporary variables inherited from the previous

evels. A production at level 𝑙 is created from the template for all

ombinations of types 𝑡 of temporary variables up to length 2( 𝑙 − 1) if
ll non-terminals called by this production exist. A certain production

ay not exist if no symbols referenced by this production exist in the

nput ZIMPL snippet. 

.2.3. Constraint structure 

Below, we outline the meaning of the non-terminals involved in the

roductions of the constraint expressions at all levels. 

The < sexpr_ 𝑖 _ 𝑡> non-terminal produces a set expression that con-

ists of a set symbol from 𝑆 and an optional predicate for selection

f its subset. The rule is produced for each 𝑠 ∈ 𝑆 that satisfies two con-
 <

6 
itions: if 𝑠 is an array then all types of its indexes are in 𝑖 , and the list of

ypes of elements of 𝑠 equals 𝑡 . For the zdiet CSP, the grammar contains

on-terminal < sexpr_S_S > , where the first S refers to string temporary

ariable i introduced in the previous level constraint expression and the

uffix S refers to string temporary variable j introduced in the current

evel by the or statement to store string elements of a set.

ence, < sexpr_S_S > evaluates to an array of sets of strings indexed

ith a string or simply a set of strings since the use of i is optional. For

he zdiet CSP, the available options are Food , Nutr , Attr . 
The template of < sum_ 𝑖> rule corresponds to the (weighted) sum of

ariables over a set expression, where temporary variables of types 𝑖 are

nherited from the previous level, and < sum_ 𝑖> may introduce new tem-

orary variables to iterate over the set. In the grammar for the zdiet CSP,

n exemplary non-terminal < sum_S > may evaluate to < j > in Food:

ata[j,i] ∗ x[j], i.e., the sum of the food items weighted by the attribute

tored in i . 
The < sum_simpl Z _ 𝑖> non-terminal is a variant of < sum_ 𝑖> that re-

uces to a simple sum of variables over a set. The term Z is optional and

estricts the sum to integer variables only. 

The < cexpr 𝑧 _ 𝑖> rule produces a constant expression, where 𝑧 is ei-

her 0 or empty string and signals whether producing 0 is allowed or not

y this rule; 𝑖 is the list of types of temporary variables inherited from

he previous level constraint expression. The < cexpr 𝑧 _ 𝑖> non-terminal

ay evaluate to either a positive integer, a parameter 𝑝 ∈ 𝑃 optionally

ndexed with available temporary variables, a function of a set 𝑠 ∈ 𝑆

hat evaluates to a number, a numeric temporary variable, or an expres-

ion thereof. In the zdiet CSP the options for an exemplary < cexpr_S >
on-terminal are: 1 , 2 , 3 , need[i] , card ( 𝑠 ), where 𝑠 ∈ 𝑆. 

The < sum_or_var_ 𝑖> non-terminal represents an alternative of

 sum_ 𝑖> and < variable_ 𝑖> , and the latter evaluates to variable name

ptionally indexed using temporary variables of types in 𝑖 , e.g., x[i] for

 variable_S > in the zdiet CSP. 



T.P. Pawlak and M. O’Neill Swarm and Evolutionary Computation 64 (2021) 100896 

 

o  

i  

 

e

 

s

<  

c

 

a

 

e

4

 

o  

p  

e  

G

4

 

m  

v  

s  

u  

c  

f

 

e  

u  

a  

t

 

i  

f  

 

 

 

 

s  

a  

i  

b

 

G  

e  

u  

p  

g  

g  

f  

a

 

u

5

 

b  

n  

n  

f  

t  

e  

p  

o  

l  

i  

e  

f  

m  

t  

s

[  

s  

C

 

s  

𝑓  

m
 

t

 

t  

s

 

o  

s

5

 

v  

p  

o  

o  

c

 

f  

t  

t  

c  

w  

g  

w  

d  

a  

T  

f

The < lexpr _ 𝑖> non-terminal is a weighted linear expression

f variables, optionally indexed with temporary variables of types

n 𝑖 . For the zdiet CSP, e.g., < lexpr_SS > may evaluate to

The < vabs_ 𝑖> non-terminal produces the absolute value of a linear

xpression with optional use of temporary variables of types in 𝑖 . 

The < vif _ 𝑖> non-terminal evaluates to an indicator expres-

ion where 

 variableZ _ 𝑖> is an integer variable and < constr _ 𝑖> is another

onstraint that holds only if that variable equals 1. 

The < param_ 𝑖> non-terminal evaluates to a parameter 𝑝 ∈ 𝑃 option-

lly indexed using temporary variables of types in 𝑖 . 

Last but not least, < cmp > and < arithmetic_op > evaluate to math-

matical operators: 

.2.4. Grammar folding 

To simplify the generated grammar, each call to a non-terminal with

nly one production in the corresponding rule is substituted with this

roduction, and the unused rules are removed from the grammar. Gen-

rally speaking, grammar folding is beneficial to the performance of

rammatical Evolution, as shown in the work [56] . 

.3. Grammatical evolution 

GECS searches for the ZIMPL model for the given CSP using Gram-

atical Evolution (GE) [5] equipped with the grammar from the pre-

ious section. For the readers unfamiliar with GE, we outline some es-

ential basics below. For further details, we refer the reader to the doc-

mentation of the PonyGE2 framework [55] that we extend with extra

lasses to handle ZIMPL, grammar generation, and calculation of fitness

rom Eq. (7) . 

GE is a population-based stochastic optimization algorithm with gen-

ral rules of conduct typical to evolutionary computation. First, the pop-

lation of ZIMPL models is randomly initialized, then a loop of selection

nd recombination runs until a termination criterion is satisfied. This

ypically occurs when the maximum number of iterations is reached. 

In GE the individual is a vector 𝐳 = [ 𝑧 1 , 𝑧 2 , …] ∈ ℕ 

∗ of non-negative

ntegers called codons and the given BNF grammar acts as a mapping

unction onto the ZIMPL code. Derive the ZIMPL code using these steps:

1. Assign the code with the axiom of the grammar (here: < subto > ) 

2. Terminate unless the code contains a non-terminal and 𝐳 ≠ [ ] 
3. For the first non-terminal < N > seek for the rule 𝑟 with < N > on the

left-hand side 

4. Substitute < N > with a production chosen out of the productions in

𝑟 by indexing from 0 to 𝑢 − 1 all productions in 𝑟 and selecting the

one with the number 𝑧 1 mod 𝑢 

5. Remove 𝑧 1 from 𝐳
6. Go back to step 2. 

The termination condition in step 2 may stop the loop before sub-

tituting all non-terminals, resulting in an invalid ZIMPL code. This is

 protection against very large (infinite) derivation sequences resulting

n oversize (infinite) ZIMPL codes. In this case, the ZIMPL code cannot

e evaluated and is assigned with the worst possible fitness value. 

A derivation-tree based initialization called Position Independent

row (PI Grow) is adopted [57] , which is reverse mapped back to gen-

rate the corresponding genotype vector 𝐳. The vector 𝐳 is manipulated

sing a range of recombination operators. PonyGE2 supports e.g., one-

oint and two-point crossover and mutation borrowed from genetic al-

orithms [58] and subtree crossover and mutation from genetic pro-

ramming [59] applied to the derivation trees. In Section 5.1 , we look
7 
or the setting of the operators that maximize performance in solving

 CSP. 

GE works with any parent selection operator, and in this work, we

se tournament selection [58] . 

. Experiment 

We seek the answers to four experimental questions: 

• What is the best parameter setting for GECS? 
• How well does GECS scale with the dimensions of CSPs? 
• How well does GECS compare to its competitors? 
• How well do the synthesized models work in optimization? 

We use eighteen MILP models in ZIMPL as ground truth in eighteen

enchmark CSPs. Table 2 shows the statistics of these models: types,

umbers, and dimensionality of the involved symbols. The prefix in the

ame of the model denotes its source: ‘a’ for the artificial benchmarks

rom the previous work [20] , ‘g’ and ‘z’ for the examples from documen-

ation of Gurobi solver [60] and ZIMPL [9] , respectively. The ‘a’ mod-

ls implement unions of intersecting multidimensional cubes and sim-

lexes, respectively. The ‘g’ and ‘z’ models correspond to basic versions

f real-world problems: gdiet and zdiet implement the product mix prob-

em [1] occurring in e.g., production planning; gfacility and zfacility

mplement the facility location problem [61] common in e.g., company

xpansion planning; gnetflow is the network flow problem [61] known

rom e.g., production line design; gworkforce implements the assign-

ent problem [61] occurring in e.g., timetabling; zsteiner is the Steiner

ree problem [62] tacked in e.g., design of circuits; ztsp is the traveling

alesman problem [63] from e.g., logistics; gsudoku [64] and zqueens ∗ 

64] implement classic games. Note that gdiet and zdiet implement the

ame problem differently and thus constitute different instances of a

SP. The same applies to gfacility and zfacility, and zqueens ∗ . 

The training set 𝑋, the validation set 𝑉 , and the test set 𝑇 are

ampled independently without replacement from the feasible region

( 𝐶 

∗ ) of the ground truth model using the HaR algorithm; |𝑉 | = |𝑇 | =
in {2000 , |𝑓 ( 𝐶 

∗ ) |} and |𝑋| is set on per experiment basis. 

The input to each benchmark CSP is composed of 𝑋 and the ground

ruth model in ZIMPL stripped of the constraints. 

Table 3 -A shows the parameters of GECS set to different values than

he defaults in PonyGE2 [55] and fixed in all experiments. Table 3 -B

hows the parameters subject to tuning in Section 5.1 . 

The reported statistics are calculated using 𝑉 and 𝑇 and averaged

ver 25 runs with different random seeds. 𝑋, 𝑉 , and 𝑇 differ for each

eed. 

.1. What is the best parameter setting for GECS? 

GECS performance is found to be largely-independent of parameter

alues. The combination of the variable one-point crossover, the int flip

er ind mutation, the population size of 500 , and 60 generations turns

ut the best setting. However, the Kruskal-Wallis test for the difference

f this setting vs six others yields 𝑝 > 0 . 999 , and we conclude insignifi-

ance of this difference. 

We found these values by seeking the best parameter setting

rom Table 3 -B on 𝐹 1 calculated using 𝑉 . The parameter popula-

ion_size/generations in fact combines two parameters set such that

he computational budget population_size ×generations = 30000 is

onstant. To avoid the combinatorial explosion of parameter settings,

e tune them one-by-one. First, we look for the best crossover operator

iven the remaining parameters set to their defaults in Table 3 -B. Then,

e tune the mutation operator given the best-found crossover and the

efaults for the rest. Finally, we tune simultaneously the population size

nd the number of generations given the best-found search operators.

able 4 reports the results. In this experiment |𝑋| = min {400 , |𝑓 ( 𝐶 

∗ ) |}
or all benchmarks. 



T.P. Pawlak and M. O’Neill Swarm and Evolutionary Computation 64 (2021) 100896 

Table 2 

Statistics of benchmarks: numbers and dimensionality of symbols (0D means plain symbol, 

1D, 2D, 3D mean 1D, 2D, 3D arrays, resp.), |𝑓 ( 𝐶 ∗ ) | is the total number of feasible integer 

solutions, 𝑛 is dimensionality. 

Model Sets Parameters Variables |𝑓 ( 𝐶 ∗ ) | 𝑛 

acube 2 3 2 ×0D 1 ×0D 1 ×1D real, 1 ×1D binary 372 5 

acube 2 5 2 ×0D 1 ×0D 1 ×1D real, 1 ×1D binary ≥ 5000 7 

asimplex 2 3 2 ×0D 3 ×0D 1 ×1D real, 1 ×1D binary 11 5 

asimplex 2 5 2 ×0D 3 ×0D 1 ×1D real, 1 ×1D binary 2 7 

gdiet 2 ×0D 3 ×1D, 1 ×2D 1 ×1D real 3 9 

gfacility 2 ×0D 3 ×1D, 1 ×2D 1 ×1D binary, 1 ×2D real ≥ 5000 25 

gnetflow 2 ×0D 2 ×2D, 1 ×3D 1 ×3D real ≥ 5000 50 

gsudoku 1 ×0D, 1 ×1D 1 ×0D, 1 ×2D 1 ×3D binary ≥ 5000 729 

gworkforce 2 ×0D 2 ×1D, 1 ×2D 1 ×2D real ≥ 5000 98 

zdiet 3 ×0D 1 ×1D, 1 ×2D 1 ×1D integer 2249 6 

zfacility 3 ×0D 3 ×1D, 1 ×2D 2 ×1D binary ≥ 5000 40 

zqueens1 2 ×0D 1 ×0D 1 ×1D integer 92 8 

zqueens2 2 ×0D, 1 ×2D 1 ×0D 1 ×2D binary ≥ 5000 64 

zqueens3 2 ×0D, 1 ×2D 1 ×0D 1 ×2D binary ≥ 5000 64 

zqueens4 2 ×0D, 1 ×2D 1 ×0D 1 ×2D binary ≥ 5000 64 

zqueens5 2 ×0D 1 ×0D 1 ×2D binary ≥ 5000 64 

zsteiner 4 ×0D, 1 ×1D 1 ×1D 1 ×1D binary 53 7 

ztsp 3 ×0D, 1 ×1D 2 ×1D 1 ×1D binary ≥ 5000 45 

Table 3 

Parameters of GECS: (A) fixed and different than defaults in PonyGE2; (B) subject to tuning; 

defaults underlined. 

( A ) Parameter Value 

cache True 

crossover_probability 0.9 

max_genome_length 200 

max_init_tree_depth 8 

max_tree_depth 13 

tournament_size 5 

( B ) Parameter Tuning set 

crossover subtree (S) , fixed_twopoint (F2), variable_onepoint (V1) 

mutation subtree (S) , int_flip_per_ind (I), int_flip_per_codon (C) 

population_size/generations 250∕120 , 500∕60 , 750∕40 

5

 

s  

r  

c  

w  

d

 

𝑇  

T  

c  

b  

v

 

o  

3  

8  

t  

m  

t

5

 

o  

[  

s  

f  

t  

a  

(

 

t  

i  

C  

d  

f  

E  

i  

T  

t  

t  

4 For OCCALS, we picked the parameter values out of 𝑘 min ∈ {1 , 2 , 3} and 

𝑐 max ∈ {500 , 1000} that maximize the mean 𝐹 1 -score on the problems from 

Table 2 . For ESOCCS, we use the parameter values being the result of tuning 

in both [19] and [36] . We use these reasonable defaults and the fixed time bud- 

get of 120h per run for all algorithms, as EAs are typically robust to specific 

parameter values and giving them equal computational budget is far more im- 

portant for fair comparison [66,67] . Note that ESOCCS suffers from the curse 

of dimensionality that prevents its termination in 9 out of 18 benchmarks and 

leads to useless results in 5 out of the remaining 9 benchmarks (cf. Table 6 ). 

The tuning of 11 parameters of ESOCCS under these conditions would be time- 

consuming and unlikely to yield meaningful improvement, nor overcome the 

course of dimensionality. 
.2. How well does GECS scale with the dimensions of CSPs? 

GECS scales linearly on the mean 𝐹 1 -score on the test set 𝑇 w.r.t. the

ize of the training set 𝑋 for nearly half of the CSPs from Table 2 . For the

emaining CSPs, there are no clear trends, and the 𝐹 1 -score fluctuates at

onstant problem-dependent levels. The run-time of GECS is also linear

.r.t. |𝑋|, but problem-dependent and significantly larger for highly-

imensional CSPs, e.g., gsudoku. 

Fig. 2 (top) shows the mean 𝐹 1 -score and 0.95-confidence interval on

 for the best-of-run model on 𝑋. We verified |𝑋| ∈ {100 , 200 , … , 800} .
he zqueens1 and zsteiner CSPs are excluded from this experiment be-

ause their ground-truth feasible regions contain only 92 and 53 feasi-

le solutions in total, respectively. Thus, scaling against them cannot be

erified in the above-mentioned range. 

Fig. 2 (bottom) shows the mean and the 0.95-confidence interval

f the run-time of GECS w.r.t. |𝑋|. They are obtained using CPython

.7.1 on Linux x64 running on a heterogeneous grid with 30 Core i5-

500 CPUs, 15 Core i7-4770 CPUs, and 15 Core i7-4790 CPUs. Note that

he single-thread performance of all these CPUs is similar, and thus the

easured times are comparable with a negligible error. Refer to [65] for

he details. 

.3. How well does GECS compare to its competitors? 

On the test-sets GECS scores a better mean best-of-run 𝐹 1 on 16 out

f the 18 benchmarks than the two state-of-the-art algorithms: OCCALS

20] and ESOCCS [19,36] . The advantage of GECS grows with dimen-

ionality. What is more, for highly dimensional CSPs GECS yields well-
8 
ormed MILP models where the other algorithms do not terminate in

he time budget of 120h. OCCALS and ESOCCS algorithms were chosen

s a baseline because they are known to beat several other algorithms

cf. Section 3 ). 

In this comparison, OCCALS and ESOCCS were run with the parame-

er values shown in Table 5 . 4 We use all benchmarks and the same train-

ng sets 𝑋 for OCCALS, ESOCCS, and GECS; |𝑋| = min {400 , |𝑓 ( 𝐶 

∗ ) |} . OC-

ALS and ESOCCS synthesize models in LP format and we assess them

irectly using Eq. (7) and test set 𝑇 , as the technical transformation

rom ZIMPL is not necessary (cf. Section 2.2 ). Note that the term 𝐿 in

q. (7) refers for OCCALS and ESOCCS to the number of characters

n the LP format representation and GECS in the ZIMPL representation.

his way we reward the use of the shorter high-level ZIMPL represen-

ation, and at the same time keep the magnitude of 𝐹 1 unaffected by

his discrepancy of calculating 𝐿 due to the very small weight of 𝐿 in



T.P. Pawlak and M. O’Neill Swarm and Evolutionary Computation 64 (2021) 100896 

Fig. 2. Mean 𝐹 1 on 𝑇 of the best-of-run model on 𝑋 (top) and mean run-time in minutes w.r.t. |𝑋| (bottom); shading reflects 0.95-confidence intervals. 

9 



T.P. Pawlak and M. O’Neill Swarm and Evolutionary Computation 64 (2021) 100896 

Table 4 

Mean 𝐹 1 on 𝑉 of the best of run model on 𝑋, best in bold; bars reflect 0.95- 

confidence intervals (cell height reflects 0.1); heatmap for 𝐹 1 : green for 1, red 

for 0; overall ranks of parameter settings; Kruskal-Wallis test reports 𝑝 > . 999 . 

Table 5 

Parameters of OCCALS [20] and ESOCCS [19,36] . 

Algorithm Parameter Value 

OCCALS Min number of clusters 𝑘 min 1 

Number of constraints per cluster 𝑐 max 500 

ESOCCS Distribution estimation Expectation maximization 

Convergence toleration 10 −11 

Random initializations 100 

Iteration limit 10 5 

Significance level 𝜌 0.01 

Population size 𝜇 400 

Offspring to parent ratio 𝜆∕ 𝜇 3 

Initialization Bounding box 

Mutation probability 𝑝 𝑚 1.0 

Unlabeled to feasible set ratio |𝑈 |∕ |𝑋| 2 

Constraint reuse limit 𝑟 3 

E  

o  

t  

T  

d  

v

f  

T  

M  

t  

p  

[  

n  

f  

s  

m  

𝑛  

Table 6 

Mean 𝐹 1 on 𝑇 of the best-of-run model on 𝑋; best in bold; bar height reflects 

0.95-confidence interval (cell height reflects 0.1); heatmap for means: green for 

1, red for 0; mean ranks; p-values of the signed rank test with Bonferroni cor- 

rection of GECS vs the others, ≤ 0 . 05 ∕2 in bold; missing values for the runs un- 

finished within the 120h limit – for the rank and p-value calculation the missing 

value is considered worse than all others. 

a  

T  

t  

s

5

 

a  

t  

t  

i  

a  

s  

t

 

[  

w  

e  

t  

o  

l  

o  

o  

v  

m  

t  

d  

i  

t  

o  

c  

o

q. (7) . The input to OCCALS and ESOCCS differ from the input to GECS

nly in the lack of ZIMPL snippet defining the sets, the parameters, and

he variables because OCCALS and ESOCCS do not use this information.

o make the comparison fairer, we extend the LP format models pro-

uced by OCCALS and ESOCCS with the domains and the bounds of the

ariables given in the original input to CSP. 

Table 6 shows the mean and 0.95-confidence interval of 𝐹 1 on 𝑇 

or the best-of-run model on 𝑋 found by GECS, OCCALS, and ESOCCS.

he negative values occur when the 𝐹 1 score is close to 0 and 𝐿 > 10 3 .
issing values correspond to runs that did not finish within the 120h

ime budget. GECS outperforms OCCALS and ESOCCS in 16 out of 18

roblems. OCCALS and ESOCCS suffer from the curse of dimensionality

8] , as the 𝐹 1 score for them is close to zero for most problems with the

umber of variables 𝑛 > 8 . The only exception is the result of OCCALS

or the gnetflow problem of 50 dimensions which we attribute to the

pecific structure of this problem. To this end, GECS seems to be much

ore robust to the curse of dimensionality, as it effectively handles even

 = 729 variables. The Kruskal-Wallis test [68] yields a p-value < 0 . 001
10 
nd so we observe support for the difference between these algorithms.

he last row of Table 6 shows the p-values of the post-hoc analysis using

he signed rank test with Bonferroni correction [68] and reveals the

uperiority of GECS over both other algorithms. 

.4. How well do the synthesized models work in optimization? 

For 14 out of 18 problems GECS yielded at least once per 25 runs

 model in which the objective value of the optimal solution equals

he objective value of the optimal solution to the corresponding ground

ruth model. For 11 out of 18 problems GECS yielded such a model

n all 25 runs. However, only in 4 out of 18 problems GECS yielded

t least once a model in which the values of variables in the optimal

olution equal the values of variables in one of the optimal solutions to

he ground truth model. 

We collected these statistics by optimizing using the Gurobi solver

4] the models synthesized by GECS for |𝑋| = 400 and supplemented

ith the objective functions from the corresponding ground truth mod-

ls. Table 7 shows the mean and 0.95-confidence interval of the frac-

ion of the optimal solutions to the synthesized models that equal in the

bjective value and in the values of variables to one of the optimal so-

utions to the ground truth models. Technically, we verify whether the

ptimal solution to the synthesized model lies within the feasible region

f the ground truth model and its objective value equals the objective

alue of the optimal solution to the ground truth model. This is because

any different solutions with the same objective value may exist and

he solver is free to return any of them. The fractions vary from 0 to 1

epending on the problem and are higher when only the objective value

s considered. This may mean that some synthesized models have fac-

ually infeasible optimal solutions. This result shows also that for 4 out

f 18 problems GECS at least once per 25 runs finds a model with the

orrect location of the boundary of the feasible region in close proximity

f the ground truth optimal solution. 



T.P. Pawlak and M. O’Neill Swarm and Evolutionary Computation 64 (2021) 100896 

Table 7 

Mean fraction of the optimal solutions to the syn- 

thesized models equal in the objective value (the 

middle column), the objective value and values of 

variables to one of the optimal solutions to the 

ground truth model (the last column); bar height 

reflects 0.95-confidence interval (cell height re- 

flects 0.2); heatmap reflects means: red for 0, 

green for 1. 

6

 

a  

t  

r  

Z  

s  

i  

a  

o  

u  

t  

f

 

i  

a  

t  

m  

w  

e  

p  

p  

L  

u  

b  

e

 

[  

s  

S  

I  

t  

i

 

T  

t  

b  

fl  

e  

h  

t  

m  

w

 

t  

o  

d  

v  

c  

c  

p  

t  

s  

l  

p

 

C  

c  

c  

i  

o  

v  

s  

p  

e  

t  

s  

t  

m  

r

 

v  

e  

o  

t

 

a  

f  

c  

m  

A  

t  

c  

fi  

t  

A  

e

 

S  

r  

e  

s  

s  

g  

s  

e

 

c  

t  
. Discussion 

A MILP model in ZIMPL is general in the sense that it represents

n entire class of real-world objects sharing the same constraints and

he same objective function and differing only in the values of the pa-

ameters and dimensions. For instance, for the zdiet MILP model in

IMPL, two diet plans with different food dimensions have the same con-

traints and the objective function and differ only in the food set. This

s a qualitative difference w.r.t. the LP format [4] that effectively stores

 weighted sum of variables as an objective function and a weighted sum

f variables compared to a constant as a constraint, without any partic-

lar meaning of the weights. Hence, two models in the LP format for

wo different food dimensions differ in the constraints and the objective

unction. 

The generality of the ZIMPL representation offers great flexibility

n modeling of real-world objects whose details change over time. This

lso facilitates synthesis of high-quality constraints by GECS, as it effec-

ively looks for the symbols for placeholders in the templates of com-

on structures, e.g., 'sum < j > in '< set_S_S > ':' < coeff_var_SS > ,

here < set_S_S > and < coeff_var_SS > are effectively the placehold-

rs for respectively a set symbol and a variable symbol optionally

repended with multiplication by a constant (cf. Section 4.2 ). This ap-

roach is in stark contrast to the previous algorithms for the synthesis of

P/NLP models (cf. Section 3.3 ) that effectively look for the optimal val-

es for real-valued weights. In Section 5.3 we showed that GECS scores

etter than two other algorithms that look for the values of weights,

specially when the number of variables in the CSP is large ( 𝑛 > 8 ). 
Note that GECS seems to be resistant to the curse of dimensionality

8] , as its performance does not deteriorate much with 𝑛 . We hypothe-

ize that this is because 𝑛 is not really a dimension of a CSP as posed in

ection 2.3 and does not influence the size of the resulting ZIMPL model.

n contrast, the size of the model in the LP format depends on 𝑛 , and thus

he curse of dimensionality occurs for the algorithms producing models

n the LP format. 
11 
However, the number of symbols is a dimension of a CSP, and as

ables 6 and 7 show, it may impair performance of GECS. It achieves

he worst results for the gdiet and ztsp CSP that both feature seven sym-

ols. Note that the number of symbols is not the only factor that in-

uences the difficulty of a CSP: for the gfacility and zfacility CSP with

ight and nine symbols, respectively, GECS scores relatively high 𝐹 1 . We

ypothesize that the other factor is the distribution of correct models in

he search space of models constrained by the problem-specific gram-

ar (cf. Section 4.2 ). The verification of this hypothesis requires future

ork. 

We have selected a diverse set of problems with different charac-

eristics as outlined in Table 2 . We note that the application of any

ptimization algorithm to a specific real-world problem requires some

egree of tuning to the specific characteristics of that problem. The di-

ersity of problems and settings examined in this study, while cannot

apture all possible real-world scenarios that may occur, provide some

onfidence to suggest the robustness of the algorithm in this regard. The

erformance of GECS seems to be largely independent of the parame-

er values, since all parameter settings employed in Section 5.1 lead to

imilar performance. This is an advantageous property of GECS that al-

ows its use as is , without the need for time-consuming problem-specific

arameter tuning. 

GECS scales linearly with the size of the training set 𝑋 for some

SPs considered in this study. For other CSPs, its 𝐹 1 scores are roughly

onstant in the considered range of |𝑋| but consistently ≥ 0 . 8 and often

lose to 1.0. There is also a group of difficult CSPs for which the 𝐹 1 score

s low and does not change much in the considered range of |𝑋|. For 14

ut of 18 CSPs GECS produced at least once a model whose objective

alue of the optimal solution equals the objective value of the optimal

olution to the corresponding ground truth model. These observations

artially confirm the main research hypothesis from Section 1 : given a large

nough training set GECS produces a MILP model equivalent to the ground

ruth MILP model for some of the CSPs considered in this study. It also

hows that the amount of training information required to reconstruct

he ground-truth model depends on that model. For easier ground-truth

odels, the training set as small as 100 examples suffices, for others it

equires much more than 800 examples. 

The time-complexity of GECS is linear w.r.t. |𝑋|. This is another ad-

antage that opens the possibility to process large training sets. How-

ver, the Python-based implementation is slow due to large interpreter

verhead. We expect that by rewriting GECS to a compiled language,

he run-times shown in Fig. 2 reduce by an order of magnitude. 

The input information for GECS is usually easy to provide: the vari-

bles, parameters, and dimensions of the object are usually straight-

orward to identify, and the examples of the feasible solutions can be

ollected by monitoring the behavior of the object. A synthesized model

ay be employed as is, to optimize and simulate the modeled object.

nd, as we have seen in previous studies using a Grammatical Evolu-

ion approach for the design of schedulers in the wireless telecommuni-

ations networks domain [69] , even if the model does not completely

t reality, the human readable nature of the model means it is still easy

o augment by the expert — please consult the synthesized models in

ppendix A . Hence, we achieved the goal to reduce the burden on the

xpert in modeling and optimization. 

GECS is not a silver bullet. The grammar template from

ection 4.2.1 influences the representational bias of GECS. Designing

ight grammar template relies on many decisions that influence the gen-

rality, meant as the range of reachable constraints, and the size of the

earch space. Too ‘tight’ grammar template would prevent some con-

traints to be found, and too ‘loose’ may impair search performance. The

rammar template from Section 4.2.1 guides well GECS for the CSPs con-

idered in this work, however, solving an other CSP may require extra

ffort in adapting the grammar template. 

GECS deserves future work on robustness to noise to make it appli-

able to real-world CSPs, where measurement errors and uncertainties

ypically occur. Although not equipped with an explicit noise-handling



T.P. Pawlak and M. O’Neill Swarm and Evolutionary Computation 64 (2021) 100896 

m  

l  

r  

d  

t  

d  

p  

m

7

 

e  

r  

a  

M  

l  

o  

c  

w  

s  

t  

t

 

f  

e  

i  

t  

s  

d  

v  

m  

t

F

 

t  

t  

1  

F

D

 

i  

t

A

 

G  

Z  

t

echanism, we expect GECS to handle well a limited amount of noise,

ike most Evolutionary Algorithms do [70–72] . The above-mentioned

epresentational bias would prevent overfitting to noisy examples that

o not match the parameters and the sets provided. It is also unlikely

hat the inclusion of the noisy example in the feasible region of the pro-

uced model increases recall without deteriorating precision – the com-

onents of the 𝐹 1 -score fitness function. Hence, GE would keep only the

odels fitting large-enough part of the examples. 

. Conclusions and future work 

We formally posed the Constraint Synthesis Problem for MILP mod-

ls in ZIMPL high-level modeling language, proposed the GECS algo-

ithm aimed at solving CSP, and verified experimentally its properties

nd performance w.r.t. the contemporary algorithms. GECS synthesizes

ILP models guided by the grammar of ZIMPL and the exemplary so-

utions. This is a qualitatively different approach than of the majority

f previous algorithms, which optimize numerically the weights in the

onstraints. This mode of work offers GECS great performance boost

.r.t. contemporary algorithms and resistance to the curse of dimen-

ionality. The resulting MILP models may be used ‘as is’ and adapted

o different objects of the same class by simply providing the values of

heir parameters and dimensions. 

Possible extensions to GECS include the synthesis of the objective

unction in the same way as the constraints. However, this would require

xtending the training set with the values of the objective function. The

nput to GECS is currently restricted to fixed values for sets, parame-

ers, and variables. By relaxing this requirement it would be possible to

ynthesize MILP models from more general data, e.g., corresponding to

ifferent instances of the modeled object. Another issue deserving in-

estigation is noise handling. GECS can be also extended for different

odeling languages, e.g., AMPL [16] and GAMS [17] , by employing

heir grammars and parsers. 

unding 

T.P. Pawlak acknowledges the support of National Science Cen-

re Poland grant 2016/23/D/ST6/03735, and the National Cen-

re for Research and Development Poland grant LIDER/14/0086/L-

0/18/NCBR/2019. M. O’Neill acknowledges the support of Science

oundation Ireland grants 13/IA/1850 and 13/RC/2094. 

eclaration of Competing Interest 

The authors declare that they have no known competing financial

nterests or personal relationships that could have appeared to influence

he work reported in this paper. 

ppendix A. The best MILP models 

We show the best MILP models w.r.t. 𝐹 1 on test set synthesized by

ECS in experiments in Section 5 . They are concatenated from the input

IMPL snippet and the synthesized constraints. We skip the model for

he zdiet CSP, since Section 2.2 shows it. 
12 



T.P. Pawlak and M. O’Neill Swarm and Evolutionary Computation 64 (2021) 100896 
13 



T.P. Pawlak and M. O’Neill Swarm and Evolutionary Computation 64 (2021) 100896 

A

14 
ppendix B. List of abbreviations and symbols 

BNF Backus-Naur form of grammar 

CP Constraint Programming 

CSP Constraint Synthesis Problem 

GE Grammatical Evolution 

GECS Grammatical Evolution for Constraint Synthesis 

HaR Hit-and-Run 

LP Linear Programming 

MILP Mixed-Integer Linear Programming 

NLP Non-Linear Programming 

SMT Satisfiability Modulo Theories 

ZIMPL Zuse Institut Mathematical Programming Language 

𝑚 Model 

𝑃 Set of parameters 𝑝 

𝑆 Set of dimension sets 𝑠 

𝐱 Example (a vector of variables 𝑥 ) 

𝑋 Training set 

𝑇 Test set 

𝑉 Validation set 

𝑐( 𝐱) Constraint 

𝐶 Set of constraints ( 𝐶 ∗ for the optimal 𝐶) 

𝑓 ( 𝐶) Feasible region of 𝐶

𝐹 1 ( 𝐶) 𝐹 1 -score ( ̂𝐹 1 ( 𝐶) for approximation) 



T.P. Pawlak and M. O’Neill Swarm and Evolutionary Computation 64 (2021) 100896 

C

 

i  

d  

s  

i

R

l . 

 

 

 

 

 

 

 

 

 

[  

[  

[  

 

 

[  

 

[  

[  

 

[  

[

[  

 

[  

 

[  

 

[  

 

 

[  

 

[  

 

 

 

[  

[  

 

[  

[  

[  

 

 

[  

 

 

[  

 

 

[  

[  

[  

 

[  

[

[  

 

 

[  

[  

[  

 

[  

[  

 

[

[  

 

[  

[  

[  

 

 

[  

 

[  

 

[  

[  

[  

 

 

[  

 

[  

[

[  

 

 

 

[  

 

[  

 

[

[  

[  

[  

[  
RediT authorship contribution statement 

Tomasz P. Pawlak: Conceptualization, Methodology, Software, Val-

dation, Formal analysis, Investigation, Resources, Writing - original

raft, Visualization, Supervision, Project administration, Funding acqui-

ition. Michael O’Neill: Validation, Resources, Writing - review & edit-

ng, Funding acquisition. 

eferences 

[1] H. Williams , Model Building in Mathematical Programming, Wiley, 2013 . 

[2] NEOS solver statistics, Accessed 2020-05-26, https://neos-server.org/neos/report.htm

[3] T. Koch , Rapid Mathematical Programming, Technische Universität Berlin, 2004

Ph.D. thesis . 

[4] Gurobi Optimization, LLC, Gurobi optimizer reference manual, 2020,

http://gurobi.com . 

[5] M. O’Neill, C. Ryan, Grammatical evolution: Evolutionary automatic programming

in a arbitrary language, Genetic programming, volume 4, Kluwer Academic Publish-

ers, 2003, doi: 10.1007/978-1-4615-0447-4 . 

[6] M. O’Neill, M. Nicolau, A. Agapitos, Experiments in program synthesis with gram-

matical evolution: A focus on integer sorting, in: C.A. Coello Coello (Ed.), Proceed-

ings of the 2014 IEEE Congress on Evolutionary Computation, Beijing, China, 2014,

pp. 1504–1511, doi: 10.1109/CEC.2014.6900578 . 

[7] F.D. O’Neill M. , The Elephant in the Room: Towards the Application of Genetic Pro-

gramming to Automatic Programming, Springer, 2019, pp. 179–192 . 

[8] R. Bellman , Dynamic programming, Dover Books on Computer Science, Dover Pub-

lications, 2013 . 

[9] T. Koch, Zimpl user guide for version 3.3.6, 2018, https://zimpl.zib.de/ . 

10] P. Flach , Machine learning: The art and science of algorithms that make sense of

data, Cambridge University Press, New York, NY, USA, 2012 . 

11] G.N. Lance , W.T. Williams , Mixed-data classificatory programs i - agglomerative

systems., Australian Computer Journal 1 (1) (1967) 15–20 . 

12] R.L. Smith, The hit-and-run sampler: A globally reaching markov chain sampler for

generating arbitrary multivariate distributions, in: Proceedings of the 28th Confer-

ence on Winter Simulation, in: WSC ’96, IEEE Computer Society, Washington, DC,

USA, 1996, pp. 260–264, doi: 10.1145/256562.256619 . 

13] S.S. Khan, M.G. Madden, One-class classification: taxonomy of study

and review of techniques, Knowl Eng Rev 29 (3) (2014) 345–374,

doi: 10.1017/S026988891300043X . 

14] H. Edelsbrunner, D. Kirkpatrick, R. Seidel, On the shape of a set of points in the plane,

IEEE Trans. Inf. Theory 29 (4) (1983) 551–559, doi: 10.1109/TIT.1983.1056714 . 

15] R. Seidel, The upper bound theorem for polytopes: an easy proof of

its asymptotic version, Computational Geometry 5 (2) (1995) 115–116,

doi: 10.1016/0925-7721(95)00013-Y . 

16] R. Fourer , D. Gay , B. Kernighan , AMPL: A modeling language for mathematical pro-

gramming, Scientific Press series, Thomson/Brooks/Cole, 2003 . 

17] General Algebraic Modeling System, 2019, https://www.gams.com/ . 

18] P. Kud ł a, T.P. Pawlak, One-class synthesis of constraints for mixed-integer lin-

ear programming with C4.5 decision trees, Appl Soft Comput 68 (2018) 1–12,

doi: 10.1016/j.asoc.2018.03.025 . 

19] T.P. Pawlak, Synthesis of mathematical programming models with one-

class evolutionary strategies, Swarm Evol Comput 44 (2019) 335–348,

doi: 10.1016/j.swevo.2018.04.007 . 

20] D. Sroka, T.P. Pawlak, One-class constraint acquisition with local search, in: Pro-

ceedings of the Genetic and Evolutionary Computation Conference, in: GECCO ’18,

ACM, New York, NY, USA, 2018, pp. 363–370, doi: 10.1145/3205455.3205480 . 

21] M. Karmelita, T.P. Pawlak, CMA-ES for one-class constraint synthesis, in: Proceed-

ings of the 2020 Genetic and Evolutionary Computation Conference, in: GECCO’

20, Association for Computing Machinery, New York, NY, USA, 2020, pp. 859–867,

doi: 10.1145/3377930.3389807 . 

22] T.P. Pawlak, K. Krawiec, Automatic synthesis of constraints from examples using

mixed integer linear programming, Eur J Oper Res 261 (3) (2017) 1141–1157,

doi: 10.1016/j.ejor.2017.02.034 . 

23] T.P. Pawlak, K. Krawiec, Synthesis of mathematical programming constraints

with genetic programming, in: M. Castelli, J. McDermott, L. Sekanina (Eds.), Eu-

roGP 2017: Proceedings of the 20th European Conference on Genetic Program-

ming, LNCS, volume 10196, Springer Verlag, Amsterdam, 2017, pp. 178–193,

doi: 10.1007/978-3-319-55696-3_12 . 

24] M. Lombardi, M. Milano, A. Bartolini, Empirical decision model learning, Artif Intell

244 (Supplement C) (2017) 343–367, doi: 10.1016/j.artint.2016.01.005 . 

25] E.A. Schede, S. Kolb, S. Teso, Learning linear programs from data, in: 2019 IEEE

31st International Conference on Tools with Artificial Intelligence (ICTAI), 2019,

pp. 1019–1026, doi: 10.1109/ICTAI.2019.00143 . 

26] N. Megiddo, On the complexity of polyhedral separability, Discrete & Computational

Geometry 3 (4) (1988) 325–337, doi: 10.1007/BF02187916 . 

27] A.L. Blum, R.L. Rivest, Training a 3-node neural network is np-complete, Neural

Networks 5 (1) (1992) 117–127, doi: 10.1016/S0893-6080(05)80010-3 . 

28] R. Alur, R. Bodik, G. Juniwal, M.M.K. Martin, M. Raghothaman, S.A. Seshia,

R. Singh, A. Solar-Lezama, E. Torlak, A. Udupa, Syntax-guided synthesis, in:

2013 Formal Methods in Computer-Aided Design, 2013, pp. 1–8, doi: 10.1109/FM-

CAD.2013.6679385 . 

29] A. Kantchelian , M.C. Tschantz , L. Huang , P.L. Bartlett , A.D. Joseph , J.D. Tygar ,

Large-margin convex polytope machine, in: Proceedings of the 27th International
15 
Conference on Neural Information Processing Systems - Volume 2, in: NIPS’14, MIT

Press, Cambridge, MA, USA, 2014, pp. 3248–3256 . 

30] A. Galassi , M. Lombardi , P. Mello , M. Milano , Model agnostic solution of csps via

deep learning: A preliminary study, in: W.-J. van Hoeve (Ed.), Integration of Con-

straint Programming, Artificial Intelligence, and Operations Research, Springer In-

ternational Publishing, Cham, 2018, pp. 254–262 . 

31] L.D. Raedt , A. Passerini , S. Teso , Learning constraints from examples, in: AAAI, 2018,

pp. 7965–7970 . 

32] B. Mayoh , E. Tyugu , J. Penjam , Constraint programming, Nato ASI Subseries F:,

Springer, 2013 . 

33] C. Barrett , R. Sebastiani , S. Seshia , C. Tinelli , Satisfiability modulo theories, in:

Frontiers in Artificial Intelligence and Applications, vol. 185, 1, IOS Press, 2009,

pp. 825–885 . 

34] T.P. Pawlak, K. Krawiec, Synthesis of constraints for mathematical programming

with one-class genetic programming, IEEE Trans. Evol. Comput. 23 (1) (2019) 117–

129, doi: 10.1109/TEVC.2018.2835565 . 

35] D.J. Montana, Strongly typed genetic programming, Evol Comput 3 (2) (1995) 199–

230, doi: 10.1162/evco.1995.3.2.199 . 

36] T.P. Pawlak, Performance improvements for evolutionary strategy-based one-class

constraint synthesis, in: Proceedings of the Genetic and Evolutionary Computa-

tion Conference, in: GECCO ’18, ACM, New York, NY, USA, 2018, pp. 873–880,

doi: 10.1145/3205455.3205504 . 

37] H.-G. Beyer, H.-P. Schwefel, Evolution strategies–a comprehensive introduction, Nat

Comput 1 (1) (2002) 3–52, doi: 10.1023/A:1015059928466 . 

38] N. Hansen , The CMA Evolution Strategy: A Comparing Review, Springer Berlin Hei-

delberg, Berlin, Heidelberg, 2006, pp. 75–102 . 

39] A.P. Dempster , N.M. Laird , D.B. Rubin , Maximum likelihood from incomplete data

via the EM algorithm, Journal of the Royal Statistical Society. Series B (Methodolog-

ical) 39 (1) (1977) 1–38 . 

40] J.R. Quinlan , C4.5: Programs for machine learning, Morgan Kaufmann Publishers

Inc., San Francisco, CA, USA, 1993 . 

41] D. Pelleg , A. Moore , X-means: Extending k-means with efficient estimation of the

number of clusters, in: In Proceedings of the 17th International Conf. on Machine

Learning, Morgan Kaufmann, 2000, pp. 727–734 . 

42] S. Luke , Metaheuristics, 1st, lulu.com, 2009 . 

43] T.P. Pawlak, B. Litwiniuk, Ellipsoidal one-class constraint acquisition for quadrat-

ically constrained programming, Eur J Oper Res 293 (1) (2021) 36–49,

doi: 10.1016/j.ejor.2020.12.018 . 

44] C.M. Bishop , Pattern Recognition and Machine Learning, Springer-Verlag, Berlin,

Heidelberg, 2006 . 

45] S. Haykin , Neural networks: A comprehensive foundation, 2nd, Prentice Hall PTR,

Upper Saddle River, NJ, USA, 1998 . 

46] S. Kolb, S. Teso, A. Passerini, L.D. Raedt, Learning SMT(LRA) constraints using SMT

solvers, in: Proceedings of the Twenty-Seventh International Joint Conference on

Artificial Intelligence, IJCAI-18, International Joint Conferences on Artificial Intel-

ligence Organization, 2018, pp. 2333–2340, doi: 10.24963/ijcai.2018/323 . 

47] N. Beldiceanu, H. Simonis, A model seeker: Extracting global constraint models from

positive examples, in: CP’12, volume LNCS 7514, Springer, Quebec City, Canada,

2012, pp. 141–157, doi: 10.1007/978-3-642-33558-7_13 . 

48] C. Bessiere , R. Coletta , F. Koriche , B. O’Sullivan , A SAT-Based Version Space Algo-

rithm for Acquiring Constraint Satisfaction Problems, Springer Berlin Heidelberg,

2005, pp. 23–34 . 

49] T.M. Mitchell, Generalization as search, Artif Intell 18 (2) (1982) 203–226,

doi: 10.1016/0004-3702(82)90040-6 . 

50] C. Bessiere , R. Coletta , B. O’Sullivan , M. Paulin , Query-driven constraint acquisition,

in: IJCAI 2007, 2007, pp. 50–55 . 

51] K.M. Shchekotykhin, G. Friedrich, Argumentation based constraint acquisition, in:

ICDM 2009, The Ninth IEEE International Conference on Data Mining, Miami,

Florida, USA, 6–9 December 2009, 2009, pp. 476–482, doi: 10.1109/ICDM.2009.62 .

52] C. Bessiere , R. Coletta , E. Hebrard , G. Katsirelos , N. Lazaar , N. Narodytska ,

C.-G. Quimper , T. Walsh , Constraint acquisition via partial queries, in: IJCAI 2013,

2013, pp. 475–481 . 

53] S. Teso, R. Sebastiani, A. Passerini, Structured learning modulo theories, Artif Intell

244 (2017) 166–187, doi: 10.1016/j.artint.2015.04.002 . 

54] S. Kolb , Learning constraints and optimization criteria, AAAI Workshops, 2016 . 

55] M. Fenton, J. McDermott, D. Fagan, S. Forstenlechner, E. Hemberg, M. O’Neill,

PonyGE2: grammatical evolution in python, in: Proceedings of the Ge-

netic and Evolutionary Computation Conference Companion, in: GECCO ’17,

ACM, Berlin, Germany, 2017, pp. 1194–1201, doi: 10.1145/3067695.3082469 .

http://doi.acm.org/10.1145/3067695.3082469 . 

56] L. Manzoni, A. Bartoli, M. Castelli, I. Gonçalves, E. Medvet, Specializing

context-free grammars with a (1+1)-EA, IEEE Trans. Evol. Comput. (2020),

doi: 10.1109/TEVC.2020.2983664 . 

57] D. Fagan, M. Fenton, M. O’Neill, Exploring position independent initialisation in

grammatical evolution, in: Y.-S. Ong (Ed.), Proceedings of 2016 IEEE Congress on

Evolutionary Computation (CEC 2016), IEEE Press, Vancouver, 2016, pp. 5060–

5067, doi: 10.1109/CEC.2016.7748331 . 

58] A.E. Eiben , J.E. Smith , Introduction to evolutionary computing, Springer, 2003 . 

59] J.R. Koza , Genetic programming: On the programming of computers by means of

natural selection, MIT Press, Cambridge, MA, USA, 1992 . 

60] Gurobi Optimization, LLC, Functional code examples, Accessed 2020-05-26,

http://gurobi.com/resource/functional-code-examples . 

61] M. Conforti , G. Cornuejols , G. Zambelli , Integer programming, Springer Publishing

Company, Incorporated, 2014 . 

62] T. Polzin , Algorithms for the Steiner problem in networks, Saarland University, Saar-

brücken, Germany, 2003 Ph.D. thesis . 

http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0001
http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0001
https://neos-server.org/neos/report.html
http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0003
http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0003
http://gurobi.com
https://doi.org/10.1007/978-1-4615-0447-4
https://doi.org/10.1109/CEC.2014.6900578
http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0007
http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0007
http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0008
http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0008
https://zimpl.zib.de/
http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0010
http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0010
http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0011
http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0011
http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0011
https://doi.org/10.1145/256562.256619
https://doi.org/10.1017/S026988891300043X
https://doi.org/10.1109/TIT.1983.1056714
https://doi.org/10.1016/0925-7721(95)00013-Y
http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0016
http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0016
http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0016
http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0016
https://www.gams.com/
https://doi.org/10.1016/j.asoc.2018.03.025
https://doi.org/10.1016/j.swevo.2018.04.007
https://doi.org/10.1145/3205455.3205480
https://doi.org/10.1145/3377930.3389807
https://doi.org/10.1016/j.ejor.2017.02.034
https://doi.org/10.1007/978-3-319-55696-3_12
https://doi.org/10.1016/j.artint.2016.01.005
https://doi.org/10.1109/ICTAI.2019.00143
https://doi.org/10.1007/BF02187916
https://doi.org/10.1016/S0893-6080(05)80010-3
https://doi.org/10.1109/FMCAD.2013.6679385
http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0029
http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0029
http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0029
http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0029
http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0029
http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0029
http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0029
http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0029
http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0030
http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0030
http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0030
http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0030
http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0030
http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0031
http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0031
http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0031
http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0031
http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0032
http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0032
http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0032
http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0032
http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0033
http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0033
http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0033
http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0033
http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0033
https://doi.org/10.1109/TEVC.2018.2835565
https://doi.org/10.1162/evco.1995.3.2.199
https://doi.org/10.1145/3205455.3205504
https://doi.org/10.1023/A:1015059928466
http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0038
http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0038
http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0039
http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0039
http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0039
http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0039
http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0040
http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0040
http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0041
http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0041
http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0041
http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0042
http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0042
https://doi.org/10.1016/j.ejor.2020.12.018
http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0044
http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0044
http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0045
http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0045
https://doi.org/10.24963/ijcai.2018/323
https://doi.org/10.1007/978-3-642-33558-7_13
http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0048
http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0048
http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0048
http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0048
http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0048
https://doi.org/10.1016/0004-3702(82)90040-6
http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0050
http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0050
http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0050
http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0050
http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0050
https://doi.org/10.1109/ICDM.2009.62
http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0052
http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0052
http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0052
http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0052
http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0052
http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0052
http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0052
http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0052
http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0052
https://doi.org/10.1016/j.artint.2015.04.002
http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0054
http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0054
https://doi.org/10.1145/3067695.3082469
http://doi.acm.org/10.1145/3067695.3082469
https://doi.org/10.1109/TEVC.2020.2983664
https://doi.org/10.1109/CEC.2016.7748331
http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0058
http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0058
http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0058
http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0059
http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0059
http://gurobi.com/resource/functional-code-examples
http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0061
http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0061
http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0061
http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0061
http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0062
http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0062


T.P. Pawlak and M. O’Neill Swarm and Evolutionary Computation 64 (2021) 100896 

[  

[  

[  

[  

 

[  

 

[

[  

 

[  

 

[  

[  

 

63] A. Schrijver , Combinatorial optimization - Polyhedra and efficiency, Springer, 2003 .

64] J. Bell, B. Stevens, A survey of known results and research areas for n-queens, Dis-

crete Math 309 (1) (2009) 1–31, doi: 10.1016/j.disc.2007.12.043 . 

65] PassMark Software, cpubenchmark.net, Accessed: 2020-06-08, https://www.

cpubenchmark.net/compare/Intel-i5-8500-vs-Intel-i7-4790-vs-Intel-i7-4770/ 

3223vs2226vs1907 . 

66] M. Sipper, W. Fu, K. Ahuja, J.H. Moore, Investigating the parame-

ter space of evolutionary algorithms, BioData Min 11 (2) (2018) 1–14,

doi: 10.1186/s13040-018-0164-x . 

67] Parameter setting in evolutionary algorithms, in: F. Lobo, C.F. Lima,

Z. Michalewicz (Eds.), Studies in Computational Intelligence, Springer, 2007,

doi: 10.1007/978-3-540-69432-8 . 

68] G. Kanji , 100 Statistical tests, SAGE Publications, 1999 . 
16 
69] M. Fenton, D. Lynch, D. Fagan, S. Kucera, H. Claussen, M. O’Neill, Towards au-

tomation & augmentation of the design of schedulers for cellular communications

networks, Evol Comput 27 (2) (2019), doi: 10.1162/evco_a_00221 . Forthcoming 

70] S. Silva, L. Vanneschi, A.I. Cabral, M.J. Vasconcelos, A semi-supervised genetic pro-

gramming method for dealing with noisy labels and hidden overfitting, Swarm Evol

Comput 39 (2018) 323–338, doi: 10.1016/j.swevo.2017.11.003 . 

71] P. Rakshit, Improved differential evolution for noisy optimization, Swarm Evol Com-

put 52 (2020) 100628, doi: 10.1016/j.swevo.2019.100628 . 

72] P. Rakshit, A. Konar, S. Das, Noisy evolutionary optimization algo-

rithms – a comprehensive survey, Swarm Evol Comput 33 (2017) 18–45,

doi: 10.1016/j.swevo.2016.09.002 . 

http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0063
http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0063
https://doi.org/10.1016/j.disc.2007.12.043
https://www.cpubenchmark.net/compare/Intel-i5-8500-vs-Intel-i7-4790-vs-Intel-i7-4770/3223vs2226vs1907
https://doi.org/10.1186/s13040-018-0164-x
https://doi.org/10.1007/978-3-540-69432-8
http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0068
http://refhub.elsevier.com/S2210-6502(21)00057-2/sbref0068
https://doi.org/10.1162/evco_a_00221
https://doi.org/10.1016/j.swevo.2017.11.003
https://doi.org/10.1016/j.swevo.2019.100628
https://doi.org/10.1016/j.swevo.2016.09.002

	Grammatical evolution for constraint synthesis for mixed-integer linear programming
	1 Introduction
	1.1 Background
	1.2 Contributions

	2 Constraint synthesis problem
	2.1 Terminology
	2.2 Definitions
	2.3 Problem
	2.4 Sampling the feasible region
	2.5 Example
	2.6 Properties

	3 Related work
	3.1 Modeling languages
	3.2 Similar problems
	3.3 Synthesis of MP models
	Linear/Non-Linear Programming
	Constraint Programming
	Satisfiability Modulo Theories


	4 Constraint synthesis algorithm
	4.1 Symbol extraction
	4.2 Problem-specific grammar generation
	4.2.1 Grammar template
	4.2.2 Hierarchy of constraints
	4.2.3 Constraint structure
	4.2.4 Grammar folding

	4.3 Grammatical evolution

	5 Experiment
	5.1 What is the best parameter setting for GECS?
	5.2 How well does GECS scale with the dimensions of CSPs?
	5.3 How well does GECS compare to its competitors?
	5.4 How well do the synthesized models work in optimization?

	6 Discussion
	7 Conclusions and future work
	Funding
	Declaration of Competing Interest
	Appendix A The best MILP models
	Appendix B List of abbreviations and symbols
	CRediT authorship contribution statement
	References


