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Summary. Quantum effects are a natural phenomenon and just like evolution, the
brain, or immune systems, can serve as an inspiration for the design of computing
algorithms. This chapter illustrates how a quantum-inspired evolutionary algorithm
(QIEA) using real number encodings can be constructed and examines the utility of
the resulting algorithm on an important real-world problem, namely the calibration
of an Option Pricing model. The results from the algorithm are shown to be robust
and comparable to those of other algorithms, suggesting that there is useful potential
to apply QIEA to this domain.

7-1 Introduction

This chapter introduces a novel option pricing calibration methodology which
uses a quantum-inspired real number encoding rather than a traditional en-
coding representation in an evolutionary algorithm. The chapter also assesses
the utility of the resulting algorithm for the purposes of calibrating an option
pricing model.

Quantum mechanics is an extension of classical mechanics which models
behaviours of natural systems that are observed particularly at very short
time or distance scales. An example of such a system is a sub-atomic particle,
such as a free electron. A complex-valued (deterministic) function of time and
space co-ordinates, called the wave-function, is associated with the system: it
describes the quantum state the system is in. The standard interpretation of
Quantum Mechanics is that this abstract wave-function allows us to calculate
probabilities of outcomes of concrete experiments. The squared modulus of
the wave-function is a probability density function (PDF): it describes the
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probability that an observation of, for example, a particle will find the par-
ticle at a given time in a given region of space. The wave-function satisfies
the Schrödinger equation. This equation can be thought of as describing the
time evolution of the wave-function — and so the PDF — at each point
in space: as time goes on, the PDF becomes more “spread out” over space,
and our knowledge of the position of the particle becomes less precise, until
an observation is carried out; then, according to the usual interpretation, the
wave-function “collapses” to a particular classical state (or eigenstate), in this
case a particular position, and the spreading out of the PDF starts all over
again.

Before the observation we may regard the system as being in a linear com-
bination of all possible classical states (this is called superposition of states);
then the act of observation causes one such classical state to be chosen, with
probability given by the PDF. Note that the wave function may interfere
with itself (for example, if a barrier with slits is placed in the “path” of a
particle) and this interference may be constructive or destructive, that is, the
probability of detecting a particle in a given position may go up or go down.

More generally, we may seek to observe properties of quantum systems
other than position, e.g., energy, momentum, or the quantum spin of an elec-
tron, photon or other particle. [Spin is incorporated by necessity in Dirac’s
relativistic extension of the wave equation; in fact spin is one of the arguments
of the wave-function.] Such properties are called observables. Observables may
be either continuous (e.g., position of a particle) or discrete (e.g., the energy
of an electron in a bound state in an atom). Some observables may only take
finitely many values, e.g., there are only two possible values for a given par-
ticle’s spin: “up” or “down”. This last is an example of a two-state system:
in such a system the quantum state ψ is a linear superposition of just two
eigenstates, say |0〉 and |1〉 in the standard Dirac bra-ket notation, that is,

ψ = α|0〉 + β|1〉,

where α and β are complex numbers with |α|2 + |β|2 = 1. Here |0〉 and |1〉 are
basis vectors for a 2-dimensional complex Hilbert space. A two-state system
where the states are normalised and orthogonal, as here, may be regarded as
a quantum bit or qubit .3 It is thought of as being in eigenstates |0〉 and |1〉
simultaneously, until an observation is made and the quantum state collapses
to |0〉 (with probability |α|2) or |1〉 (with probability |β|2). The relation |α|2 +
|β|2 = 1 captures the fact that precisely one of |0〉, |1〉 must be observed, so
their probabilities of observation must sum to 1.

A quantum computer is one which works with qubits instead of the (classi-
cal) bits used by usual computers. Benioff [1] first considered a Turing machine
which used a tape containing what we would call qubits. Feynman [10] devel-

3Geometrically, a qubit is a compact 2-dimensional complex manifold, called the
Bloch sphere.



7 Calibration of VGSSD Option Pricing Model using QIEA 3

oped examples of physical computing systems not equivalent to the standard
model of deterministic computation, the Turing machine.

In recent years there has been a substantial interest in the theory and
design of quantum computers, and the design of programs which could run on
such computers, stimulated by Shor’s discovery of a quantum factoring algo-
rithm which would run faster than possible clasically. One interesting strand
of research has been the use of natural computing (for example Genetic Pro-
gramming (GP)) to generate quantum circuits or programs (algorithms) for
quantum computers [25]. (Genetic programming is an evolutionary algorithm
based methodology inspired by biological evolution to find computer programs
that perform a user-defined task. Therefore it is a machine learning technique
used to optimize a population of computer programs according to a fitness
landscape determined by a program’s ability to perform a given computa-
tional task.) There has also been associated work in a reverse direction which
draws inspiration from concepts in quantum mechanics in order to design
novel natural computing algorithms. This is currently an area of active re-
search interest. For example, quantum-inspired concepts have been applied to
the domains of evolutionary algorithms [23, 12, 14, 27, 28], social computing
[29], neuro-computing [18, 11, 26], and immuno-computing [19, 16]. A claimed
benefit of these algorithms is that because they use a quantum representation,
they can maintain a good balance between exploration and exploitation. It
is also suggested that they offer computational efficiencies as use of a quan-
tum representation can allow the use of smaller population sizes than typical
evolutionary algorithms.
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computing 

Quantum 
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Fig. 7-1. Quantum-inspired evolutionary computing

Quantum-inspired evolutionary algorithms (QIEA) offer interesting poten-
tial. As yet, due to their novelty, only a small number of recent papers have
implemented a QIEA, typically reporting good results [27, 28]. Consequently,
we have a limited understanding of the performance of these algorithms and
further testing is required in order to determine both their effectiveness and
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their efficiency. It is also noted that although a wide-variety of biologically-
inspired algorithms have been applied for financial modelling [3], the QIEA
methodology has not yet been applied to the finance domain. This study ad-
dresses both of these research gaps.

Structure of Chapter

The rest of this chapter is organised as follows. The next section provides
a concise overview of QIEA, concentrating on the quantum-inspired genetic
algorithm. We then outline the experimental methodology adopted. The re-
maining sections provide the results of these experiments followed by a number
of conclusions.

7-2 The Quantum-inspired Genetic Algorithm

The best-known application of quantum-inspired concepts in evolutionary
computing is the quantum-inspired genetic algorithm (QIGA) [23, 12, 14,
27, 28]. The QIGA is based on the concepts of a qubit and the superposition
of states. In essence, in QIGAs the traditional representations used in evolu-
tionary algorithms (binary, numeric and symbolic) are extended to include a
quantum representation.

A crucial difference between a qubit and a (classical) bit is that multiple
qubits can exhibit quantum entanglement. Entanglement is when the wave
function of a system composed of many particles cannot be separated into
independent wave functions, one for each particle. A measurement made on
one particle can produce, through the collapse of the total wavefunction, an
instantaneous effect on other particles with which it is entangled, even if they
are far apart. Entanglement is a nonlocal property that allows a set of qubits
to be highly correlated. Entanglement also allows many states to be acted on
simultaneously, unlike bits that can only have one value at a time. The use of
entanglement in quantum computers is sometimes called quantum parallelism,
and gives a possible explanation for the power of quantum computing: because
the state of the quantum computer (i.e., the state of the system considered
as a whole) can be in a quantum superposition of many different classical
computational states, these classical computations can all be carried out at
the same time.

The quantum equivalent of a classical operator on bits is an evolution

(not to be confused with the evolution of EAs). It transforms an input to an
output, e.g., by rotation or Hadamard gate, and operates without measuring
the value of the qubit(s). Thus it effectively does a parallel computation on
all the qubits at once and gives rise to a new superposition.

In the language of evolutionary computation a system of m qubits may be
referred to as a quantum chromosome and can be written as a matrix with
two rows:
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[

α1 α2 . . . αm

β1 β2 . . . βm

]

. (7.1)

A key point when considering quantum systems is that they can compactly
convey information on a large number of possible system states. In classical bit
strings, a string of lengthm can represent 2m possible states. However, a quan-
tum space of m qubits has 2m dimensions (as a complex manifold).4 Thus, a
single qubit register of length m can simultaneously represent all possible bit
strings of length 2m, e.g., an 8 qubit system can simultaneously encode 256
distinct strings. This implies that it is possible to modify standard evolution-
ary algorithms to work with very few, or even a single quantum individual,
rather than having to use a large population of solution encodings. The qubit
representation can also help to maintain diversity during the search process of
an evolutionary algorithm, due to its capability to represent multiple system
states simultaneously.

7-2.1 Representing a Quantum System

There are many ways that a quantum system could be defined in order to
encode a set of binary (solution) strings. For example, in the following 3 qubit
quantum system, the quantum chromosome is defined using the three pairs of
amplitudes below

[

1√
2

√
3

2

1

2

1√
2

1

2

√
3

2

]
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These numbers are the probabilities that a qubit (unit of information) will
be observed in a particular eigenstate rather than another. Taking the first
qubit, the occurrence of either state 0 or 1 is equally likely as both α1 and
β1 have the same amplitude. Following on from the definition of the 3 qubit
system, the (quantum) state of the system is given by
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To provide intuition on this point, consider the system state |000〉. The

associated probability amplitude for this state is
√
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4
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2
and this is derived

from the probability amplitudes of the 0 state for each of the three indi-

vidual qubits ( 1√
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= 0.25). The associated probabilities of each

of the individual states (|000〉, |001〉, |010〉, |011〉, |100〉, |101〉, |110〉, |111〉) are
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4It can be shown that, because of entanglement, an m-qubit physical system has
2m+1 − 2 degrees of freedom, much larger than the 2m degrees a classical version
would have.
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7-2.2 Real-valued quantum-inspired evolutionary algorithms

In the initial literature which introduced the QIGA, a binary representation
was adopted, wherein each quantum chromosome was restricted to consist of
a series of 0s and 1s. The methodology was modified to include real-valued
vectors by da Cruz et al., [9]. As with binary-representation QIGA, real-
valued QIGA maintains a distinction between a quantum population and an
observed population of, in this case, real-valued solution vectors. However the
quantum individuals have a different form to those in binary-representation
QIGA. The quantum population Q(t) is comprised of N quantum individuals
(qi : i = 1, 2, 3, . . . , N), where each individual i is comprised of G genes
(gij : j = 1, 2, 3, . . . , G). Each of these genes consist of a pair of values qij =
(pij , σij) where pij , σij ∈ ℜ represent the mean and the width of a square
pulse. Representing a gene in this manner has a parallel with the quantum
concept of superposition of states as a gene is specified by a range of possible
values, rather than by a single unique value.

The original QIGA algorithms, e.g., [12, 14] are based very closely on
physical qubits, but the “quantum-inspired” algorithm of da Cruz et al. [9]
used in this chapter draws less inspiration from quantum mechanics since it:

• does not use the idea of a quantum system (in particular, no qubits);
• only allows for constructive (not destructive) interference, and that inter-

ference is among “wave-functions” of different individuals;
• uses real numbers as weights, rather than the complex numbers which arise

in superposition of states in physical systems;
• the PDFs used (uniform distributions) are not those arising in physical

systems.

However, the da Cruz et al algorithm does periodically sample from a distribu-
tion to get a “classical” population, which can be regarded as a wave-function
(quantum state) collapsing to a classical state upon observation.

Algorithm

The real-valued QIGA algorithm is as follows

Set t=0

Initialise Q(t) of N individuals with G genes

While (t < max t)
Create the PDFs (and corresponding CDFs, which describe the probability

distributions of real-valued random variables, see equation(6)) for
each gene locus using the quantum individuals

Create a temporary population, denoted E(T), of K real-valued solution
vectors by observing Q(t) (via the CDFs)

If (t=0) Then C(t)=E(t)
(Note: the population C(T) is maintained between iterations of the algorithm)

Else E(t)=Outcome of crossover between E(t) and C(t)
Evaluate E(t)
C(t)= K best individuals from E(t) U C(t)
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End if

With the N best individuals from C(t)

Q(t+1)=Output of translate operation on Q(t)
Q(t+1)=Output of resize operation on Q(t+1)
t=t+1

Endwhile

Initialising the Quantum Population

A quantum chromosome, which is observed to give a specific solution vector
of real-numbers, is made up of several quantum genes. The number of genes
is determined by the required dimensionality of the solution vector. At the
start of the algorithm, each quantum gene is initialised by randomly selecting
a value from within the range of allowable values for that dimension. A gene’s
width value is set to the range of allowable values for the dimension. For
example, if the known allowable values for dimension j are [−75, 75] then qij
(dimension j in quantum chromosome i) is initially determined by randomly
selecting a value from this range (say) -50. The corresponding width value
will be 150. Hence, qij = (−50, 150). The square pulse need not be entirely
within the allowable range for a dimension when it is initially created as the
algorithm will automatically adjust for this as it executes. The height of the
pulse arising from a gene j in chromosome i is calculated using

hij =
1/σij

N
(7.4)

where N is the number of individuals in the quantum population. This equa-
tion ensures that the probability density functions (PDFs) (see next subsec-
tion) used to generate the observed individual solution vectors will have a
total area equal to one. Fig. 7-2 provides an illustration of a quantum gene
where N=4.

 

Fig. 7-2. A square pulse, representing a quantum gene, with a width of 150, centred
on -50. The height of the pulse is 0.001666̇
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Observing the Quantum Chromosomes

In order to generate a population of real-valued solution vectors, a series of ob-
servations must be undertaken using the population of quantum chromosomes
(individuals). A pseudo-interference process between the quantum individuals
is simulated by summing up the square pulses for each individual gene across
all members of the quantum population. This generates a separate PDF (just
the sum of the square pulses) for each gene and eq. 7.4 ensures that the area
under this PDF is one. Hence, the PDF for gene j on iteration t is

PDFj(t) =

j
∑

i

gij (7.5)

where gij is the square pulse of the jth gene of the ith quantum individual
(of N). To use this information to obtain an observation, the PDF is first
converted into its corresponding Cumulative Distribution Function (CDF)

CDFj(x) =

∫ Uj

Lj

PDFj(x)dx (7.6)

where Uj and Lj are the upper and lower limits of the probability distribution.
By generating a random number r from (0,1), the CDF can be used to obtain
an observation of a real number x, where x = CDF−1(r). If the generated
value x is outside the allowable real valued range for that dimension, the
generated value is limited to its allowable boundary value. A separate PDF
and CDF is calculated for each of the G gene positions. Once these have
been calculated, the observation process is iterated to create a temporary
population with K members, denoted E(t).

Crossover Mechanism

The crossover operation takes place between C(t) and the temporary popu-
lation E(t). This step could be operationalised in a variety of ways with [9]
choosing to adopt a variant of uniform crossover, without an explicit selection
operator. After the K crossover operations have been performed, with the
resulting children being copied into E(t), the best K individuals ∈ C(t)∪E(t)
are copied into C(t).

Updating the Quantum Chromosomes

The N quantum chromosomes are updated using the N best individuals from
C(t) after performing the crossover step. Each quantum gene’s mean value is
altered using

pij = cij (7.7)
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Fig. 7-3. An illustration of the process in the creation of generation t+1 from t.

so that the mean value of the jth gene of the ith quantum chromosome is
given by the corresponding jth value of the ith ranked individual in C(t).

The next step is to update the corresponding width value of the jth gene.
The objective of this process is to vary the exploration / exploitation char-
acteristics of the search algorithm, depending on the feedback from previous
iterations. If the search process is continuing to uncover many new better so-
lutions, then the exploration phase should be continued by keeping the widths
relatively broad. However, if the search process is not uncovering many new
better solutions, the widths are reduced in order to encourage finer-grained
search around already discovered good regions of the solution space. There are
multiple ways this general approach could be operationalised. For example,
[9] suggests use of the 1/5th mutation rule from Evolutionary Strategies [24]
whereby

if φ < 1/5 then σij = σijg

if φ > 1/5 then σij = σij/g
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if φ = 1/5 then σij = σij

where σij is the width of the ith quantum chromosome’s jth gene, g is a
constant in the range [0, 1] and φ is the proportion of individuals in the new
population that have improved their fitness.

In this study we update the width of the ith quantum chromosome’s jth

gene by comparing each successive generation’s best fitness function. If the
best fitness function has improved (disimproved) we shrink (enlarge) the width
in order to improve the local (global) search.

QIGA vs Canonical Genetic Algorithm

A number of distinctions between the QIGA above and the canonical GA
(CGA) can be noted. In the CGA, the population of solutions persists from
generation to generation, albeit in a changing form. In contrast, in QIGA, the
population of solutions in P (t) are discarded at the end of each loop. The
described QIGA, unlike CGA, does not have explicit concepts of crossover
or mutation. However, the adaptation of the quantum chromosomes in each
iteration does embed implicit selection as the best solution is selected and is
used to adapt the quantum chromosome(s). The crossover and mutation steps
are also implicitly present, as the adaptation of the quantum chromosome in
effect creates diversity, as it makes different states of the system more or less
likely over time. Another distinction between the QIGA and the CGA is that
the CGA operates directly on representations of the solution (the members
of the current population of solutions), whereas in QIGA the update step is
performed on the probability amplitudes of the ground states for each qubit
making up the quantum chromosome(s).

7-3 Option Pricing Model Calibration

An optimisation problem in financial modelling is considered to test the per-
formance of the QIGA. The optimisation involves calibrating an option pricing
model to observed market data. Calibration is a method of choosing model
parameters so that the distance between a set of model option prices and mar-
ket option prices is minimised, where distance is some metric such as the sum
of squared errors or the sum of squared percentage errors. The parameters can
be thought to resemble the market’s view on current option prices and the
underlying asset price. In calibration we do not explicitly take into account
any historical data. All necessary information is contained in today’s option
prices which can be observed in the market. Practitioners frequently calibrate
option pricing models so that the models provide reasonable fits to current
observed market option prices and they then use these models to price exotic
derivatives or for hedging purposes. In this paper we calibrate a very recent
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extension of the Variance Gamma option pricing model [20, 21, 22] known as
the Variance Gamma Scaled Self-Decomposable (VGSSD) model [5] to FTSE
100 index option data.

A European call (put) option on an asset St with maturity date T and
strike price K is defined as a contingent claim with payoff at time T given by
max [ST −K, 0] (max [K − ST , 0]). The well known Black-Scholes (BS) for-
mula for the price of a call at time t on this asset is given by

CBS (St,K, r, q, τ ;σ) =Ste
−qτN (d1) −Ke−rτN (d1) (7.8)

d1 =
− lnm+

(

r − q + 1

2
σ2

)

τ

σ
√
τ

d2 = d1 − σ
√
τ (7.9)

where τ = T − t is the time-to-maturity, t is the current time, m = K/S is the
moneyness of the option, r and q are the continuously compounded risk-free
rate and dividend yield and N(·) is the cumulative normal distribution func-
tion. Suppose a market option price, denoted by CM (St,K), is observed. The
Black-Scholes implied volatility for this option price is that value of volatility
which equates the BS model price to the market option price as follows

σBS (St,K) >0

CBS (St,K, r, τ ;σBS (St,K)) =CM (St,K) (7.10)

If the assumptions underlying the BS option pricing model were correct, the
BS implied volatilities for options on the same underlying asset would be
constant for different strike prices and maturities. However in reality the BS
implied volatilities are varying over strike price and maturity. Given that
the options are written on a single underlying asset this result seems at first
paradoxical, i.e. we have a number of different implied volatilities for a single
asset which should only have one measure for its volatility. Yet if we relax some
of the assumptions in the BS model, such as allowing for a more complex
data generating process for the asset price than the log normal stochastic
process (as assumed by BS), and take into account the resulting complications,
this result begins to make sense and is simply highlighting the erroneous
assumptions that underpin the BS model.

Many different option pricing models have been proposed as alternatives
to the BS model. Examples include stochastic volatility models and jump
diffusion models which allow for more complex asset price dynamics. We ex-
amine a simple extension of a very popular option pricing model known as the
Variance Gamma (V G) option pricing model. The extension of the model is
called the Variance Gamma Scaled Self-Decomposable (VGSSD) model. The
idea of the V G process is to model the continuously compounded returns of
the stock price occurring on business time rather than on calendar time using
a time transformation of a Brownian motion. The resulting model is a three
parameter model where roughly speaking we can interpret the parameters as
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controlling volatility, skewness and kurtosis, denoted respectively as σ, θ and
ν, of the underlying asset returns distribution. Closed form option pricing
formulae exist under the V G model [22]. The model performs well at fitting
a range of options prices with different strike prices at one maturity but fails
to fit option prices at several maturities. This is because the returns are in-
dependent in the V G model and this results in skewness and excess kurtosis
of the V G returns density function approaching zero too quickly as maturity
increases. This resulted in [5] proposing a number of alternative models, one of
which is based on the V G model. The model proposes that a VGSSD random
variable at time τ has the same distribution as a V G random variable at unit
time multiplied by τγ , where γ is an additional parameter of the model that
induces volatility clustering in the returns. The resulting random process has
a scaled density function, i.e. skewness and excess kurtosis remain constant
as time-to-maturity increases. The VGSSD model performs much better than
the V G model at calibrating to a range of options across both strike price
and maturity at the expense of one additional parameter. The characteristic
function (Fourier transform of its density function) of the VGSSD process,
Xτ , has a very simple form and is given by

φXτ
(u) = E[exp(iuXτ )] =

(

1

1 − iuνθτγ + 1

2
u2νσ2τ2γ

)
1

ν

(7.11)

where u is a Fourier transform parameter and i is the imaginary number with
i =

√
−1. The characteristic function of the logarithm of the stock price is

given by

φln ST
(u) = exp {iu (lnSt + (r − q)τ − lnφXτ

(−i))}φXτ
(u) (7.12)

This form ensures that the expectation of the future stock price in the risk
neutral world is given by E[ST ] = St exp ((r − q) τ) where we recall that
τ = T − t. Option prices can be computed using the well known fast Fourier
transform approach of [4]. A call option price with strike price K and time-
to-maturity τ is given by

c (K, τ) =
exp (−α ln (K))

π

∫ +∞

0

exp (−iv ln (K))ψτ (v) dv (7.13)

where

ψτ (v) =
exp (−rτ)φln ST

(v − (α+ 1) i)

α2 + α− v2 + i (2α+ 1) v
(7.14)

α is a dampening parameter that must be included for numerical reasons, it
is set to α = 4 in this analysis, and the integral in equation 7.13 is computed
numerically using a fast Fourier transform (FFT), see [4] for more details.
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7-4 Experimental Approach

Market makers in the options markets quote BS implied volatilities rather
than option prices even though they realise BS is a flawed model. Table 7-1
depicts end-of-day settlement Black-Scholes implied volatilities for FTSE 100
European options on the 17 March 2006 for different strike prices and time-
to-maturities. As can be seen the BS implied volatilities are not constant
across the strike price and the maturity date. These implied volatilities are
converted into market call and put prices by substituting the BS implied
volatilities into the Black-Scholes formula. The following input parameters
were used to calculate the option prices, the index price is the FTSE 100
index itself St = 5999.4, the interest rate is the one month Libor rate converted
into a continuously compounded rate r = 0.0452 and the dividend yield is a
continuously compounded dividend yield downloaded from Datastream and
is q = 0.0306. These prices are then taken to be the observed market option
prices. Out-of-the money (OTM) put prices were used for K < S and OTM
call prices were used for K > S in the calibration. The calibration problem
now amounts to choosing an optimum parameter vector Θ = {σ, ν, θ, γ} such
that an objective function G (Θ) is minimised. In this paper the objective
function is chosen to be the absolute average percentage error (APE)

G (Θ) =
1

N

N
∑

i=1

∣

∣

∣

∣

Ci − Ci (Θ)

Ci

∣

∣

∣

∣

where Ci is the observed market price on the i-th option (could be a call or a
put) and Ci (Θ) is the VGSSD model price of the i-th option with parameter
vector Θ. One of the difficulties in model calibration is that the available mar-
ket information may be insufficient to completely identify the parameters of
a model [6]. If the model is sufficiently rich relative to the number of market
prices available, a number of possible parameter vector combinations will be
compatible with market prices and the objective function G (Θ) may not be
convex function of Θ. A plot of the objective function versus the two parame-
ters controlling skewness and kurtosis of the asset returns distribution, θ and
ν, whilst keeping σ and γ fixed at σ = 0.1175 and γ = 0.5802 is shown in
figure 7-4a. Although the objective function looks well behaved other stud-
ies show that there are some potential problems. A graph of a very similar
objective function is plotted in [6], for the V G option pricing model, using
DAX index option data and the potential for gradient based optimisers to
converge to a local rather than the global minimum is illustrated due to the
fact that certain parameters have off setting effects in the V G model. Options
are priced using the V G model with FFTs by [15] who outlines the potential
for option prices to explode to infinity for certain parameter values of the V G
model where conditions on the parameter values that keep the characteristic
function finite do not hold. These potential problems provide the motivation
to use an evolutionary based optimiser for calibrating the VGSSD model.
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Table 7-1. Market BS implied volatilities (%) for FTSE 100 index options on the
17 March 2006. The strike prices and maturities (in years) are given in the table
and the other observable inputs are S = 5999.4, r = 0.0452 and q = 0.0306.

Strike Price
Maturity 4196.5 4796 5395.5 5695.2 5845.1 5995 6144.9 6294.7 6594 7194 7793.5

0.0959 13.76 12.41 11.13 10.44 10.94
0.1726 15.43 13.27 12.20 11.14 10.39 10.32
0.2493 15.21 13.28 12.32 11.37 10.59 10.22 10.26
0.4986 18.43 15.22 13.65 12.87 12.10 11.42 10.98 10.76
0.7479 21.24 18.28 15.45 14.07 13.38 12.70 12.06 11.55 10.96 10.76
0.9973 20.98 18.27 15.69 14.42 13.80 13.18 12.57 12.06 11.35 10.85
1.2466 20.85 18.33 15.94 14.76 14.18 13.60 13.04 12.54 11.79 11.09 10.80
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Fig. 7-4. Objective function versus model parameters ν and θ and objective function
versus generation number.
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7-5 Results

In all runs of the QIGA, a population size of 20 observed chromosomes was
used, the algorithm was allowed to run for 30 generations, and all reported re-
sults are averaged over 30 runs. In order to provide a benchmark for the results
obtained by the QIGA a deterministic Matlab optimiser called fminsearch was
run 30 times with different initial parameter vectors. Fminsearch, multidimen-
sional unconstrained nonlinear minimization, uses the Nelder-Mead simplex
search method. This nonlinear optimization algorithm approximately finds a
locally optimal solution to a problem with variables when the objective func-
tion varies smoothly, see Lagarias et al [17]. It is a direct search method that
does not use numerical or analytic gradients. The optimiser converged to dif-
ferent values for the parameter vector Θ for different initialisations of Θ. The
parameter vector associated with the optimal value for the objective function
G was chosen to compute the average percentage error (APE) and the model
prices. Figure 7-4b depicts the evolution of the global objective function G,
measured using average percentage error (APE), as a function of the gener-
ation number for a single run of the algorithm. Figures 7-5a, 7-5b, 7-5c and
7-5d depict the evolution of the parameters σ, ν, θ and γ as a function of the
generation number for a single run of the algorithm.

The best results from the last generation of the algorithm, averaged over
30 runs, are reported in the first column Table 7-2. The average results from
the last generation of the algorithm, averaged over 30 runs, are reported in
the second column of Table 7-2. As can be seen in Table 7-2 the optimal APE
is very low at 1.29% (this compares favourably to the optimal matlab value of
1.27%) and the parameter values are very close to the parameter values from
the Matlab optimiser(fminsearch).

The results from the second column of Table 7-2 are the average result
from the last generation of the algorithm, averaged over 30 runs. The APE is
calculated by computing a single set of model prices from the average param-
eter vector Θ. The APE is higher than the optimal values at 3.34% indicating
that some of the runs converged too early to a suboptimal result. However the
average parameter values are not that different from the optimal parameter
values indicating that only a small number of the 30 runs gave poor results.

Model vs Market Implied Volatilities

In order to give a more complete picture of the results figure 7-6 depicts market
and model implied volatilities versus the moneyness of the option, where mon-
eyess is equal to K

S
, for all the options used in the analysis. The model implied

volatilities are calculated from the model prices using the optimal parameter
values from Table 7-2. Model and market implied volatilities are plotted as
opposed to model and market option prices because implied volatilities depict
the calibration performance of the option pricing model in a much clearer
way than option prices alone. This is because implied volatilities vary far less



16 K. Fan, C. O’Sullivan, A. Brabazon, M. O’Neill and S. McGarraghy

with strike price and maturity than option prices themselves. The objective
function depends on model option prices as opposed to model implied volatili-
ties because optimising over implied volatilities would be very time consuming
since implied volatility has to be calculated numerically given the option price
and other input parameters. However, if the model option prices are very close
to the market option prices, the model implied volatilities will also be very
close to the market implied volatilities. Figure 7-6 outlines the success of the
parsimonious VGSSD model in terms of calibrating to a wide range of op-
tion prices. The VGSSD model performs best at the shorter maturities but
more flexibility would be needed to match the deep out-of-the-money put op-
tions at longer maturities. However for a four parameter model the calibration
performance is still very promising.

Sensitivity Analysis

In previous expositions of the real-valued QIGA, detailed sensitivity analysis
results were not reported. In order to gain greater insight into the operation
of the algorithm, and to guide future applications of it, we undertook such
an analysis by systematically investigating a variety of parameter settings for
shrinkage, enlargement and crossover. The results of the optimal APE value as
a function of the enlargement and shrink parameters are reported in table 7-3.
The crossover rate is fixed at 0.3, a population size of 20 and a generation
number of 50 are used. Figure 7-7a graphs these results.

The APE is less sensitive to the enlargement parameter than to the shrink
parameter. The shrink parameter forces the algorithm to converge faster and
this has a strong effect on the algorithms performance. The enlargement pa-
rameter causes the algorithm to widen the search space, however the crossover
rate can also do this albeit using a different method, and this is why the al-
gorithm is less sensitive to the enlargement parameter provided the crossover
rate is a reasonable value. In this analysis the shrinkage parameter is set to
0.7 and the enlargement parameter is set to 1.2 as this provided a reasonable
trade-off in the convergence speed of the algorithm versus the search space of
the algorithm.

Table 7-4 reports the optimal APE value as a function of the shrink pa-
rameter and the crossover rate. The enlargement parameter is set to 1.2 and a
population size of 20 and generation number of 50 are used. Figure 7-7b graphs
these results. The algorithm performs more optimally with the crossover rate
set to 0.3 and the shrink parameter set to 0.7. Low values of the crossover
rate results in a smaller global search space and high values results in almost
random search so intermediate values provide a reasonable trade-off between
exploitation and exploration. Similarly the shrink parameter forces the algo-
rithm to narrow the search space in the region of the current best solution,
however this may be a local minima so the shrink parameter should not be
made too small.
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Table 7-2. Results of QIGA. The optimal and average parameter values from the
last generation are averaged over 30 runs and compared with the parameter values
from 30 runs of a Matlab optimiser.

Parameter QIGA Optima Mean Standard deviation Matlab optimisation

σ 0.1181 0.1034 0.0618 0.1175
ν 0.5000 0.4088 0.1058 0.4975
θ -0.0941 -0.1067 0.0993 -0.1084
γ 0.5662 0.5231 0.1017 0.5802

APE (%) 1.29 3.34 1.04 1.27
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Fig. 7-5. Evolution of parameters over time.

Table 7-3. This table reports the APE (%) for different enlargement and shrinkage
values.

Enlarge\Shrink 0.5 0.6 0.7 0.8 0.9

1.1 34.44 22.34 4.18 2.85 2.53
1.2 3.71 5.53 3.74 10.34 4.59
1.3 4.14 16.06 6.75 4.56 17.54
1.4 5.39 12.20 3.19 3.57 3.71
1.5 54.56 3.87 2.51 7.16 4.85
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Table 7-4. This table reports the APE (%) for different shrinkage and crossover
values.

Crossover\Shrink 0.5 0.6 0.7 0.8 0.9

0.3 3.84 1.90 4.30 3.68 3.85
0.4 8.96 4.74 5.82 6.82 7.30
0.5 5.81 7.20 41.39 4.17 7.09
0.6 2.81 5.84 3.39 6.30 3.32
0.7 54.85 3.29 6.25 2.72 4.08
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7-6 Conclusions

The real-valued QIEA is a novel form of representation which could be hy-
bridised with multiple real-valued search algorithms apart from the GA such
as PSO or DE. This chapter illustrates how a quantum-inspired evolution-
ary algorithm can be constructed and examines the utility of the resulting
algorithm on an important problem in financial modelling known as model
calibration. The results from the algorithm are shown to be robust and com-
parable to those of other algorithms.

This underpins earlier proof of concept exploration studies using real val-
ued quantum-inspired evolutionary algorithm. It is also noted that this paper
reports the first application of a QIGA to the financial domain. Several ex-
tensions of the methodology in this study are indicated for future work. The
first extension would be to extend the real-valued QIGA to a higher dimen-
sional setting in order to examine, and highlight, the computational benefits of
QIGA. The algorithm offers substantial potential for calibrating more complex
financial models than the VGSSD option pricing model. Future work could
also assess the benefits of operationalising the key steps of the QIGA in al-
ternative ways, for example, by implementing alternative diversity-generating
mechanisms in updating C(t) or by implementing alternative mechanisms for
altering σ during the algorithm.
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