
Self-Organizing Swarm (SOSwarm) for
Financial Credit-Risk Assessment

Abstract— This paper applies a self-organizing Particle
Swarm algorithm, SOSwarm, for the purposes of credit-risk
assessment. SoSwarm can be applied for unsupervised clus-
tering and for classification. In the algorithm, input vectors
are projected into a lower dimensional map space producing a
visual representation of the input data in a manner similar to
a self-organizing map (SOM). However, unlike SOM, the nodes
(particles) in this map react to input data during the learning
process by modifying their velocities using an adaptation of
the Particle Swarm Optimization velocity update step. The
utility of SoSwarm is tested by applying it to two important
credit-risk assessment problems drawn from the domain of
finance, namely the prediction of corporate bond ratings and
the prediction of corporate failure. The results obtained on the
financial benchmark problems are highly-competitive against
those of traditional classification methodologies. The paper
makes a further contribution showing that the canonical SOM
can be explored within the PSO paradigm. This highlights an
important linkage between the heretofore distinct literatures of
SOM and PSO.

I. INTRODUCTION

Clustering is a commonly encountered scenario in many data-
mining applications, the objective being to uncover a struc-
ture in a collection of unlabeled data. Real-world applications
of clustering include the mining of customer databases, fraud
detection, data compression and image analysis. Over the
years, a wide variety of algorithms have been developed for
clustering purposes, including K-means, Fuzzy C-means, Hi-
erarchical clustering and Mixture of Gaussians. In addition to
these traditional clustering algorithms, several biologically-
inspired clustering algorithms have been developed. These
are derived from a variety of sources of inspiration in-
cluding evolutionary processes (genetic algorithm clustering
applications include [1], [2], [3], [4], genetic programming
clustering applications include [5], [6]) and social systems
(examples of ant-based clustering include [7], [8], [9]).
Perhaps the best-known family of biologically-inspired clus-
tering algorithms is the self-organising map (SOM). Since
the development of SOMs [10], [11] a considerable literature
has developed in this field. A particular feature of SOMs is
that they typically reduce multi-dimensional data to a low
dimensional map (or grid) of nodes, making them a useful
tool for data visualization [12].

A recent addition to the family of natural computing
algorithms are particle swarm algorithms [13]. Thus far, these
algorithms have been primarily applied for either optimiza-
tion or social modeling purposes [14], [15]. However, it
seems natural to extend the Particle Swarm Algorithm (PSA)
to perform automated clustering tasks due to the manner in
which particles of a swarm cluster to similar regions over

time in a PSA. In [16] we introduced the Self-Organizing
Swarm (SOSwarm) algorithm which adopts unsupervised
learning using a PSA framework. We extend this work in this
paper by applying this algorithm to two real-world problems
drawn from the finance domain. The paper also illustrates an
important linkage between the SOM and PSO literatures.

II. PARTICLE SWARM OPTIMIZATION

The PSO algorithm was introduced by Kennedy and Eberhart
[13] and is described in detail in [14]. In the context of PSO
a swarm can be defined as ‘... a population of interacting
elements that is able to optimize some global objective
through collaborative search of a space’ [14]. The nature
of the interacting elements (particles) depends on the prob-
lem domain. Typically, the particles are real-valued vectors.
These particles move (fly) in an n-dimensional search space,
in an attempt to uncover ever-better solutions to the problem
of interest.

Each of the particles has two associated properties, a
current position and a velocity. Each particle also has a
memory of the best location in the search space that it has
found so far (pbest), and knows the best location found to
date by all the particles in the population (gbest) or in an
alternative version of the algorithm, a local neighborhood
around each particle (lbest). In the local version of the
algorithm, each particle is considered to be linked to a subset
of the population of particles, and this linkage structure
is fixed at the beginning of the optimization process and
remains unchanged during it (see Fig.1). Although a subset of
the particles are defined as being ‘linked’ this does not imply
that the particles will be spatially proximate as the algorithm
runs. It is quite possible, particularly in the early iterations
of the algorithm, that the particles could be a considerable
distance from each other.

Whether the local or global communication version is
implemented, at each step of the algorithm, particles are
displaced from their current position by applying a velocity
(or gradient) vector to them. The velocity size / direction is
influenced by the velocity in the previous iteration of the
algorithm (simulates ‘momentum’), and the location of a
particle relative to its pbest and gbest (or lbest). Therefore,
at each step, the size and direction of each particle’s move
is a function of its own history (experience), and the social
influence of its peer group.

A number of variants of the particle swarm algorithm
(PSA) exist. The following paragraphs provide a description
of a canonical continuous version of the algorithm.

i. Initialize each particle in the population by randomly
selecting values for its location and velocity vectors.

ii. Calculate the fitness value of each particle. If the
current fitness value for a particle is greater than the
best fitness value found for the particle so far, then
revise pbest.

iii. Determine the location of the particle with the highest
fitness and revise gbest if necessary.

iv. For each particle, calculate its velocity according to
equation 1.

v. Update the location of each particle according to
equation 3.

vi. Repeat steps ii - v until stopping criteria are met.

The update algorithm for particle i’s velocity vector vi is:

Neighbourhood around particle P4

P1

P5

P2 P3

P4

Neighbourhood around particle P5

Fig. 1. Ring topology where lbest is defined using a 3 node neighborhood.
This corresponds to a gbest

vi(t + 1) = w ∗ vi(t) + (c1 ∗ R1 ∗ (pbest − xi))
+ (c2 ∗ R2 ∗ (gbest − xi))

(1)

where,

w = wmax − ((wmax − wmin)/itermax) ∗ iter (2)

In equation 1, pbest is the location of the best solution found
to-date by particle i, gbest is the location of the global-
best solution found by all particles to date, c1 and c2 are
the weights associated with the pbest and the gbest terms
in the velocity update equation, xi is particle i’s current
location, and R1 and R2 are randomly drawn from U(0,1).
The parameter w represents a momentum coefficient which
is reduced according to equation 2 as the algorithm iterates.
In equation 2, itermax and iter are the total number of
iterations the algorithm will run for, and the current iteration
value respectively. The parameters wmax and wmin set the
upper and lower boundaries on the value of the momentum
coefficient. The velocity update on any dimension is con-
strained to a maximum value of vmax. Once the velocity
update for particle i is determined, its position is updated
(equation 3), and pbest is updated if necessary (equations 4
& 5).

xi(t + 1) = xi(t) + vi(t + 1) (3)

pbest i(t + 1) = pbest i(t) if, f(xi(t)) ≤ f(yi(t)) (4)

pbest i(t + 1) = xi(t) if, f(xi(t)) > f(yi(t)) (5)

After the location of all particles have been updated, a check
is made to determine whether gbest needs to be updated
(equation 6).

ŷ ∈ (y0, . . . , yn)|f(ŷ) = max(f(y0), . . . , f(yn)) (6)

gbest(t + 1) = gbest(t) if, f(gbest(t)) > f(ŷ(t)) (7)

gbest(t + 1) = ŷ(t) if, f(gbest(t)) ≤ f(ŷ(t)) (8)

A. Elements of PSA

In each iteration of the algorithm, a particle is stochastically
accelerated towards its previous best position and towards
a global (or neighborhood) best position, thereby forcing
particles to continually search in the most-promising regions
found so far in the solution space. The weight coefficients
c1 and c2 control the relative impact of the pbest and gbest

locations on the velocity of a particle. Low values for
c1 and c2 allow each particle to explore far away from
already uncovered good points (there is less emphasis on
past learning), high values of the parameters encourage more
intensive search of regions close to these points. The random
coefficients r1 and r2 ensure that the algorithm is stochastic.
A practical effect of r1 and r2, is that neither the individual
nor the social learning terms are always dominant.

The neighborhood structure plays a critical role in deter-
mining the nature of the communication between particles
during the search process. If the neighborhood is set at
1 (each particle only communicates with itself), then each
particle searches independently of all other particles. If the
neighborhood= N (the number of particles in the swarm),
all particles can communicate with each other, and we have
the gbest version of the PSO algorithm.

B. Sample Applications of PSA

Particle Swarm algorithms have been successfully applied
to a diverse range of problems including Financial Modeling
[28], the automatic generation of programs ([17], [18]) using
a grammatical representation borrowed from Grammatical
Evolution [19], [20], [21], [22], [23], and the construction
of Artificial Neural Networks [24].

III. SELF-ORGANIZING MAP

Self-organizing maps (SOM) [10], [11], [12] are loosely
inspired by the self-organizing capability of neurons in the
cortex. Experimental evidence has shown that certain parts
of the brain perform specific tasks such as processing touch,
sound and visual stimuli. In these regions, neurons spatially
self-organize, or cluster, depending on their function. In-
spired by these processes of self-organization, SOMs are
artificial neural nets which use unsupervised learning to adapt
(organize) themselves in response to signal inputs.

A SOM acts to project (compress) input data vectors onto
a low-dimensional space, typically a two-dimensional grid
structure, thereby producing a visual representation of the
input data. The unsupervised learning process is based on
measures of similarity amongst the input data vectors. During
the training process, the network undergoes self-organization
as like input data patterns are grouped or clustered together
on the grid structure. SOMs have been utilized for a variety
of clustering and classification problems including speech
recognition and medical diagnosis [29]. The SOM bears
similarities with the traditional statistical technique of Prin-
cipal Component Analysis (PCA). However, unlike PCA the
projection of the input data is not necessarily restricted to be
linear.

The SOM consists of two layers, the input layer (a holding
point for the input data), and the mapping layer. The input
layer has as many nodes as there are input variables. The
two layers are fully connected to each other and each of the
nodes in the hidden layer has an associated weight vector,
with one weight for each connection with the input layer.

The aim of the SOM is to group like input data-vectors
together on the mapping layer, therefore the method is
topology preserving as items which are close in the input
space are also close in the mapping space. During training
the data vectors are presented to the SOM through the input
layer one at a time. The nodes in the mapping layer compete
for the input data vector. The winner is the mapping node
whose vector of incoming connection weights most closely
resembles the components of the input data vector. The
winner has the values of its weight vector adjusted to move
them towards the values of the input data vector, and the
mapping layer nodes in the neighborhood of the winning
node also have their weight vectors altered to become more
like the input data vector (a form of co-operation between the
neighboring nodes). As more input data vectors are passed
through the network, the weight vectors of the mapping
layer nodes self-organize. The self-organization process also
encourages the mapping layer weight vectors to congregate
to regions of the input space where the training data is con-
centrated, with relatively few (if any) weight vectors being
located in sparsely populated regions of the input space.
The self-organizing map therefore tends to approximate the
probability density function of the input data. Fig. 3 provides
a stylized illustration of a trained SOM for the three data
clusters in Fig. 2. The twelve (in this example) mapping
layer nodes have self-organized so that the weight vectors

for four nodes have moved towards each cluster of data in
the feature space.

Cluster 1

Cluster 3

Cluster 2

Feature 1

Feature 2

Fig. 2. Example where data splits neatly into three clusters, based on the
two input features of each item

Mapping layer nodes

Feature 1

Feature 2

Fig. 3. A stylized illustration of a trained net. Four mapping nodes have
migrated to each data cluster during the training process

By the end of the training process, different parts of the
mapping layer respond strongly to specific regions of input
space. Once training of the network is complete, the clusters
obtained can be examined in order to gain better insight into
the underlying dataset. Questions which can be addresses
include: what input items have been grouped together, and
what are the typical values for each input in a specific cluster?

A. PSO-SOM Hybrids

There are several ways that a PSO-SOM hybrid could be
constructed. In [24] and [25] a PSO algorithm was used
to refine the weight vectors for a SOM obtained after an
initial application of a standard SOM training methodology.
In this approach each particle consisted of a complete set of
weights for the SOM and the object was to improve the initial
clustering result by applying PSO to the population of weight
vectors. The approach in our study differs fundamentally
from the above and is outlined in the next section.

IV. SELF-ORGANIZING SWARM

The Self-Organizing Swarm (SOSwarm) operates in a similar
fashion to a SOM with the adoption of a 2-d mapping layer.
The components of this layer are considered as ‘particles’.
Instead of simply adjusting node weights in the map space
with respect to the training input vectors, the particles in the
mapping layer adjust their values using an adapted form of
a PSA velocity update function.

The canonical form of the PSA update embeds two key
elements:

• a history, and
• a social influence.

History is embedded in the PSA via the momentum term and
the pbest components of the velocity update equation. The
social influence is embedded via the influence of either gbest

or lbest in the velocity update (gbest also embeds a swarm
‘history’). In this study, we simplify the update equation by
only using the momentum term to embed a particle’s history.
We initially also omit the social influence term but include
a form of social communication using a neighborhood as
described below. Section VI provides a further discussion
on this point. In undertaking our experiments we apply
the output from an unsupervised SOSwarm learning process
for classification purposes. An outline of the SOSwarm
algorithm used for this purpose is presented below.

0 initialize location and velocity of particles in mapping layer
randomly

1 for(max number of iterations)

2 for(each input training vector in turn)

3 set gbest to be the input vector

4 set pbest of each particle at its
current position

5 find particle with closest match to gbest

6 denote this particle as the firing particle

7 update firing particle’s velocity
and position vectors

8 endfor

9 endfor

10 assign class to each particle using training data

11 calculate classification accuracy using test data

In order to determine the firing particle (the particle that
is the closest match to an input vector) a simple distance
calculation is adopted

Firing particle =
argmin

i

∥∥V − Pi

∥∥ (9)

where V corresponds to the input vector, Pi is the ith

particle’s position vector, i is the number of particles in
the swarm. A number of alternative distance functions could
be adopted and we adopt Euclidean distance as outlined in

equation 10 where d is the dimensionality of the vector or
particle.

Firing particle =
argmin

i

∥∥∥∥∥

√√√√ d∑
1

(Vd − Pid)
2

∥∥∥∥∥ (10)

(Input Layer)

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

gbest

to gbest
closest match

neighbourhood

Fig. 4. A Self-Organizing Swarm (SOSwarm) with a 2-d mapping layer.

A visual representation of SOSwarm is presented in Fig.
4 with the adoption of a 2-d mapping layer. The particles
are arranged a priori into a fixed neighborhood topology,
a simple grid in this example. The firing particle, that is,
the particle whose position vector is closest to the current
input vector (designated as gbest) updates its position vector
in a particle swarm style according to the PSA velocity and
position update equations. In addition, particles lying within
a fixed neighborhood of the firing particle also adjust their
position vectors using the same equations, implicitly embed-
ding a form of social communication between neighboring
particles.

Once the map has been trained, each node in the mapping
layer is assigned a class label using the training data, based
on a simple majority voting scheme. In calculating the in
sample and out sample classification accuracy, the distance
between each input data vector and each mapping node is
calculated, with the input data vector being assigned the class
label of the mapping node it is closest to.

V. EXPERIMENTAL SETUP & RESULTS

In order to assess the utility of the SOSwarm algorithm, two
credit risk assessment classification problems are examined.

A. Problems Examined

Classification is a commonly encountered decision scenario
in business. Examples include decisions as to whether or
not to invest in a firm, to extend credit to a new customer,
or to extend a bank loan. In each of these scenarios, the
possibility of financial loss exists if a firm is incorrectly
classified as being financially healthy. We select two credit
risk assessment scenarios, the assignment of a bond rating
to a firm based on publicly-available financial data and the
prediction of corporate failure, also using publicly-available
financial data.

1) Bond Rating: When a company wants to issue traded
debt (bonds), it must obtain a credit rating for the issue from
at least one recognized rating agency (Standard & Poor’s
(S&P), Moody’s, Fitches’ or Dominion Bond Rating Ser-
vice). The credit rating represents the rating agency’s opinion
at a specific date of the creditworthiness of a borrower in
general (an issuer credit rating), or in respect of a specific
debt issue (a bond credit rating). These ratings impact on the
borrowing cost, and the marketability of issued bonds. Most
rated debt is publicly tradable on stock markets, and bond
ratings are typically changed infrequently. An accurate bond-
rating prediction model could indicate whether the current
rating of a bond is still justified. To the extent that an
individual investor could predict a bond re-rating before other
investors foresee it, this may provide a trading edge.

The dataset consists of financial data drawn from the
financial statements of 791 non-financial US companies,
along with their associated S&P bond-issuer credit-rating.
In this case, we restrict attention to discriminating between
investment grade vs junk grade ratings. In the dataset 57%
of companies have an investment-grade rating (AAA, AA,
A or BBB), and 43% have a junk rating. To allow time
for the preparation of year-end financial statements, the
filing of these statements with the Securities and Exchange
Commission (SEC), and the development of a bond rating
opinion by Standard & Poor’s rating agency, the bond rating
of the company as at 30 April 2000, is matched with financial
information drawn from their financial statements as at 31
December 1999.

A subset of 600 firms was randomly sampled from the
total of 791 firms to produce two groups of 300 investment
grade and 300 junk rated firms. The 600 firms were randomly
allocated to the training set (420) or the hold-out sample
(180), ensuring that each set was equally balanced between
investment and non-investment grade ratings.

A total of eight financial variables were selected for inclu-
sion in this study. The selection of these variables was guided
both by prior literature in bankruptcy prediction, literature on
bond rating prediction, and by preliminary statistical analysis.
The financial ratios chosen during the selection process were:

i. Current ratio
ii. Retained earnings to total assets

iii. Interest coverage
iv. Debt ratio
v. Net margin

vi. Market to book value
vii. Total assets

viii. Return on total assets

2) Corporate Failure: A sample of 178 (89 failed and 89
non-failed) publicly quoted US firms was drawn from the
period 1991 to 2000 in order to train and test the classifier.
Only firms with sales exceeding $1M, which had existed for
at least three years prior to entry into Chapter 7 or Chapter 11
and which were outside the financial sector were considered
for inclusion in the sample. Failed and non-failed firms were
matched both by industry sector and size (sales revenue three
years prior to failure). The set of 178 matched firms was

randomly divided into model building (128 firms) and out-of-
sample (50 firms) datasets. The dependent variable is binary
(0,1), representing either a non-failed or a failed firm. Prior
to the selection of the potential explanatory variables for
inclusion in this study, a total of ten previous studies were
examined [30], [31], [32], [33], [34], [35], [36], [37], [38],
[39]. These studies employed a total of 58 distinct ratios. A
subset of 22 of the most commonly used financial ratios was
selected for this study. The selected ratios were:

i. EBIT/Sales
ii. EBITDA/Sales

iii. EBIT/Total Assets
iv. Gross Profit/Sales
v. Net Income/Total Assets

vi. Net Income/Sales
vii. Return on Assets

viii. Return on Equity
ix. Return on Investment
x. Cash/Sales

xi. Sales/Total Assets
xii. Inventory/Cost of Goods Sold

xiii. Inventory/Working Capital
xiv. Fixed Assets/Total Assets
xv. Retained Earnings/Total Assets

xvi. Cash from Operators/Sales
xvii. Cash from Operations/Total Liabilities

xviii. Working Capital/Total Assets
xix. Quick Assets/Total Assets
xx. Total Liabilities/Total Assets

xxi. Leverage
xxii. EBIT/Interest

In the corporate failure case, we construct three distinct
classifiers which predict impending failure (or not) one to
three years in advance of actual failure. Each of these models
is designated T-1, T-2 and T-3 respectively. More details on
each of these problem domains can be found in [26], [27],
[28].

B. Methodology

Initially, the SOSwarm clustering algorithm is applied and
then the nodes on the resulting map are labeled. The labeled
nodes are then used to classify the data. We then report the
classification accuracies on each dataset.

The following parameters were used for the SoSwarm
algorithm, c1 = 1.0, c2 = 2.0, wmax = 0.9, wmin = 0.4,
cmin = 0, cmax = 1, and vmax = cmax. The population
of particles was set at 100 (a 10 ∗ 10 grid structure). The
algorithm was run for a total of 10,000 iterations. The
parameter values were set after a number of initial trial and
error experiments. As the mapping process utilizes a distance
metric, the input variables in each dataset were normalized
independently in each dimension into the range [0 → 1].

The distance metric in equation 7 is used to determine
the particle that is the closest match, and a fixed grid
neighborhood topology is adopted, with the range of the
neighborhood as illustrated in Fig. 4. That is, for particles
not on the edges of the grid a particle will have at most 8
neighbors, which will be subjected to updates if that particle
fires.

The bond dataset was recut 5 times between train and
test data and the corporate failure dataset was recut 10
times. Thirty independent runs of the SOSwarm algorithm
were conducted on each recut. The classification results
obtained for the unseen test data are presented in Table I.
The results reported consist of the best, the mean best and
the mean average accuracy, obtained across the thirty runs,
averaged over all data recuts. The results are encouraging
with SOSwarm producing a competitive performance against
the best previous classification accuracies reported on these
problems.

In previous studies, applying a variety of classification
methods to the bond dataset over the same five recuts,
best results of 82.74% (85.22) in-sample (out-sample) were
obtained using linear discriminant analysis averaged across
all five recuts. Applying grammatical evolution to the same
dataset produced best results of 86.78% (86.26) in-sample
(out-sample) [28].

In the case of the corporate failure data, best results
of 81.3% (78) in-sample (out-sample) were obtained using
linear discriminant analysis averaged across all ten recuts
for T-1 data. The corresponding results for T-2 and T-3 were
76.6% (58) and 75% (58) respectively. Applying grammatical
evolution to the same dataset produced best results of 85.9%
(80) in-sample (out-sample) [28]. The corresponding results
for T-2 and T-3 were 82.8% (80) and 75.8% (70) respectively.
Hence, it can be seen that SoSwarm has produced competi-
tive results when compared with those of other classification
techniques.

TABLE I

CLASSIFICATION ACCURACY OBTAINED ON THE OUT-OF-SAMPLE DATA

FOR THE SELF-ORGANIZING SWARM ALGORITHM ACROSS THE

BENCHMARK PROBLEMS AVERAGED ACROSS ALL THE RECUTS OF THE

DATASET IN EACH CASE.

Problem best mean best av.mean
(%) (%) (std.dev.)

Bond rating 86.66 86.22 81.62 (2.30)
Corporate failure T-1 77.14 71.42 60.44 (5.69)
Corporate failure T-2 74.28 69.14 57.09 (5.72)
Corporate failure T-3 70.57 70.57 57.85 (6.28)

VI. SOSWARM AND SOM

Although, as already noted in section III-A, a number of
studies have combined PSO and SOM methodologies, signif-
icantly however, no previous study has examined the deeper
linkages between the two methodologies. The teasing out
of such linkages is important as both paradigms are well-
developed and are widely used. The drawing of parallels
between both paradigms opens up a door for useful cross-
fertilization between each.

In the canonical SOM, the update of a firing node’s weight
vector is governed by:

xi(t + 1) = η(t)h(t)(xi(t) − β) (11)

where xi is the firing node’s weight vector, η is the time-
varying learning rate and β is the input vector. Hence, after

firing, the weight vector of the relevant node in the mapping
layer, and those of its neighbors which are defined by the
neighborhood function h(t), are adjusted in order to more
closely resemble the input vector. Ignoring the update of
neighboring nodes, and thinking of eq. 11 in particle swarm
terms, it is apparent that it can be written as a velocity update:

vi(t + 1) = η(t)(xi(t) − β) (12)

Of course, the component η(t) in eq. 12, in effect a weighting
term, is similar in concept to the weight parameter c1 in eq.
1. Hence, the canonical SOM update equation can be closely
approximated by a reduced (non-momentum) version of the
canonical PSA update equation.

This parallel between the SOM and a reduced form PSA
suggests multiple possibilities for the creation of new hybrid
algorithms for self-organization. For example, the PSA em-
beds momentum, a form of personal particle history which is
not included in the canonical SOM. Like the learning rate in
the SOM, the momentum term in the PSA velocity update is
time-varying, and it reduces over time in order to encourage
particle convergence. The SOSwarm algorithm described in
sect. IV includes momentum.

Another interesting possibility, drawing on the use of peer
learning in the PSA, is the incorporation of an additional
‘peer-learning’ term into the SoSwarm velocity update. For
example, a topology consisting of a series of small overlap-
ping neighborhoods could be defined between the particles
before the algorithm started, with eq. 1 being extended by
the addition of the term c3 ∗ r3 ∗ (ylocal − xi(t)), where
ylocal is the location of a randomly selected neighboring
particle of xi(t). This social learning would tend to lessen
the disruptive impact of an anomalous input vector during
the learning process. This could prove especially useful in
environments where training data is noisy or errorful.

VII. CONCLUSIONS & FUTURE WORK

This paper describes the Self-Organizing Swarm algorithm
and illustrates its utility by applying it to two credit-risk
assessment problems. Classification accuracies reveal that
SOSwarm produces competitive results on the problems
analyzed when compared with previous benchmark results
on the same datasets. The paper also highlights an interesting
linkage between PSO and SOM.

There are several interesting avenues of future research.
A variety of distance metrics could be used in calculating
the distance between input vectors and each member of the
swarm. In the implementation of SoSwarm in this study, we
utilized a simple distance metric, but several other metrics
could be applied. Another interesting avenue is to investigate
the effect of implementing differing neighborhood topolo-
gies between the particles in the swarm. It would also be
interesting to examine in what circumstances a reducing size
of neighborhood over the course of the algorithm would be
beneficial. Other possible extensions of the study include the
investigation of different swarm sizes and different velocity
update formulations. Although we have applied SOSwarm

for classification purposes in this study, it could clearly also
be applied for clustering purposes, opening up such potential
applications as gene clustering, and customer database seg-
mentation. It would also be interesting to explore the utility
of the SOSwarm algorithm for such applications.

REFERENCES

[1] Franti, P., Kivijarvi, J., Kaukoranta, T., Nevalainen, O. Genetic
Algorithms for Large Scale Clustering Problems, The Computer
Journal, 40:547-554, 1997.

[2] Maulik, U. and Bandyopadhyay, S. Genetic algorithm-based clus-
tering technique, Pattern Recognition, 33:1455-1465, 2000.

[3] Tseng, L. and Yang, S. A genetic approach to the automatic
clustering problem, Pattern Recognition, 34:415-424, 2001.

[4] Garai, G. Chaudhuri, B. A novel genetic algorithm for automatic
clustering, Pattern Recognition Letters, 25(2):173-187, 2004.

[5] De Falco, I., Tarantino, E., Delia Cioppa A. and Gagliardi, F. A
novel grammar-based genetic programming approach to clustering,
in Proceedings of the 2005 ACM symposium on Applied computing,
Santa Fe, New Mexico, pp 928-932, 2005.

[6] De Falco, I., Tarantino, E., Delia Cioppa, A. and Fontanella, F. An
Innovative Approach to Genetic Programming based Clustering,
Advances in Soft Computing, 55-64, 2006.

[7] Deneubourg. J., Gross, S., Franks, N., Sendova-Franks, A., Detrain,
C. and Chretien, L. The dynamics of collective sorting robot-
like ants and ant-like robots, Proceedings of 1st Conference on
Simulation of Adaptive Behavior: From Animals to Animats (SAB
90), in Meyer, J. and Wilson, S. (eds), MIT Press, Cambridge, MA,
USA, pp 356-365, 1991.

[8] Lumer, E. and Faieta, B. Diversity and adaptation in populations
of clustering ants, Proceedings of Third International Conference
on Simulation of Adaptive Behaviour, pp 501-508, 1994.

[9] Bonabeau, E., Dorigo, M. and Theraulaz, G. Swarm Intelligence:
From natural to artificial systems, Oxford: Oxford University Press,
1999.

[10] Kohonen, T. Self-organized formation of topologically correct
feature maps, Biological Cybernetics, 43:59-69, 1982.

[11] Kohonen, T. The Self-Organizing Map, Proceedings of the IEEE,
78(9):1464-1480, 1990.

[12] Kohonen, T. The SOM Methodology, in Visual Explorations in
Finance with self-organizing maps, edited by Deboeck, G. and
Kohonen, T., p. 159-167, Berlin: Springer-Verlag, 1998.

[13] Kennedy, J. and Eberhart, R. Particle swarm optimization, Proceed-
ings of the IEEE International Conference on Neural Networks,
December 1995, pp. 1942-1948, IEEE Press, 1995.

[14] Kennedy, J., Eberhart, R. and Shi, Y. Swarm Intelligence, San
Mateo, California: Morgan Kauffman, 2001.

[15] Brabazon, A., Silva, A., Ferra de Sousa, T., O’Neill, M., Matthews,
R. and Costa, E. Investigating strategic inertia using OrgSwarm,
Informatica, 29(2):125-141, 2005.

[16] O’Neill, M. and Brabazon, A. Self-Organizing Swarm (SoSwarm):
A Particle Swarm Algorithm for Unsupervised Learning, in Pro-
ceedings of the Congress on Evolutionary Computation (CEC
2006), pp. 2649-2654, IEEE Press: New Jersey, 2006.

[17] O’Neill, M., Brabazon, A. Grammatical Swarm, in LNCS 3102
Proc. of the Genetic and Evolutionary Computation Conference
GECCO 2004, Seattle, WA, USA, pp. 163-174, Springer, 2004.

[18] O’Neill, M., Brabazon, A., Adley, C. The automatic generation of
programs for Classification using Grammatical Swarm, in Proc. of
the Congress on Evolutionary Computation CEC 2004, Portland,
OR, USA, pp. 104-110, IEEE Press, 2004.

[19] O’Neill, M., Ryan, C. Grammatical Evolution: Evolutionary Auto-
matic Programming in an Arbitrary Language, Kluwer Academic
Publishers, 2003.

[20] O’Neill, M. Automatic Programming in an Arbitrary Language:
Evolving Programs in Grammatical Evolution, PhD thesis, Uni-
versity of Limerick, 2001.

[21] O’Neill, M., Ryan, C. Grammatical Evolution, IEEE Trans. Evo-
lutionary Computation, 5(4):349-358, 2001.

[22] O’Neill, M., Ryan, C., Keijzer M., Cattolico M. Crossover in Gram-
matical Evolution. Genetic Programming and Evolvable Machines,
4(1):67-93, 2003.

[23] Ryan, C., Collins, J.J., O’Neill, M. Grammatical Evolution: Evolv-
ing Programs for an Arbitrary Language, in Proc. of the First
European Workshop on GP, pp. 83-95, Berlin: Springer-Verlag,
1998.

[24] Xiao, X., Dow, E.R., Eberhart, R., Miled, Z.B., Oppelt, R.J. A
hybrid self-organizing maps and particle swarm optimization ap-
proach. Concurrency and Computation: Practice and Experience,
16(9):895-915, 2004.

[25] Xiao, X., Dow, E.R., Eberhart, R., Miled, Z.B., Oppelt, R.J.
Gene-Clustering Using Self-Organizing Maps and Particle Swarm
Optimization, in Proceedings of the IEEE International Parallel
and Distributed Processing Symposium (IPDPS), 22-26 April 2003,
Nice, France, IEEE Press, 2003.

[26] Brabazon, A. and Keenan, P. A hybrid genetic model for the pre-
diction of corporate failure, Computational Management Science,
1(3-4):293-310, 2004.

[27] Brabazon, A. and O’Neill, M. Credit Classification Using Gram-
matical Evolution, Informatica, 30(3):325-335, 2006.

[28] Brabazon, A. and O’Neill, M. Biologically Inspired Algorithms for
Financial Modelling, Berlin: Springer, 2006.

[29] Gurney, K. An introduction to neural networks, University College
London Press, London, 1997.

[30] Altman, E. Financial ratios, discriminant analysis and the pre-
diction of corporate bankruptcy, Journal of Finance, 23:589-609,
1968.

[31] Altman, E., Haldeman, R. and Narayanan, P. ZETA analysis: A
new model to identify bankruptcy risk of corporations, Journal of
Banking and Finance,1:29-54, 1997.

[32] Back, B., Laitinen, T., Sere, K. and van Wezel, M. Chosing
Bankruptcy Predictors Using Discriminant Analysis, Logit Analy-
sis and Genetic Algorithms, Technical Report No. 40, Turku Centre
for Computer Science, Turku School of Economics and Business
Administration, 1996.

[33] Beaver, W. Financial ratios as predictors of failure, Journal of
Accounting Research - Supplement: Empirical Research in Ac-
counting, 71-102, 1996.

[34] Dambolena, I. and Khoury, S. Ratio stability and corporate failure,
Journal of Finance, 35(4):1017-1026, 1980.

[35] Kahya, E. and Theodossiou, P. Predicting corporate financial dis-
tress: A time-Series CUSUM methodology, Review of Quantitative
Finance and Accounting, 13:71-93, 1996.

[36] Moody’s RiskCalc For Private Companies: Moody’s Default
Model, http://www.riskcalc.moodysrms.com, 2000.

[37] Ohlson, J. Financial ratios and the probabilistic prediction of
bankruptcy, Journal of Accounting Research, 18:109-131, 1980.

[38] Serrano-Cina, C. Self organizing neural networks for financial
diagnosis, Decision Support Systems, 17(3):227-238, 1996.

[39] Sung, T., Chang, N. and Lee, G. Dynamics of modelling in data
nining: interpretative approach to bankruptcy prediction, Journal
of Management Information Systems, 16(1):63-85, 1999.

