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This paper extends the particle swarm metaphor into the domain of organization science.
A simulator (OrgSwarm) which can be used to model the adaptation of a population
of organizations on a strategic landscape is introduced. The simulator embeds a num-
ber of features of the process of organizational adaptation, including the resistance of
organizations to change (strategic inertia), errorful assessments of the payoffs to pro-
posed strategies, and market competition. These features allow the examination of a
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wide range of real-life scenarios in organizational adaptation. The paper reports the re-
sults of a number of simulation experiments and these suggest that agent (management)
uncertainty as to the payoffs to potential strategies has the effect of lowering the average
payoffs obtained by a population of organizations. The results also suggest that a degree
of strategic inertia can assist rather than hamper adaptive efforts at a populational level.

1. Introduction

In an organizational setting a strategy consists of a choice of what activities an
organization will perform, and related choices as to how these activities will be
performed [1]. These choices define the strategic configuration of an organization.
Recent work by [2] and [3] has recognized that strategic configurations consist of
interlinked individual elements (decisions) and have applied general models of in-
terconnected systems such as Kauffman’s NK model to examine the implications of
this for processes of organizational adaptation.

Following a long-established metaphor of adaptation as search on a landscape
[4, 5], strategic adaptation can be metaphorically considered as an attempt by
strategists to uncover peaks on a high-dimensional strategy landscape. Some strate-
gic configurations produce high payoffs (profits), others produce poor results. The
search for good strategic configurations is difficult due to the vast number of possi-
ble strategic configurations, uncertainty as to the nature of topology of the strategic
landscape, and the dynamic nature of this landscape. Despite these problems the
search process for good strategies is not hopeless. Decision-makers receive feedback
on the success of their current and historic strategies, and can assess the payoffs re-
ceived by the strategies of their competitors [6]. Hence, certain areas of the strategic
landscape are illuminated.

In observing the adaptive efforts of real organizations it is clear that organiza-
tions interact with each other and receive feedback from their environment. Their
efforts at strategic adaption are guided by social as well as individual learning. One
group of models, combining both social and individual learning which has attracted
interest in recent years are those drawn from a swarm metaphor [7, 8, 9, 10, 11, 12].
This paper introduces this metaphor to the domain of organization science, and con-
structs a simulation model based on the swarm metaphor. The simulator provides
a new tool for the study of strategic adaptation.

1.1. Organizational Adaptation

In the literature on organizational adaptation there are two polar views concerning
the ability of organizations to adapt. Adaptationists or advocates of strategic choice
[13, 14, 15], broadly consider that managers or dominant coalitions in organizations
scan the environment for current and future opportunities and threats, formulate
strategic responses to these, and adjust organizational activities and structure ap-
propriately [16]. Under this perspective, it is considered that organizations can
successfully adapt based on what they observe in the environment, and based on
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their past experience. The current practitioner interest in ‘change management’ [17]
exemplifies the belief that even substantial strategic adaptation is possible.

In contrast, the population ecology school [18] believes that the ability of orga-
nizations to accurately and consistently adapt in a world of high uncertainty, where
connections between means and ends are unclear is doubtful [19, 20]. Population
ecologists contend that an organization’s fitness primarily arises because of good
initial strategic choices, or luck, rather than reflecting post-founding adaptation
[21]. While even ardent population ecologists admit that organizations do try to
adapt, they consider that these adaptive efforts amount to little more than random
search.

This study seeks to explore the adaptationists view, that the mechanisms of
social learning and organizational memory (past experience) can indeed produce
successful adaptation, by creating a simulation model in which the efficiency of
these mechanisms in guiding adaptation is explored.

1.2. Structure of Paper

The remainder of this contribution is organized as follows. Section 2 describes the
simulation model. The model consists of two main components, a strategic landscape
and a swarm search algorithm. The third section provides the simulation results,
followed by conclusions in section 4.

2. Simulation Model

The simulation model developed in this study can be classed as a multi-agent system
(MAS). MASs focus attention on collective intelligence and on the emergence of
behaviors through the interactions between the agents. MASs usually contain a
world (environment), agents, definitions of the relations between the agents, a set
of activities that the agents can perform, and changes to the environment as a
result of these activities [22]. The key components of the simulation model are
a landscape generator (which creates an environment), and the adaption of the
canonical particle swarm algorithm to incorporate the activities and interactions of
the agents (organizations). Each of these are described in the following subsections.

2.1. Strategic Landscape

The strategic landscape is defined using Kauffman’s NK model [23, 24]. The NK
model considers the behavior of systems which are comprised of a configuration
(string) of N individual elements. Each of these elements are in turn interconnected
to K other of the N elements (K<N). In a general description of such systems, each
of the N elements can assume a finite number of states. If the number of states
for each element is constant (S), the space of all possible configurations has N
dimensions, and contains a total of

∏N
i=1 Si possible configurations.

In Kauffman’s operationalization of this general framework, the number of states
for each element is restricted to two (0 or 1). Therefore the configuration of N
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elements can be represented as a binary string. The parameter K, determines the
degree of fitness interconnectedness of each of the N elements and can vary in value
from 0 to N-1. In one limiting case where K=0, the contribution of each of the N
elements to the overall fitness value (or worth) of the configuration are independent
of each other. As K increases, this mapping becomes more complex, until at the
upper limit when K=N-1, the fitness contribution of any of the N elements depends
both on its own state, and the simultaneous states of all the other N-1 elements,
describing a fully-connected graph.

If we let si represent the state of an individual element i, the contribution of
this element (fi) to the overall fitness (F ) of the entire configuration is given by
fi(si) when K=0. When K>0, the contribution of an individual element to overall
fitness, depends both on its state, and the states of K other elements to which it is
linked (fi(si : si1, . . . , sik)). A random fitness function (U(0,1)) is adopted, and the
overall fitness of each configuration is calculated as the average of the fitness values
of each of its individual elements. Therefore, if the fitness values of the individual
elements are f1, . . . , fN , overall fitness (F ) is calculated as per Eq. 1.

F =
∑N

i=1 fi

N
(1)

Altering the value of K effects the ruggedness of the described landscape (graph),
and consequently impacts on the difficulty of search on this landscape [23, 24]. The
strength of the NK model in the context of this study is that by tuning the value
of K it can be used to generate strategic landscapes (graphs) of differing degrees
of local-fitness correlation (ruggedness). A more detailed review and analysis of the
NK model can be found in [25, 26, 27].

2.1.1. Mapping Organizational Strategies to an NK Landscape

It is noted ab initio that application of the NK model to define a strategic landscape
is not atypical and has substantial support from existing literature in organizational
science [2, 3, 28], and related work on technological innovation [29, 30, 31]. The
strategy of an organization is characterized as consisting of N attributes [2]. Each of
these attributes represents a strategic decision or policy choice, that an organization
faces. Hence, a specific strategic configuration s is represented as a vector s1, . . . , sN

where each attribute can assume a value of 0 or 1 [3]. The vector of attributes
represents an entire organizational form. Therefore it embeds a choice of markets,
products, internal structure, and method of competing in a chosen market. Good
consistent sets of strategic decisions (strategic configurations) correspond to payoff
peaks on the strategic landscape.

The definition of an organization as a vector of strategic attributes finds res-
onance in the work of Porter [13, 1], where organizations are conceptualized as a
series of activities forming a value-chain. The choice of what activities to perform,
and subsequent decisions as to how to perform these activities, defines the strategy
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of the organization. The individual attributes of an organization’s strategy interact.
For example, the value of an efficient manufacturing process is enhanced when com-
bined with a high-quality sales force. Differing values for K correspond to varying
degrees of payoff-interaction amongst elements of the organization’s strategy [3].
As K increases, the difficulty of the task facing strategic decision makers is magni-
fied. Local-search attempts to improve their organization’s position on the strategic
landscape become ensnared in a web of conflicting constraints.

2.2. Particle Swarm Algorithm

The PSA [7, 8] is based on a metaphor of human social interaction [9] and has
been widely used for function optimization. The term PSA is used in place of PSO
(Particle Swarm Optimization) in this study, as the object is not to develop a tool for
‘optimizing’, but to apply the particle swarm metaphor as a model of organizational
adaptation. Under the particle swarm metaphor, a swarm of particles (entities)
are assumed to move (fly) through an n-dimensional space, typically looking for a
function optimum. Each of the particles has two associated properties, a current
position and a velocity. Each particle also has a memory of the best location in the
search space that it has found so far (the vector pbest), and knows the best location
found to date by all the particles in the population (the vector gbest). At each step
of the algorithm, particles are displaced from their current position by applying a
velocity vector to them. The size and direction of this velocity is influenced by the
velocity in the previous iteration of the algorithm (simulates ‘momentum’), and the
current location of a particle relative to its pbest and gbest. Therefore, at each
step of the algorithm, the size and direction of each particle’s move is a function of
its own history (experience), and the social influence of its peer group. A number
of variants of the PSA exist. The following paragraphs provide a short description
of the continuous version of the PSA [7].

2.2.1. Continuous Version of the PSA

Visual intuition on the workings of the algorithm is provided in Fig. 1. Each particle
i has an associated current position in search space xi(t) = (xi1(t), . . . , xiN (t)), a
current velocity of vi(t) = (vi1(t), . . . , viN (t)), and a pbest position of yi(t) =
(yi1(t), . . . , yiN (t)). The position of the particle at time t + 1 is a determined by
xi(t) + vi(t + 1), where vi(t + 1) is obtained by a stochastic blending of vi(t), an
acceleration towards gbest (vgbest) and an acceleration towards pbest (vpbest).
During each iteration of the algorithm, vi(t + 1) and xi(t) are updated using Eqs.
2 & 3.
Assuming a function f is to be maximized, that the swarm consists of m particles,
and that r1, r2 are drawn from a uniform distribution in the range (0,1), the velocity
update is as per Eq. 2.

vi(t + 1) = Wvi(t) + c1r1(yi − xi(t)) + c2r2(ŷ − xi(t)) (2)
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Fig. 1. A representation of the particle position update process.

where ŷ is the location of the global-best solution found by all the particles. A
variant on the canonical algorithm is to use a local rather than a global version
of gbest, whereby gbest is replaced by lbest (or local best). In this formulation
of Eq. 2, lbest is set independently for each particle, based on the best point
found thus far by any particle within a neighborhood (defined as a linked subset of
particles) of each individual particle. In a social setting, the idea of lbest can be
considered as a social network, whose members influence one another.

In every iteration of the algorithm, each particle’s velocity is stochastically ac-
celerated towards its previous best position and towards a neighborhood (local or
global) best position. The weight-coefficients c1 and c2 control the relative impact of
pbest and gbest locations on the velocity of a particle. The parameters r1 and r2

ensure that the algorithm is stochastic. Although the velocity update has a stochas-
tic component, the search process is not random. It is guided by a memory of past
good solutions, and by the neighborhood best solution. A practical effect of the
random coefficients r1 and r2, is that the relative influence of the individual and
the social learning terms in the velocity update equation (Eq. 2) will vary.

In Eq. 2, W represents a momentum coefficient which controls the impact of a
particle’s prior-period velocity on its current velocity. Each component of a velocity
vector vi is restricted to a range [−vmax, vmax] to ensure that individual particles
do not leave the search space. The implementation of a vmax parameter can also be
interpreted as simulating the incremental nature of most social learning processes
[9]. The value of vmax is usually chosen to be k ∗ xmax, where 0 < k < 1. Once the
velocity update for particle i is determined, its position is updated (Eq. 3) and its
pbest is updated if necessary, as described in Eqs. 4 & 5.

xi(t + 1) = xi(t) + vi(t + 1) (3)
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yi(t + 1) = yi(t) if, f(xi(t)) ≤ f(yi(t)) (4)

yi(t + 1) = xi(t) if, f(xi(t)) > f(yi(t)) (5)

After all particles have been updated, a check is made to determine whether gbest
needs to be updated (Eq. 6).

ŷ ∈ (y0,y1, ...,yn)|f(ŷ) = max (f(y0), f(y1), ..., f(ym)) (6)

2.2.2. Particle Swarm as a Metaphor for Organizational Adaptation

Although particle swarm algorithms have been used extensively in function opti-
mization (Particle Swarm Optimization), the original inspiration for PSAs arose
from observations of animal and human social behavior [8]. Kennedy has published
a series of papers which emphasize the social aspects of particle swarm [9, 35, 32]
and this work was given prominence in the first major book on particle swarm [7].

The velocity update formula (Eq. 2) can be divided into cognitive and social
components [9], with the former relating to the adaptive history of a particle, in-
dividual or in this study, an organization. The cognitive term can be considered as
an interpretation of Thorndike’s Law of Effect [33], which states that a behavior
which is followed by a (positive) reinforcement becomes more likely in the future,
corresponding to a form of learning from experience. The individual learning compo-
nent in the velocity update formula (yi(t)−xi(t)) introduces a stochastic tendency
to return to previously rewarded strategies, mimicking a psychological tendency for
managers to repeat strategies which have worked for them in the past [9]. The social
learning component of the formula (ŷi(t)− xi(t)) bears comparison with social ‘no-
trial learning’ [34], where the observation of a peer being reinforced for a behavior,
will increase the probability of the observer engaging in the same behavior.

The mechanisms of the canonical PSA bear prima facie similarities to those of
the domain of interest, organizational adaptation. The PSA adopts a populational
perspective, and learning in the algorithm just as in populations of organizations, is
both distributed and parallel. Organizations persist in employing already discovered
good strategies, and are attracted to, and frequently imitate, good product ideas
and business practices discovered by other organizations. However, the canonical
PSA requires modification before it can employed as a component of a plausible
simulation model of organizational adaptation. These modifications are discussed
in the next subsection.

2.3. Domain Characteristics

Five characteristics of organizational adaptation which impact on the design of a
plausible simulation model are:

i. Organizations are prone to strategic anchoring (inertia), and find it difficult to
alter their strategy.
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ii. Organizations do not intentionally select strategies which are expected to produce
lower payoffs than the strategy they already have.

iii. Organizations make errorful assessments of fitness ex-ante the implementation of
a new strategy.

iv. Organizations co-evolve.
v. The environment which organizations inhabit is dynamic.

Each of these factors is embedded in our simulation model, and our simulation
experiments explore the first four characteristics. We note that the developed model
bears passing resemblance to Kennedy’s ‘eleMentals’ model [35], which combined a
swarm algorithm and an NK landscape, to investigate the development of culture
and intelligence in a population of hypothetical beings called ‘eleMentals’. However,
the simulator developed in this paper is differentiated from the eleMental model
because of the incorporation of the five domain characteristics above.

2.3.1. Strategic Anchoring

Organizations do not have complete freedom to alter their current strategy. Their
adaptive processes are subject to strategic inertia. This inertia springs from the
organization’s culture, history, and the mental models of its management [36]. In
the simulation model, strategic inertia is mimicked by implementing a strategic
anchor. The degree of inertia can be varied from zero to high. In the latter case,
the organization is highly constrained from altering its current strategic stance. By
allowing the weight of this anchor to vary, adaptation processes corresponding to
different industries each with different levels of inertia, can be simulated.

Inertia could be incorporated into the PSA in a variety of ways. We have chosen
to incorporate it into the velocity update equation, so that the velocity and direction
of the particle at each iteration is also a function of the location of its strategic
anchor. Therefore in coding the simulator, Eq. 2 is altered by adding an additional
anchor term producing Eq. 7

vi(t + 1) = vi(t) + R1(yi − xi(t)) + R2(̂l− xi(t) + R3(ai − xi(t)) (7)

As before, vi(t) and xi(t) represent the velocity and location of particle i at time
t. yi is the location of pbest for particle i, and l̂ is the location of the lbest of
that particle. R1, R2 and R3 are random weights drawn from a uniform distribu-
tion ranging from 0 to R1max, R2max and R3max respectively, and they weight the
importance attached to pbest, lbest, and particle i’s anchor in each velocity up-
date. The vector ai represents the position of the anchor for organization i. The
position of the anchor can be fixed at the initial position of the particle at the
start of the algorithm, or it can be allowed to ‘drag’, thereby being responsive to
the recent adaptive history of the particle. In the latter case, the position of the
anchor for each particle corresponds to the position of that particle ‘x’ iterations
ago. The weight attached to the anchor vector (relative to those attached to pbest
and lbest), is set by the modeler at the beginning of the simulation run.
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2.3.2. Election operator

Real-world organizations do not usually intentionally move to strategies which pro-
duce lower expected payoffs than their current strategy. This represents a search
heuristic ‘do not give up a good idea until a better one comes along’. Hence, a
ratchet operator is implemented in the simulator, which when turned on, ensures
that strategic changes which would worsen an organization’s expected payoff are dis-
carded. In these cases, an organization remains at its current location on the strategy
landscape. One economic interpretation of the election operator, is that strategists
carry out a mental simulation or thought experiment. If the expected fitness of
the new strategy appears unattractive, the ‘bad idea’ is discarded [37, 7]. Ratchet
mechanisms abound in business settings, and include formal project appraisal &
review processes. A typical example of the application of a ratchet mechanism is
the rejection of a proposed investment because it is not expected to generate a pos-
itive net present value (NPV) payoff. The decision heuristic ‘reject negative NPV
projects’, corresponds to a ratchet mechanism.

2.3.3. Errorful fitness assessment

The concept of a ratchet operator raises a subtle but important issue on the inter-
pretation of a strategy’s payoff in the context of a model of strategic adaptation.
The model would be flawed if it assumed that strategists could perfectly anticipate
the ex-ante payoff of as yet, untested strategies. In real-world directed organiza-
tional adaptation, managers are guided by their guess as to the expected payoff of
the proposed strategy.

Payoff expectations in the real-world, are subject to error. Strategists do not
evaluate the worth of proposed strategies perfectly due to uncertainty and bounded
rationality. The practical effect of this noise component is that managers may some-
times inadvertently replace their current strategy with one which ultimately pro-
duces a lower payoff. To the extent that managers have good understanding of the
strategic landscape on which they operate the degree of noise when making pay-
off estimates is lessened. The effect of making errorful payoff assessments can be
simulated by subjecting the assessments to noise using Eq. 8.

fitness estimate = actual fitness of the new strategy * (1+ error) (8)

where error is drawn from a normal distribution with a mean of zero and a modeler-
defined standard deviation. Hence, despite the ratchet operator, in the simulation
experiments a strategist may sometimes choose a bad strategy because of an incor-
rect ex-ante assessment of its payoff.

2.3.4. Co-evolution

A key factor which impacts on the return to any organization is the degree of com-
petition it faces from other organizations. If there are several organizations pursuing
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similar strategies they compete for the same customer segment, and the returns to
each organization are likely to be lower than they would be in the absence of com-
petition. In the model of strategic adaptation it is assumed that strategists employ
a heuristic of ‘take account of expected competition’ (payoff sharing) when form-
ing their expectations as to the likely payoff to a novel strategy. Consequently, a
fitness-sharing mechanism is implemented in order to mimic the effect of competi-
tion between organizations. The fitness-sharing mechanism is defined in Eq. 9.

f ′(i) =
f(i)∑n

j=1 s(d(i, j))
(9)

where f(i) represents the original raw fitness of particle i (from the NK landscape),
f ′(i) represents the shared fitness of particle i, and d(i, j) is the normalized distance
between two particles i and j.a Drawing on [38], the sharing function s(d), is defined
as per Eq. 10.

s(d) =
{

1− (
d
t

)α
, if d<t

0 , otherwise

}
(10)

where t defines a radius or neighborhood within which particles share their fitness.
The sharing function s(d) provides a measure of the density of organizations within
a ‘neighborhood’ of any individual organization i on the strategy landscape. If two
particles (organizations) are more than t apart they are not considered to compete
for the same market and s(d)=0; if they are co-located (zero distance apart) on
the strategy landscape they compete for the same customers and s(d)=1; otherwise
s(d) produces a value in the range (0,1). α is a scaling constant, and the values of
both t and α are adjustable in the simulation model.

The key concept embedded in the sharing function, is that close imitation of
the strategy of another organization is not precluded, rather it is discouraged. If
a particular strategy strongly dominates all others, it is likely that many organi-
zations will attempt to implement it. The price paid for this is increased head-on
competition. An intuitive way of thinking about the fitness-sharing mechanism is
that it encourages organizations to search for good niches on the strategic land-
scape, balancing the profit potential of each niche, with the degree of competition
that niche currently faces. Another way of considering the sharing mechanism is
that it embeds a co-evolutionary aspect into the strategic environment. The actions
of each organization deforms the fitness landscape faced by its competitors.

2.3.5. Dynamic environment

Organizations do not compete in a static environment. The environment may alter
as a result of exogenous events, for example a regime change such as the emergence

aMeasured using the Norm of the difference between the two strategic configurations, divided
by sqrt(length of strategy vector). Hence, distance can be considered as related to the Hamming
distance between the two (binary) strategic configurations.
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Fig. 2. A sharing function. As the distance between two organization’s strategy increases, the
degree of competition between them decreases.

of a new technology, or a change in customer preferences. This can be mimicked in
the simulation by stochastically respecifing the strategic landscape during the course
of a simulation run. These respecifications simulate a dynamic environment, and a
change in the environment may at least partially negate the value of past learning
(adaptation) by organizations. Minor respecifications are simulated by altering the
fitness values associated with one of the N dimensions in the NK model, whereas in
major changes, the fitness of the entire NK landscape is redefined.

2.4. Outline of Swarm Algorithm

As the strategic landscape is described using a binary representation (the NK
model), the canonical PSA is adapted for the binary case using the BinPSO version
of the algorithm [39]. The binary version of the PSA is inspired by the idea that
an agent’s probability of making a binary decision (yes/no, true/false) is a function
of both personal history and social factors. The probability that an agent chooses
a value of (for example) 1 for a particular decision in the next time period, is a
function of the agent’s history (xi(t),vi(t) & pbest), and social factors (lbest)
(see Eq. 11).

Prob(xi(t + 1) = 1) = f(xi(t),vi(t),pbest, lbest) (11)

The vector vi is interpreted as organization i’s predisposition to set each of the
N binary strategic choices that it faces to one. The higher the value of vj

i for an
individual decision j, the more likely that organization i will choose to set decision
j = 1, with lower values of vj

i favoring the choice of decision j = 0.
In order to model the tendency of managers to repeat historically good strategies,

values for each dimension of xi which match those of pbest, should become more
probable in the future. Adding the difference between pbestji and xj

i for organization
i to vj

i will increase the likelihood that organization i will choose to set decision
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j = 1 if the difference is positive (when pbestji = 1 and xj
i = 0). If the difference

between pbestji and xj
i for organization i is negative (when pbestji = 0, and xj

i = 1),
adding the difference to vj

i will decrease vj
i .

b

In each iteration of the algorithm, the agent adjusts his decision-vector (xi(t)),
taking account of his historical experience (pbest), and the best strategy found by
his peer-group (lbest). Hence, the velocity update equation used in the continuous
version of the PSA (Eq. 7) can still be used, although now, vi(t + 1) is interpreted
as the updated vector of an agent’s predisposition (or probability thresholds) to set
each of the N binary strategic choices that it faces to one.

vi(t+1)=vi(t)+R1(pbesti−xi(t))+R2(lbesti−xi(t)+R3(anchori−xi(t)) (12)

To ensure that each element of the vector vi(t + 1) is mapped into (0,1), a sigmoid
transformation is performed on each element j of vi(t + 1) (see Eq. 13).

Sig(vj
i (t + 1)) =

1
1 + exp(−vj

i (t + 1))
(13)

Finally, the transformed vector of probability thresholds is used to determine the
values of each element of xi(t + 1), by comparing each element of Sig(vi(t)) with a
random number drawn from U(0, 1) (see Eq. 14).

If U(0, 1) < Sig(vj
i (t + 1)), then xj

i (t + 1) = 1; else xj
i (t + 1) = 0 (14)

In the binary version of the algorithm, trajectories / velocities are changes in the
probability that a coordinate will take on a zero or a one value. Sig(vj

i ) represents
the probability of bit xj

i taking the value 1 [39]. Therefore, if Sig(vj
i ) = 0.3 there is

a thirty percent chance that xj
i = 1, and a seventy percent chance it is zero.

2.4.1. Pseudocode for Algorithm

The pseudo-code for the swarm algorithm in the simulator is as follows:
For each entity in turn

For each dimension (strategic decision) n

v[n]=v[n]+R1*(pbest[n]-x[n])+R2*(lbest[n]-x[n])+R3*(a[n]-x[n])
If(v[n]>Max) v[n]=Vmax

If(v[n]<-Vmax) v[n]=-Vmax
If(Pr<Sig(v[n]))t[n]=1
Else t[n]=0

If(fitness(t)*(1+error))>fitness(x)) //ratchet operator
For each dimension n

x[n]=t[n]
UpdateAnchor(a) //if iteratively update anchor

//option is selected

bThe difference in each case is weighted by a random number drawn from U(0,1). Therefore, if
pbestji = 1, (pbestji − xj

i ) ∗ U(0, 1) will be non-negative. Adding this to vj
i will increase vj

i , and

therefore also increase the probability that xj
i = 1. On the other hand if pbestji = 0, vj

i will tend

to decrease, and Prob(xj
i ) = 1 becomes smaller.
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R1, R2 and R3 are random weights drawn from a uniform distribution ranging
from 0 to R1max, R2max and R3max respectively, and they weight the importance
attached to pbest, lbest and anchor in each iteration of the algorithm. R1max, R2max

and R3max are constrained to sum up to 4.0 in line with the BinPSO alogrithm of
[39]. The particle’s actual position is denoted by x, pbest is its past best position,
lbest its local best and a is the position of its anchor. Vmax is set to 4.0 to ensure
that Sig(v[n]) does not get too close to either 0 or 1, therefore ensuring that there is
a non-zero possibility that a bit will flip state during each iteration. Pr is a random
value drawn from U(0,1), Sig is the sigmoid function: Sig(x) = 1

1+exp(−x) , which
squashes v into the range 0 → 1, and t is a temporary record which is used in order
to implement the ratchet operator. If the new strategy is considered better than the
organization’s existing strategy, it is accepted and t is copied into x. Otherwise t is
discarded and x remains unchanged. The fitness evaluation step is subject to error
(parameterized as error), in order to mimic a noisy forecast of a strategy’s payoff.

2.5. Simulator Model

Although the underlying code for the OrgSwarm simulator is written in C++, the
user interacts with the simulator through a series of easy-to-use screens (Fig. 3
shows one of the screens in the main control menu for the simulator). These screens
allow the user to select and alter a wide variety of parameters which determine the
nature of the simulation run. The simulator, along with a full manual, is available
for download from http://ncra.ucd.ie.

 
 
 
 
 
 

Fig. 3. Main control screen for OrgSwarm.

3. Experimental Set-up & Results

As otulined above, the key issue addressed in the simulation experiments is whether
there is evidence that social learning, organizational memory, and the related mech-
anisms of inertia and ratchet, are sufficient to generate successful organizational
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adaption. Before running the simulations, a variety of parameters must be selected
and these are described below. The choices for the parameters are not intended to
be exhaustive, as it is not possible to combinatorially examine and report results
from, every possible set of parameter settings in a single paper.

3.1. Parameters Governing the Strategic Landscape

‘Real-world’ strategy vectors consist of a large array of strategic decisions. A value
of N=96 is selected in defining the landscapes in this simulation. There is no unique
value of N that could be selected, however a binary string of length 96 provides a
large number of distinct choices of strategy (296 is approximately 1028). It is noted
that we would expect the dimensionality of the strategy vector to exceed the number
of organizations in the population, hence the size of the population is kept below
96, and a population of 20 particles is employed, with a neighborhood of size 18.c

The particles are considered to be arranged in a regular circular (ring) lattice, and
each particle is connected to the nine particles on either side of it, and the particles
are considered to be arranged in a circular structure in which particle 20 is ‘beside’
particle 1.d

In selecting the values of K for the simulations, we are guided by the work of
[40] in which a distinction is drawn between generic and firm-specific activities of
organizations. Generic activities (or table-stakese) are those which have a similar
optimal configuration for many firms, for example the possession of an account-
ing system. Generic activities, whilst important for the successful operation of the
firm, are not strongly fitness-interconnected with the non-generic activities of the
firm, and ‘good’ settings for these decision variables can typically be uncovered by
managers. Hence, generic activities do not pose undue difficulty in the strategy de-
termination process. In contrast, the firm-specific element of strategy are typically
fitness-interconnected, as they embed choices involving trade-offs between alterna-
tive strategic configurations [1, 40]. Hence the NK landscape can be considered to
represent these non-generic, elements of the strategy vector, rendering the assump-
tion of a non-zero value of K plausible. On the other hand, given the multiplicity of
organizations which exist and persist, organizations do not appear to inhabit highly
rugged landscapes on which the slightest mis-step will prove fatal. We select three
different K values (0,4 and 10) for our simulation experiments.

cExperiments with smaller neighborhood sizes suggested that the results were not qualitatively
sensitive to neighborhood size.
dThis connection structure resembles the circle communication pattern, as described in [41]. The
choice of a high value for the neighborhood, relative to the size of the population, arises from the
observation that real-world organizations generally know the profitability of their competitors, as
financial statements of commercial organizations are public information in many countries.
eCalled table-stakes as organizations must carry out these activities to gain entrance to ‘play the
game’.
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3.2. Parameters Governing the Swarm Algorithm

In the simulations which consider the effect of a strategic anchor, both a fixed
position anchor (fixed at the initial position of the particle at the start of the
simulation) and a moving anchor are examined. In the latter case, the anchor is
assumed to move with a lag of 20 iterations. Therefore, the position of the strategic
anchor for an organization at tn is the position of the organization at tn−20. In the
simulations for both the fixed position, and moving strategic anchor, R3max = 1,
and R1max = R2max = 1.5.

In the simulations which consider the effect of noisy or errorful payoff evaluation
on the part of strategists, three values for the standard deviation for error are
examined, 0, 0.05 and 0.20. These values representing a range of quality of the
mental model of strategists’ in assessing the payoff to proposed strategies.

In the fitness-sharing experiments, t is fixed at 0.5, and α is set at 1.f When
selecting a value for α we were guided by values used in previous applications of
the fitness-sharing formula [42, 43] and set α = 1.

3.3. Experiments

As the adaptive process is stochastic, a single simulation run describes a single
sample-path through time [44]. There are many possible sample-paths, so the results
of the simulations are averaged over multiple (30) runs in order to uncover prevalent
characteristics of the range of sample paths to which the system can give rise. All
simulations were run for 5,000 iterations, and all reported fitnesses are the average
population fitnesses, across the 30 separate simulation runs. On each of these runs, a
new NK landscape is created, the positions and velocities of particles are randomly
initialized, and new pbest and lbest positions are determined for each particle.
A total of seventeen distinct simulation experiments were undertaken, with each
experiment being repeated on three different NK landscapes. Initially, a basic PSA
is employed (Basic PSA, No Anchor, No Error), without an anchor or ratchet
operator, and strategists are assumed to make error-free assessments of the worth
of proposed strategic configurations. This simulates a population of organizations
adapting on a strategic landscape, where members of the population have no strate-
gic inertia, where organizations do not utilize a ratchet operator in deciding whether
to alter their position on the strategic landscape, and where error-free fitness as-
sessments can be made. Fitness sharing is not considered in this experiment.

A ratchet-inclusive version of the above search heuristic is then tested, in which
payoffs to strategies can be assessed without error, and where organizations do
not have a strategic anchor. Two variants on this (Ratchet PSA, No Anchor, Er-
ror=0.05 & 0.20 ), wherein strategists make errorful assessments of the worth of
proto-strategies are also examined.

fResults for alpha=3 were also examined, and were found to be qualitatively similar to those for
alpha=1.
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Following this, a series of experiments which include a strategic anchor, both
fixed and dragging (Ratchet PSA, Initial Anchor, Weight=1, . . . , Ratchet PSA,
Moving Anchor(20,1), Error=0.20 ), with / without errorful assessment of the fit-
ness of proposed strategies are conducted. The strategic anchor ranges from a fixed
position (fixed at an organization’s initial position at the start of the simulation)
anchor, to one which adapts after a time-lag (moving anchor). In both the initial
and moving anchor experiments, a weight value of 1 is attached to the inertia term
in the velocity update equation, and a time-lag of 20 periods is used for the moving
anchor.g

The remaining experiments involve Ratchet PSAs with fitness-sharing, differing
strategic anchor formulations, and differing levels of error in assessing the payoffs
to potential strategies. In the fitness-sharing experiments, the radius is fixed at 0.5,
and alpha is set at 1, therefore fitness-sharing will occur between strings which are
separated by a Hamming distance of four or less.

3.4. Results from Experiments

Tables 1 - 2 and Fig. 4 provide the results for the simulation experiments which
do not embed a fitness-sharing mechanism. tables 3 - 4 provide results for the
fitness-sharing simulations. Examining the results in table 1 suggests that the basic
PSA, without inertia or ratchet operators (Basic PSA, No Anchor, No Error),
performs poorly on a static landscape even when there is no error in assessing
the payoffs to potential strategies. The average populational fitness (averaged over
each population, across all 30 simulation runs) obtained after 5,000 iterations is not
better than random search, suggesting that unfettered adaptive efforts based on
communication between organizations (lbest), and a memory of good past strategies
(pbest), are not sufficient to achieve high levels of populational fitness, even when
organizations can make error-free assessments of the payoff of potential strategies.

Algorithm Fitness
(K=0) (K=4) (K=10)

Basic PSA, No Anchor, No Error 0.4641 0.5002 0.4991
Ratchet PSA, No Anchor, No Error 0.5756 0.6896 0.6789

Ratchet PSA, No Anchor, Error=0.05 0.4860 0.6454 0.6701
Ratchet PSA, No Anchor, Error=0.20 0.4919 0.5744 0.5789

Ratchet PSA, Initial Anchor, Weight=1, No Error 0.6067 0.6991 0.6884
Ratchet PSA, Initial Anchor, Weight=1, Error=0.05 0.5297 0.6630 0.6764
Ratchet PSA, Initial Anchor, Weight=1, Error=0.20 0.4914 0.5847 0.5911

Ratchet PSA, Mov. Anchor (20,1), No Error 0.6692 0.7211 0.6976
Ratchet PSA, Mov. Anchor (20,1), Error=0.05 0.5567 0.6675 0.6770
Ratchet PSA, Mov. Anchor (20,1) Error=0.20 0.4879 0.5757 0.5837

Table 1. Average population fitness after 5,000 iterations.

gTherefore, the position of the strategic anchor for an organization at tn is the position of the
organization at tn−20.
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Fig. 4. Plot of the mean average fitness on the static landscape where k=0 (top left), k=4 (top
right), and k=10 (bottom).

When a ratchet operator is added to the basic PSA (Ratchet PSA, No Anchor,
No Error), a significant (at the 5% level) improvement in average populational
fitness is obtained across landscapes of all K values, suggesting that the simple
decision heuristic of only abandon a current strategy for a better one leads to notable
increases in populational fitness.

In real-world organizations, assessments of the payoffs to potential strategies are
not error-free. A priori we do not know whether this factor could impact positively
or negatively on the populational fitness, as permitting errorful assessments of pay-
off could allow an organization to escape from a local optimum on the strategic
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Algorithm Fitness
(K=0) (K=4) (K=10)

Basic PSA, No Anchor, No Error 0.0274 0.0177 0.0113
Ratchet PSA, No Anchor, No Error 0.0324 0.0098 0.0079

Ratchet PSA, No Anchor, Error=0.05 0.0159 0.0103 0.0048
Ratchet PSA, No Anchor, Error=0.20 0.0205 0.0098 0.0069

Ratchet PSA, Initial Anchor, Weight=1, No Error 0.0288 0.0086 0.0058
Ratchet PSA, Initial Anchor, Weight=1, Error=0.05 0.0160 0.0095 0.0044
Ratchet PSA, Initial Anchor, Weight=1, Error=0.20 0.0239 0.0081 0.0074

Ratchet PSA, Mov. Anchor (20,1), No Error 0.0240 0.0080 0.0037
Ratchet PSA, Mov. Anchor (20,1), Error=0.05 0.0192 0.0067 0.0051
Ratchet PSA, Mov. Anchor (20,1) Error=0.20 0.0213 0.0094 0.0049

Table 2. Standard deviation of average populational fitness after 5,000 iterations.

Algorithm Fitness
(K=0) (K=4) (K=10)

Ratchet PSA, No Anchor, No Error 0.5698 0.6862 0.6785
Ratchet PSA, No Anchor, Error=0.05 0.4851 0.6381 0.6682
Ratchet PSA, No Anchor, Error=0.20 0.4760 0.5478 0.5646

Ratchet PSA, Initial Anchor, Weight=1, Error=0.05 0.5338 0.6604 0.6774
Ratchet PSA, Initial Anchor, Weight=1, Error=0.20 0.4929 0.5781 0.5879

Ratchet PSA, Mov. Anchor (20,1), Error=0.05 0.5597 0.6671 0.6815
Ratchet PSA, Mov. Anchor (20,1), Error=0.20 0.4809 0.5721 0.5826

Table 3. Average population fitness after 5,000 iterations for fitness-sharing experiments.

Algorithm Fitness
(K=0) (K=4) (K=10)

Ratchet PSA, No Anchor, No Error 0.0250 0.0112 0.0073
Ratchet PSA, No Anchor, Error=0.05 0.0195 0.0112 0.0046
Ratchet PSA, No Anchor, Error=0.20 0.0304 0.0216 0.0123

Ratchet PSA, Initial Anchor, Weight=1, Error=0.05 0.0236 0.0085 0.0048
Ratchet PSA, Initial Anchor, Weight=1, Error=0.20 0.0220 0.0112 0.0071

Ratchet PSA, Mov. Anchor (20,1), Error=0.05 0.0204 0.0090 0.0044
Ratchet PSA, Mov. Anchor (20,1), Error=0.20 0.0221 0.0111 0.0059

Table 4. Standard deviation of average populational fitness after 5,000 iterations for fitness-sharing
experiments.

landscape, and possibly therefore to uncover a new lbest. In essence, an errorful
assessment of payoff may allow a short-term ‘wrong-way’ move (one which tem-
porarily reduces an organization’s strategic payoff), but which in the longer-term
leads to higher payoffs. Conversely, it could lead to the loss of a promising but
underdeveloped strategy, if an organization is led away from a promising part of
the strategic landscape by an incorrect payoff assessment. The results from the
simulation experiments when noise (error) is injected into the fitness assessment of
strategists suggest that errorful ex-ante assessment of strategic worth is harmful,
as average populational fitness falls for all values of K.

When the two forms of strategic anchoring are incorporated into the experi-
ments, it is noted that strategic anchoring, combined with a ratchet operator leads
to an increase (statistically significant at the 5% level) in average populational fit-



November 11, 2005 15:50 WSPC/INSTRUCTION FILE version˙6

Organizational Strategic Adaptation 19

ness over the basic no anchor, ratchet mechanism. As the error level increases from
zero to 0.20, the anchor-ratchet combination produces better average populational
fitness than the ratchet mechanism alone, but the differences narrow and are not
statistically significant once the error level reaches 0.20. Hence, inertia enhances av-
erage populational fitness when strategists can assess ex-ante strategic payoffs with
accuracy. Comparing the results for the two forms of strategic anchoring indicates
that a moving anchor performs better than a fixed anchor, when organizations can
make error-free assessments of the payoff to potential strategies (statistically sig-
nificant at the 5% level), but when these payoffs are subject to error, neither form
of strategic anchor clearly dominates the other in terms of producing the higher
average populational fitness.

Examining the results for the simulations which embed fitness-sharing (compe-
tition between organizations), the same general picture is observed as for the ex-
periments with no fitness-sharing. The implementation of a ratchet operator (with
no strategic anchor and no error in assessing fitness) notably improves average pop-
ulational fitness over the basic PSA with no anchor and no error. When errorful
assessment of fitness is introduced, it is seen that average populational fitness de-
clines, suggesting that the utility of the ratchet operator decreases as the level of
error in assessing the payoff to potential strategies rises.

In summary, the results suggest that a ratchet mechanism can act to notably in-
crease the fitness of a population of organizations which are searching on a strategic
landscape. The results also suggest that strategic anchoring produces higher aver-
age populational fitness once strategists can accurately assess payoffs to proposed
new strategies. Error in the ability of strategists to assess these payoffs, leads to
lower average populational payoffs.

4. Conclusions

In this study a novel simulation model, a synthesis of a strategic landscape de-
fined using the NK framework and a particle swarm algorithm, is used to examine
whether social learning and past organizational experience could prove useful in
organizational adaption. Adoption of the swarm metaphor allows the incorporation
of both social and individual learning mechanisms, and the basic particle swarm
algorithm can be easily adapted to include other search heuristics such as ratchet
and anchoring.

The results from the simulation experiments suggest that a degree of strategic
anchoring can assist rather than hamper the adaptive efforts of populations of
organizations in static strategic environments, once strategists can make reasonably
accurate predictions as to the payoffs from proposed strategies. This result provides
an interesting perspective on the claim by [19] that strategic anchoring may be
a consequence of market-selection processes. The results suggest that there may
be good reasons from a populational perspective, for market selection processes to
encourage the development of populations of organizations which exhibit strategic
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anchoring.
The simulation results also suggest that despite the claim for the importance

of social learning and past experience in populations, social learning and past ex-
perience alone is not enough, unless already-learnt lessons can be maintained by
means of a ratchet mechanism. Examples of ratchet mechanisms abound in busi-
ness, ranging from formal project appraisal systems, to procedures for monitoring
the performance of on-going product development projects. The results support
the assertion that managers should undertake a formal assessment of the worth of
a proto-strategy, before its implementation. Additionally, the results support the
assertion that the utility of a ratchet mechanism is reasonably robust, as it re-
mains useful across strategy landscapes of differing levels of connectedness, and in
conditions where strategists make imperfect or noisy assessments of the payoffs to
proposed strategies.

The benefits of strategic anchoring come at a price. The effect of lbest, pbest and
anchoring, is to ‘pin’ each organization to a region of the strategic landscape. To
the extent that the entire population of organizations have converged to a relatively
small region of the strategic landscape, they may find it difficult to migrate to
a new high-fitness region if that region is far away from their current location.
This suggests that the benefits of an inertia heuristic (strategic anchoring) for a
population of organizations comes at a price, the risk of catastrophic failure of
the entire population to adapt to a major change in the strategic landscape. In
real-world environments, this is compensated for by the birth of new organizations.

It is not possible in a single set of simulation experiments to exhaustively ex-
amine every possible combination of settings for each parameter in the simulation
model. Future work will extend the range of settings examined. However, the initial
results cast an interesting light on the role of anchoring in organizational adaptation,
and the development of the swarm-landscape simulator extends the methodologies
available to researchers to conceptualize and examine the process of organizational
adaptation.

As already noted in the introduction to this paper, the population ecology school
of organizational adaptation is pessimistic on the ability of managers to correctly
impound information from both their past experience and the environment, and to
consequently engage in successful strategic adaptation. Under this perspective, or-
ganizational adaption primarily occurs through random search and the replacement
of poorly performing organizations by new ones. An interesting avenue for future
research would be to compare the results from the social learning-based models in
this study with the results generated by variants of a simple random search mech-
anism (with/without ratchet, anchor mechanisms etc.). This would allow focus to
be placed on the question: does social learning and organizational memory help
organizational adaptation? In other words, wherein lies the balance between the
adaptionist and the population ecology viewpoints?

Finally, it is noted that the concept of anchoring developed in this paper is not
limited to organizations, but is plausibly a general feature of social systems. Hence,
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the extension of the social swarm model through the incorporation of an anchoring
term may prove useful beyond this study.
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