
Vol.:(0123456789)

Genetic Programming and Evolvable Machines (2020) 21:251–262
https://doi.org/10.1007/s10710-019-09364-2

1 3

Automatic programming: The open issue?

Michael O’Neill1 · Lee Spector2

Received: 17 October 2018 / Revised: 21 April 2019 / Published online: 11 September 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
Automatic programming, the automatic generation of a computer program given a
high-level statement of the program’s desired behaviour, is a stated objective of the
field of genetic programming. As the general solution to a computational problem
is to write a computer program, and given that genetic programming can automati-
cally generate a computer program, researchers in the field of genetic programming
refer to its ability to automatically solve problems. Genetic programming has also
been described as an “invention machine” that is capable of generating human-com-
petitive solutions. We argue that the majority of success and focus of our field has
not actually been as a result of automatic programming. We set out to challenge the
genetic programming community to refocus our research towards the objective of
automatic programming, and to do so in a manner that embraces a wider perspec-
tive encompassing the related fields of, for example, artificial intelligence, machine
learning, analytics, optimisation and software engineering.

Keywords Automatic programming · Genetic programming · Open issue

1 Introduction

In the 10th Anniversary issue of the Genetic Programming and Evolvable Machines
journal many of the perceived open issues in the field of genetic programming at
that time were identified [48]. One additional open issue, perhaps absent through
its glaringly obvious nature, but arguably the most significant, is that of achieving

Handled by Dr. W. B. Langdon and Dr. Nicholas Freitag McPhee.

 * Michael O’Neill
 m.oneill@ucd.ie

 Lee Spector
 lspector@hampshire.edu

1 Natural Computing Research and Applications Group, UCD School of Business, University
College Dublin, Dublin, Ireland

2 Amherst College, Hampshire College, University of Massachusetts, Amherst, MA, USA

http://orcid.org/0000-0001-8734-417X
http://crossmark.crossref.org/dialog/?doi=10.1007/s10710-019-09364-2&domain=pdf

252 Genetic Programming and Evolvable Machines (2020) 21:251–262

1 3

automatic programming. This was later highlighted by the authors of the open issue
paper in a tutorial presented at the GECCO conference held in Amsterdam [49] and
more recently by O’Neill and Fagan at GPTP 2018 as being the “elephant in the
room” [60] of our research community.

While there have been many significant advances in the field of Genetic Pro-
gramming, including the successful application of Genetic Programming to numer-
ous challenging real-world problems where it has produced solutions better than
the state-of-the-art [1], we have not solved the problem of automatic programming
in any meaningfully scalable manner. Much success lies in the generation of sin-
gle line functions through Genetic Programming’s application to Symbolic Regres-
sion (for example see [58]) and design, for example, in the generation of analogue
circuits [33–35], robot morphology [25] and antennae [40]. Moreover the annual
HUMIES competition [1] illustrates, and celebrates the wealth of successes of
Genetic Programming and related methods in challenging, real-world problem
domains.

In this article we set out to highlight, what is in our opinion, the open issue for
our field, that of achieving automatic programming, and to challenge our community
to focus on this task while embracing a wider perspective in order to achieve scal-
able automatic programming.

2 What is automatic programming?

What do we actually mean by automatic programming? Automatic programming is
a concept that has witnessed different interpretations over time. Early computer sci-
entists referred to the ability to automatically generate machine code from an assem-
bly language as automatic programming, and similarly with respect to the creation
of compilers [46]. Our more recent, machine intelligence-inspired definition is per-
haps best captured by Arthur Samuel when he stated “tell the machine what to do,
not how to do it” [57], encapsulating the definitive high-level language if we inter-
pret to “tell the machine what to do” as being through a natural language, or perhaps
even a brain–computer interface. As others have highlighted in the past [55], while
this description may be an aspirational goal for automatic programming it is perhaps
unrealistic, at least in the foreseeable future. In the following section we highlight
some of the challenges we face to achieve this aspirational goal. Effectively though,
automatic programming can be considered to have evolved over time towards
increasingly higher level programming languages. And, as such, as researchers
employing artificial evolution we are optimistic that incremental progress can be
made towards automatic programming’s aspirational goal.

From his earliest work in Genetic Programming Koza has raised the potential for
Genetic Programming to be used for Automatic Programming amongst other Artifi-
cial Intelligence problems such as sequence induction, pattern recognition, planning
and machine learning [32]. Additionally, Koza proposed a set of sixteen properties
that an Automatic Programming system must possess [34], such as, having to start
with a high-level statement of the problem requirements, with the system generating
output in the form of a computer program detailing a sequence of steps as to how

253

1 3

Genetic Programming and Evolvable Machines (2020) 21:251–262

to solve the problem. Other properties include the ability to automatically organise
useful groups of steps so that they can be reused, that this reuse has the ability to be
parameterised, and that a hierarchy of reuse can be constructed automatically. More
generally, the system should have the property of problem independence, it should
have wide and scalable applicability, and it should be capable of achieving human-
competitive performance.

3 Challenges and solutions towards automatic programming

There are many obstacles to navigate in order to successfully achieve automatic pro-
gramming. We claim that automatic programming is an example of an AI-complete
problem, in the sense that solving it fully “requires a full solution to the artificial
intelligence problem” [41]. In other words, it falls under the grand challenge of Arti-
ficial Intelligence to achieve artificial general intelligence. This leads to a series of
challenges we have identified by way of example to illustrate some of the key issues
which will need to be addressed.

If indeed automatic programming is an AI-complete problem, by extension it is
unrealistic to expect that genetic programming alone will be sufficient to achieve
automatic programming, it is but one tool in our potential toolkit. A clear example
of where this is likely to be the case is in the first process, or subsystem, of an ide-
alised automatic programming system, that of capturing user intent through a user-
system interface, where we, in the words of Samuel [57], “tell the machine what to
do”.

If user intent can be captured sufficiently the subsequent subsystem is likely to
focus on code synthesis. In addition to the broad and unanswered question of what
is the best representation to tackle code synthesis, amongst many other related open
questions, attempts at automatic programming to date have largely been directed at,
and resulted in, relatively small bodies of code [21]. In essence approaches to auto-
matic programming to date suffer a scalability challenge.

The majority of existing approaches to automatic programming systems also
represent examples of narrow AI, with application to very constrained and small
problem instances (e.g., list processing [2, 31], string manipulation [16], constraint
generation [53]). This is understandable, given the scale of the challenge to tackle an
AI-complete problem such as automatic programming, we first have to crawl before
we can walk. To put it another way, there are aspects of the automatic programming
problem which are hierarchically decomposable, and require different foci in terms
of, for example, domain knowledge, constraints, representations and benchmark
problems.

We discuss these and some related issues in more detail below.

3.1 Telling the machine what to do

A significant barrier to the idealised automatic programming scenario is the degree
of ambiguity that increasingly higher-level descriptions of “what to do” will

254 Genetic Programming and Evolvable Machines (2020) 21:251–262

1 3

embody. Think of a web search engine receiving a query for the term “jaguar”. Did
the searcher mean a big cat or a car? The scale of ambiguities in requirements which
might arise in the much larger search space of automatically synthesising programs
is daunting. Understandably this has led to the majority of approaches to automatic
programming tackling highly narrow, constrained problem instances. Success on
these is then often achieved, for example, through the adoption of a very small set of
primitives, minimal control flow structures (if any), and tight specifications and con-
straints on the forms of solutions such that the language is often domain specific and
may not be Turing complete. Other ways in which the problem is narrowed might be
through limited data structures or types (e.g., string manipulation by FlashFill), and
through small datasets where generalisation is a challenge.

Even when we quantify what we are searching for in the form of a fitness function
in modern day genetic programming, we don’t always get what we think we asked
for. We will need to move beyond a scalar fitness function to achieve automatic pro-
gramming, and are likely to face problems with multiple and sometimes competing
objectives. Of course, more generally the related credit assignment problem is a well
known challenge for machine intelligence (c.f., Bucket Brigade for Classifier Sys-
tems [24]). Stepping stones in the right direction are likely to include software tests
of various kinds and at various levels of abstraction, ideas of complexification [61]
and developmental evaluation [23] with the gradual increase in the complexity of
the solution and in the difficulty of the problem domain to which candidate solu-
tions are exposed, and smarter selection strategies such as behaviour-based lexicase
selection [20].

3.2 Scalability

There are many dimensions to achieve scalability of automatic programming.
Issues to consider include using various kinds of modularity, and multiple and
possibly complex data types and control structures, and the potential to generate
new instances of modularity, data and control structures, and to modify these on
the fly [34, 38]. Where hierarchical decomposition of a problem is achievable, the
appropriate mechanisms will need to be incorporated into the program synthesis
representations to facilitate the automatic identification and reuse of modules. The
incorporation of automated abstraction coupled to semantic modelling are likely to
reduce the barrier here.

An integral part of achieving scalability is the suitability of the representation
adopted. This means we need to consider issues such as effective encodings coupled
to the development and use of effective search operators employed by the search
and learning algorithms. More generally an open issue for machine learning and
artificial intelligence, representation has long been a subject of research in genetic
programming, with work exploring genetic encodings such as binary, integer, tree,
linear-tree, graphs, and grammars (e.g., [7, 8, 10–13, 27, 32, 42, 43, 67]), along with
work on searching the representation space itself [29, 47, 59]. More generally, as
identified in the field of evolutionary computation, important features in the design
of representation include locality, redundancy and scaling of alleles [56].

255

1 3

Genetic Programming and Evolvable Machines (2020) 21:251–262

3.3 Representation and approaches to code synthesis

Adopting evolutionary computation as a tool to synthesise code has resulted in
the field of Genetic Programming. Using evolutionary computation in this induc-
tive manner is, however, not the only approach to code synthesis. A number of
approaches, which predate Genetic Programming, are captured by Biermann
et al. [5] and include approaches which are logic-based (deductive and inductive),
use formal specifications, or are based on production rules and the design of effi-
cient data representations. Johnson [26] proposes that we consider links between
genetic programming and the use of formal methods and program analysis.

Other approaches from which we might learn and adapt include inductive
logic programming [44] and the related ADATE [45], and more recent incarna-
tions such as DeepCoder [4], IGOR2 [31] and MagicHaskeller [28], Flashfill [15]
and TerpreT [14]. It is heartening to see the awakening to this wider perspective
in approaches such as by Bladek et al. [6] that combine formal specifications and
genetic programming. The recent emergence of genetic improvement program-
ming [54], which takes existing code and uses evolutionary heuristics to improve
upon it in its functional and/or non-functional attributes, builds on the field of
search-based software engineering [17]. Such approaches might be used to lever-
age existing code (e.g., the idea of leveraging “big code” in repositories such as
github [64]) or propose methods which might be adopted as search operators to
transform code which is being generated.

Given the diversity and numbers of approaches which have and could be adopted
for code synthesis it would be desireable to compare and contrast performance. Pan-
tridge et al. [51] recently attempted such a comparison across PushGP, a form of
grammar-based GP, FlashFill, TerpreT and MagicHaskeller with the main observa-
tions that each of these approaches to program synthesis are designed to tackle dif-
ferent incarnations of program synthesis problems making comparison a challenge.
This reminds us of the narrow versus general perspectives on AI we mentioned ear-
lier and how the majority of automatic programming to date has arguably been by
necessity narrow. To move towards the grand challenge of automatic programming
we need to move towards more general approaches to program synthesis. Arguably
GP has the best track record to date with respect to this aspect of the problem, as
exemplified by work such as [3, 50, 59, 62, 69].

3.4 Benchmarks and baselines

To facilitate the development of automatic programming systems to move from
narrow to more general classes of problems we require appropriate benchmark and
grand challenge problems, and to adopt a scientifically rigorous approach with con-
trols and baseline systems to compare to. In the recent Pantridge et al. study compar-
ing multiple approaches to program synthesis [51], the General Program Synthesis
Benchmark Suite [19] and a set of Basic Execution Model problems were employed.
The latter represent problems which can be tackled at various levels of abstraction

256 Genetic Programming and Evolvable Machines (2020) 21:251–262

1 3

while the former is a suite for general program synthesis requiring a range of data
types, outputs and control structures. Another potential set of problems to allow
comparison to, and perhaps hybridisation with, a wider set of machine learning
algorithms is the Arcade Learning Environment (ALE) https ://githu b.com/mgbel
lemar e/Arcad e-Learn ing-Envir onmen t, which was recently tackled using Cartesian
GP [68] and Tangled Program Graph GP [30]. The adoption of the above problems
represent the current best practice in selection of benchmarks. We are in no doubt of
the need for the further principled development of additional benchmarks that can
be used in a targeted manner to push the boundaries along different dimensions such
as scalability, generalisation, and adaptation, and to facilitate comparison across a
range of very different approaches to automatic programming. Also the develop-
ment of Grand Challenge problems is useful to help us push towards more general
Automatic Programming, and to raise awareness of the potential of this developing
area to a wider audience with the openly defined HUMIES perhaps being our field’s
leading example.

3.5 GP as a tool

If Automatic Programming is the application domain, Genetic Programming is a
method in our toolkit. Is Genetic Programming the best tool to achieve automatic
programming, an AI-complete problem? On the one hand, it is not unusual for
Genetic Programming to produce novel solutions that differ in a variety of ways
from the solutions that humans would produce. This is a source of genetic program-
ming’s unusual power, but it may also present new challenges or exacerbate the
challenges posed by all artificial intelligence technologies. On the other hand, solu-
tions produced by genetic programming are expressed in the form of code, often
in high-level languages, that humans can analyze and understand more easily than
the products of many other artificial intelligence and machine learning technologies.
With the aid of techniques for evolving more concise and interpretable solutions
[18, 36, 37], genetic programming may offer benefits with respect to many of these
issues. We would argue that we do not expect Genetic Programming to be sufficient,
or at least on its own the most efficient method, to fully realise automatic program-
ming, or at least the most appropriate or efficient method to achieve all the necessary
functions that an automatic programming system requires.

We can describe an Automatic Programming system in such a manner as to
include a number of distinct processes. Think of the complex life-cycle of software
artefacts, designed, built and maintained by humans. The first process is likely the
capture and translation of user-intent into an objective function, which is then passed
on to the second process to guide code synthesis, before third and perhaps addi-
tional processes which might include code optimisation, localisation, maintenance
and adaptation. This automatic programming system will also be a learning agent,
embodied in and interacting with some environment. It is likely to require the ability
to build models of its environment and the other agents (e.g., its users) with which
it interacts, which for example, might facilitate more “intelligent” responses to the
translation of user-intent into an objective function.

https://github.com/mgbellemare/Arcade-Learning-Environment
https://github.com/mgbellemare/Arcade-Learning-Environment

257

1 3

Genetic Programming and Evolvable Machines (2020) 21:251–262

It is likely that the best tool(s) for the translation of user-intent into an objective
function does not include Genetic Programming. For example, natural language pro-
cessing technologies such as neural networks are more likely to dominate here. It is
more likely that Genetic Programming will play a significant role in code synthesis
and perhaps its adaptation (think genetic improvement programming), and that other
heuristics and exact methods might be employed during optimisation (if not also
during code synthesis). The learning process could employ various approaches to
Machine Learning, likely hybridised to include neural networks, perhaps evolution-
ary computation, logic and reasoning.

One way to facilitate combining approaches from potentially useful fields such
as Machine Learning, GP, Analytics, Optimisation, Search-based Software Engi-
neering [17], program repair and improvement [39, 54, 65] etc., might include the
development of appropriate software. For example, the python implementation of
PushGP [52] opens this algorithm to a wider community beyond the field of GP, in
particular those working in analytics and big data.

3.6 Trust, transparency, competence, reliability and ethics

Achieving the idealised form of automatic programming would be to solve an AI-
complete problem and to facilitate the development of a form of general artificial, or
machine, intelligence. We therefore have, as a community of researchers, a responsi-
bility to consider the wider implications of such a technology for society. In addition
to transparency of decision making, trust, competence and reliability of automatic
programming systems, this work raises legal and ethical questions such as “Who is
the author?,” “Who is liable when the automatic programming system produces unde-
sirable results?,” and “How do we avoid bias in the algorithms [66]?” These are just
a sample of issues that need serious attention. One approach is to shift responsibility
towards the designer of the intelligent algorithm to ensure that it is well behaved [63].

Recently the European Commission’s High-level expert group on Artificial Intel-
ligence published “Ethics Guidelines for Trustworthy AI” [22], which builds upon
principles identified by the European Group on Ethics in Science and New Technol-
ogies [9]. The key ideas behind trustworthy AI are that AI systems are lawful, ethi-
cal and robust. Being lawful refers to the systems’ adherence to all the relevant regu-
lations and laws. Robustness requires us to have confidence that the AI system will
perform in a safe, secure and reliable manner and not unintentionally cause harm.
Being ethical requires that ethical principles and values are respected. In realising
AI, seven requirements are identified:

1. The need to respect human agency and oversight.
2. Technical robustness and safety.
3. Privacy and data governance.
4. Transparency.
5. Diversity, non-discrimination and fairness.
6. Environmental and societal well-being.
7. Accountability.

258 Genetic Programming and Evolvable Machines (2020) 21:251–262

1 3

As responsible researchers there are clearly many issues which need to be
taken into consideration when embarking upon research in this domain, and
there is a clear need for further research and dialogue to be undertaken in how
to approach the creation of trustworthy AI. Bringing this back to Automatic
Programming, one advantage of increasingly higher-level code is its transpar-
ency. Higher-level languages are more open to human readability. This increas-
ing transparency is desirable for multiple reasons, including, trust in the gener-
ated software, the ability to understand the generated software models leading to
the potential to uncover new scientific knowledge, and the ability to modify and
maintain the resulting software perhaps improving its competence and reliability.
These properties would bring us closer to a form of Artificial Intelligence where
we achieve augmented human performance by being able to work seamlessly in
collaboration with AI technology such as automatic programming systems.

3.7 Other issues

Many of the open issues identified in the tenth anniversary issue article [48] also
continue to present challenges to achieving automatic programming, such as the
halting problem, achieving generalisation, the development of strong theory, the
pros and cons of domain knowledge and the “A to I ratio,” the large number of
parameters, and dependence on syntax rather than behaviour and semantics.

4 Conclusion

As a field Genetic Programming has enjoyed significant success perhaps best
illustrated through its many successful applications captured in the annual
HUMIES competition. Despite this success, Genetic Programming has not
achieved its stated goal of realising automatic programming. We presented what
we mean by automatic programming and discussed some of the obstacles to its
realisation, and we challenge the community to refocus its efforts towards the
goal of automatic programming. We are optimistic that significant gains will be
made towards automatic programming over the coming years, and that these will
represent some of the biggest successes and impact that this field can bring to
computer science and machine intelligence.

Acknowledgements We would like to thank the reviewers for their constructive feedback. MO’N is sup-
ported by the Science Foundation Ireland under Grants 13/IA/1850 and 13/RC/2094. This material is
based upon work supported by the National Science Foundation under Grant No. 1617087. Any opinions,
findings, and conclusions or recommendations expressed in this publication are those of the authors and
do not necessarily reflect the views of the National Science Foundation.

259

1 3

Genetic Programming and Evolvable Machines (2020) 21:251–262

References

 1. Annual “humies” awards for human-competitive results. http://www.human -compe titiv e.org/.
Accessed 21 Apr 2019

 2. Z. Manna, R. Waldinger, A deductive approach to program synthesis, in Automatic Program
Construction Techniques, ed. by A. Bierman, G. Guiho, Y. Kodratoff (Macmillan Publishing
Company, 1984)

 3. A. Arcuri, X. Yao, Co-evolutionary automatic programming for software development. Inf. Sci.
259, 412–432 (2014)

 4. M. Balog, A.L. Gaunt, M. Brockschmidt, S. Nowozin, D. Tarlow, Deepcoder: learning to write
programs, in Proceedings International Conference on Learning Representations 2017. OpenRe-
views.net (2017). https ://openr eview .net/pdf?id=rkE3y 85ee. Accessed 21 Apr 2019

 5. A. Bierman, G. Guiho, Y. Kodratoff (eds.), Automatic Program Construction Techniques, (Mac-
millan Publishing Company, 1984)

 6. I. Bladek, K. Krawiec, J. Swan, Counterexample-driven genetic programming: heuristic pro-
gram synthesis from formal specifications. Evolut. Comput. 26(3), 441–469 (2018). https ://doi.
org/10.1162/evco_a_00228

 7. N.L. Cramer, A representation for the adaptive generation of simple sequential programs, in Pro-
ceedings of an International Conference on Genetic Algorithms and the Applications, ed. by J.J.
Grefenstette (Carnegie-Mellon University, Pittsburgh, 1985), pp. 183–187

 8. K.A. De Jong, On using genetic algorithms to search program spaces, in Proceedings of the
Second International Conference on Genetic Algorithms on Genetic Algorithms and Their Appli-
cation (L. Erlbaum Associates Inc., Hillsdale, 1987), pp. 210–216. http://dl.acm.org/citat ion.
cfm?id=42512 .42540 . Accessed 21 Apr 2019

 9. L. Floridi et al., AI4people—an ethical framework for a good AI society: opportunities, risks,
principles and recommendations. Minds Mach. 28, 689–707 (2018)

 10. R. Forsyth, BEAGLE a Darwinian approach to pattern recognition. Kybernetes 10(3), 159–166
(1981). https ://doi.org/10.1108/eb005 587

 11. R.M. Friedberg, A learning machine: part I. IBM J. Res. Dev. 2(1), 2–13 (1958). https ://doi.
org/10.1147/rd.21.0002

 12. R.M. Friedberg, B. Dunham, J.H. North, A learning machine: part II. IBM J. Res. Dev. 3(3),
282–287 (1959). https ://doi.org/10.1147/rd.33.0282

 13. C. Fujiki, J. Dickinson, Using the genetic algorithm to generate LISP source code to solve the
prisoner’s dilemma, in Proceedings of the 2nd International Conference on Genetic Algorithms,
Cambridge (1987), pp. 236–240

 14. A.L. Gaunt, M. Brockschmidt, R. Singh, N. Kushman, P. Kohli, J. Taylor, D. Tarlow, Terpret: a
probabilistic programming language for program induction (2016). CoRR arXiv :1608.04428

 15. S. Gulwani, Automating string processing in spreadsheets using input–output examples. SIG-
PLAN Not. 46(1), 317–330 (2011). https ://doi.org/10.1145/19258 44.19264 23

 16. S. Gulwani, W.R. Harris, R. Singh, Spreadsheet data manipulation using examples. Commun.
ACM 55(8), 97–105 (2012). https ://doi.org/10.1145/22402 36.22402 60

 17. M. Harman, S.A. Mansouri, Y. Zhang, Search-based software engineering: trends, techniques
and applications. ACM Comput. Surv. 45(1), 11:1–11:61 (2012). https ://doi.org/10.1145/23797
76.23797 87

 18. T. Helmuth, N.F. McPhee, E. Pantridge, L. Spector, Improving generalization of evolved
programs through automatic simplification, in Proceedings of the Genetic and Evolution-
ary Computation Conference, GECCO ’17 (ACM, Berlin, 2017), pp. 937–944. https ://doi.
org/10.1145/30711 78.30713 30

 19. T. Helmuth, L. Spector, General program synthesis benchmark suite, in GECCO ’15: Proceed-
ings of the 2015 Annual Conference on Genetic and Evolutionary Computation, ed. by S. Silva,
A.I. Esparcia-Alcazar, M. Lopez-Ibanez, S. Mostaghim, J. Timmis, C. Zarges, L. Correia, T.
Soule, M. Giacobini, R. Urbanowicz, Y. Akimoto, T. Glasmachers, F.F. de Vega, A. Hoover,
P. Larranaga, M. Soto, C. Cotta, F.B. Pereira, J. Handl, J. Koutnik, A. Gaspar-Cunha, H. Trau-
tmann, J.B. Mouret, S. Risi, E. Costa, O. Schuetze, K. Krawiec, A. Moraglio, J.F. Miller, P.
Widera, S. Cagnoni, J. Merelo, E. Hart, L. Trujillo, M. Kessentini, G. Ochoa, F. Chicano, C.
Doerr (ACM, Madrid, 2015), pp. 1039–1046. https ://doi.org/10.1145/27394 80.27547 69

http://www.human-competitive.org/
https://openreview.net/pdf?id=rkE3y85ee
https://doi.org/10.1162/evco_a_00228
https://doi.org/10.1162/evco_a_00228
http://dl.acm.org/citation.cfm?id=42512.42540
http://dl.acm.org/citation.cfm?id=42512.42540
https://doi.org/10.1108/eb005587
https://doi.org/10.1147/rd.21.0002
https://doi.org/10.1147/rd.21.0002
https://doi.org/10.1147/rd.33.0282
http://arxiv.org/abs/1608.04428
https://doi.org/10.1145/1925844.1926423
https://doi.org/10.1145/2240236.2240260
https://doi.org/10.1145/2379776.2379787
https://doi.org/10.1145/2379776.2379787
https://doi.org/10.1145/3071178.3071330
https://doi.org/10.1145/3071178.3071330
https://doi.org/10.1145/2739480.2754769

260 Genetic Programming and Evolvable Machines (2020) 21:251–262

1 3

 20. T. Helmuth, L. Spector, J. Matheson, Solving uncompromising problems with lexicase selection.
IEEE Trans. Evolut. Comput. 19(5), 630–643 (2015). https ://doi.org/10.1109/TEVC.2014.23627 29

 21. T.M. Helmuth, General program synthesis from examples using genetic programming with parent
selection based on random lexicographic orderings of test cases. Ph.D. thesis, College of Infor-
mation and Computer Sciences, University of Massachusetts Amherst, USA (2015). https ://web.
cs.umass .edu/publi catio n/detai ls.php?id=2398. Accessed 21 Apr 2019

 22. High Level Expert Group on Artificial Intelligence, Ethics guidelines for trustworthy AI. Technical
report, European Commission (2019)

 23. T.H. Hoang, D. Essam, R.I.B. McKay, N.X. Hoai, Developmental evaluation in genetic program-
ming: the TAG-based frame work. Int. J. Knowl. Based Intell. Eng. Syst. 12(1), 69–82 (2008). https
://doi.org/10.3233/KES-2008-12106

 24. J.H. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applica-
tions to Biology, Control and Artificial Intelligence (The University of Michigan, Ann Arbor, 1975)

 25. G.S. Hornby, H. Lipson, J.B. Pollack, Generative representations for the automated design of mod-
ular physical robots. IEEE Trans. Robot. Autom. 19(4), 709–713 (2003). https ://doi.org/10.1109/
TRA.2003.81450 2

 26. C.G. Johnson, What can automatic programming learn from theoretical computer science?, in The
2002 U.K. Workshop on Computational Intelligence (UKCI’02) ed. by X. Yao (Birmingham, 2002).
http://kar.kent.ac.uk/id/eprin t/13729 . Accessed 21 Apr 2019

 27. W. Kantschik, W. Banzhaf, Linear-graph GP: a new GP structure, in Genetic Programming, Pro-
ceedings of the 5th European Conference, EuroGP 2002, vol. 2278, Lecture Notes in Computer Sci-
ence, ed. by J.A. Foster, E. Lutton, J. Miller, C. Ryan, A.G.B. Tettamanzi (Springer, Kinsale, 2002),
pp. 83–92. https ://doi.org/10.1007/3-540-45984 -7_8

 28. S. Katayama, Recent improvements of magichaskeller, in Approaches and Applications of Induc-
tive Programming, ed. by U. Schmid, E. Kitzelmann, R. Plasmeijer (Springer, Berlin, 2010), pp.
174–193

 29. R.E. Keller, W. Banzhaf, The evolution of genetic code in genetic programming, in Proceedings of
the Genetic and Evolutionary Computation Conference, vol. 2, ed. by W. Banzhaf, J. Daida, A.E.
Eiben, M.H. Garzon, V. Honavar, M. Jakiela, R.E. Smith (Morgan Kaufmann, Orlando, 1999), pp.
1077–1082

 30. S. Kelly, M.I. Heywood, Emergent tangled graph representations for Atari game playing agents, in
EuroGP 2017: Proceedings of the 20th European Conference on Genetic Programming, vol. 10196,
Lecture Notes in Computer Science, ed. by M. Castelli, J. McDermott, L. Sekanina (Springer,
Amsterdam, 2017), pp. 64–79. https ://doi.org/10.1007/978-3-319-55696 -3_5

 31. E. Kitzelmann, Data-driven induction of recursive functions from input/output-examples, in Pro-
ceedings of the ECML/PKDD 2007 Workshop on Approaches and Applications of Inductive Pro-
gramming (AAIP 2007) (2007), pp. 15–26

 32. J.R. Koza, Hierarchical genetic algorithms operating on populations of computer programs, in Pro-
ceedings of the 11th International Joint Conference on Artificial Intelligence IJCAI-89, vol. 1, ed.
by N.S. Sridharan (Morgan Kaufmann, Detroit, 1989), pp. 768–774

 33. J.R. Koza, Human-competitive results produced by genetic programming. Genet. Program. Evol.
Mach. 11(3/4), 251–284 (2010). https ://doi.org/10.1007/s1071 0-010-9112-3

 34. J.R. Koza, D. Andre, F.H. Bennett III, M. Keane, Genetic Programming III: Darwinian Invention
and Problem Solving (Morgan Kaufman, Burlington, 1999)

 35. J.R. Koza, M.A. Keane, M.J. Streeter, W. Mydlowec, J. Yu, G. Lanza, Genetic Programming IV:
Routine Human-Competitive Machine Intelligence (Kluwer Academic Publishers, Dordrecht, 2003)

 36. W. La Cava, K. Danai, L. Spector, Inference of compact nonlinear dynamic models by epige-
netic local search. Eng. Appl. Artif. Intell. 55, 292–306 (2016). https ://doi.org/10.1016/j.engap
pai.2016.07.004

 37. W.G. La Cava, Automatic development and adaptation of concise nonlinear models for system iden-
tification. Doctoral dissertations May 2014-current, vol. 731 (2016). http://schol arwor ks.umass .edu/
disse rtati ons_2/731/. Accessed 21 Apr 2019

 38. W.B. Langdon, Genetic Programming and Data Structures: Genetic Programming + Data Struc-
tures = Automatic Programming!, vol. 1, Genetic Programming (Kluwer, Boston, 1998). https ://doi.
org/10.1007/978-1-4615-5731-9

 39. C. Le Goues, S. Forrest, W. Weimer, Current challenges in automatic software repair. Softw. Qual.
J. 21, 421–443 (2013). https ://doi.org/10.1007/s1121 9-013-9208-0

https://doi.org/10.1109/TEVC.2014.2362729
https://web.cs.umass.edu/publication/details.php?id=2398
https://web.cs.umass.edu/publication/details.php?id=2398
https://doi.org/10.3233/KES-2008-12106
https://doi.org/10.3233/KES-2008-12106
https://doi.org/10.1109/TRA.2003.814502
https://doi.org/10.1109/TRA.2003.814502
http://kar.kent.ac.uk/id/eprint/13729
https://doi.org/10.1007/3-540-45984-7_8
https://doi.org/10.1007/978-3-319-55696-3_5
https://doi.org/10.1007/s10710-010-9112-3
https://doi.org/10.1016/j.engappai.2016.07.004
https://doi.org/10.1016/j.engappai.2016.07.004
http://scholarworks.umass.edu/dissertations_2/731/
http://scholarworks.umass.edu/dissertations_2/731/
https://doi.org/10.1007/978-1-4615-5731-9
https://doi.org/10.1007/978-1-4615-5731-9
https://doi.org/10.1007/s11219-013-9208-0

261

1 3

Genetic Programming and Evolvable Machines (2020) 21:251–262

 40. J.D. Lohn, G. Hornby, D.S. Linden, Human-competitive evolved antennas. Artif. Intell. Eng.
Des. Anal. Manuf. 22(3), 235–247 (2008). https ://doi.org/10.1017/S0890 06040 80001 64

 41. J.C. Mallery, Thinking about foreign policy: finding an appropriate role for artificially intelligent
computers, in The 1988 Annual Meeting of the International Studies Association (1988)

 42. R.I. McKay, N.X. Hoai, P.A. Whigham, Y. Shan, M. O’Neill, Grammar-based genetic program-
ming: a survey. Genet. Program. Evol. Mach. 11(3/4), 365–396 (2010). https ://doi.org/10.1007/
s1071 0-010-9109-y

 43. J.F. Miller (ed.), Cartesian Genetic Programming, Natural Computing Series (Springer, Berlin,
2011). https ://doi.org/10.1007/978-3-642-17310 -3

 44. S. Muggleton, Inductive logic programming: issues, results and the challenge of learning lan-
guage in logic. Artif. Intell. 114, 283–296 (1999)

 45. R. Olsson, Inductive functional programming using incremental program transformation. Artif.
Intell. 74(1), 55–81 (1995)

 46. M. O’Neill, Automatic programming in an arbitrary language: evolving programs with gram-
matical evolution. Ph.D. thesis, University of Limerick, Ireland (2001). http://www.cs.ucl.ac.uk/
staff /W.Langd on/ftp/paper s/oneil l/Micha elONe illTh esis.ps.gz. Accessed 21 Apr 2019

 47. M. O’Neill, C. Ryan, Grammatical evolution by grammatical evolution: the evolution of gram-
mar and genetic code, in Genetic Programming 7th European Conference, EuroGP 2004. Pro-
ceedings, vol. 3003, Lecture Notes in Computer Science, ed. by M. Keijzer, U.M. O’Reilly, S.M.
Lucas, E. Costa, T. Soule (Springer, Coimbra, 2004), pp. 138–149. https ://doi.org/10.1007/978-
3-540-24650 -3_13

 48. M. O’Neill, L. Vanneschi, S. Gustafson, W. Banzhaf, Open issues in genetic program-
ming. Genet. Program. Evol. Mach. 11(3/4), 339–363 (2010). https ://doi.org/10.1007/s1071
0-010-9113-2

 49. M. O’Neill, L. Vanneschi, S. Gustafson, W. Banzhaf, Open issues in genetic programming, in
Tutorial on Open Issues in Genetic Programming at GECCO 2013 (The Netherlands, Amster-
dam, 2013)

 50. M. Orlov, M. Sipper, FINCH: a system for evolving Java (bytecode), in Genetic Programming The-
ory and Practice VIII, Genetic and Evolutionary Computation, chap. 1, vol. 8, ed. by R. Riolo, T.
McConaghy, E. Vladislavleva (Springer, Ann Arbor, 2010), pp. 1–16

 51. E. Pantridge, T. Helmuth, N.F. McPhee, L. Spector, On the difficulty of benchmarking inductive
program synthesis methods, in Proceedings of the Genetic and Evolutionary Computation Confer-
ence Companion, GECCO ’17 (ACM, Berlin, 2017), pp. 1589–1596. https ://doi.org/10.1145/30676
95.30825 33

 52. E. Pantridge, L. Spector, PyshGP: PushGP in python, in Proceedings of the Genetic and Evolution-
ary Computation Conference Companion, GECCO ’17 (ACM, Berlin, 2017), pp. 1255–1262. https
://doi.org/10.1145/30676 95.30824 68

 53. T.P. Pawlak, K. Krawiec, Synthesis of constraints for mathematical programming with one-
class genetic programming. IEEE Trans. Evolut. Comput. (2018). https ://doi.org/10.1109/
TEVC.2018.28355 65

 54. J. Petke, S.O. Haraldsson, M. Harman, W.B. Langdon, D.R. White, J.R. Woodward, Genetic
improvement of software: a comprehensive survey. IEEE Trans. Evolut. Comput. 22(3), 415–432
(2018). https ://doi.org/10.1109/TEVC.2017.26932 19

 55. C. Rich, R.C. Waters, Automatic programming: myths and prospects. Computer 21(8), 40–51
(1988). https ://doi.org/10.1109/2.75

 56. F. Rothlauf, Representations for Genetic and Evolutionary Algorithms (Springer, Berlin, 2006)
 57. A.L. Samuel, Some studies in machine learning using the game of checkers. IBM J. Res. Dev. 3(3),

210–229 (1959). https ://doi.org/10.1147/rd.33.0210
 58. M. Schmidt, H. Lipson, Distilling free-form natural laws from experimental data. Science

324(5923), 81–85 (2009). https ://doi.org/10.1126/scien ce.11658 93
 59. L. Spector, A. Robinson, Genetic programming and autoconstructive evolution with the

push programming language. Genet. Program. Evol. Mach. 3(1), 7–40 (2002). https ://doi.
org/10.1023/A:10145 38503 543

 60. M. O’Neill, D. Fagan, The Elephant in the room: Towards the application of genetic programming
to automatic programming. in Genetic Programming Theory and Practice XVI (Springer, 2019), pp.
179–192.

 61. K.O. Stanley, R. Miikkulainen, Evolving neural networks through augmenting topologies. Evolut.
Comput. 10(2), 99–127 (2002). https ://doi.org/10.1162/10636 56023 20169 811

https://doi.org/10.1017/S0890060408000164
https://doi.org/10.1007/s10710-010-9109-y
https://doi.org/10.1007/s10710-010-9109-y
https://doi.org/10.1007/978-3-642-17310-3
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/oneill/MichaelONeillThesis.ps.gz
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/oneill/MichaelONeillThesis.ps.gz
https://doi.org/10.1007/978-3-540-24650-3_13
https://doi.org/10.1007/978-3-540-24650-3_13
https://doi.org/10.1007/s10710-010-9113-2
https://doi.org/10.1007/s10710-010-9113-2
https://doi.org/10.1145/3067695.3082533
https://doi.org/10.1145/3067695.3082533
https://doi.org/10.1145/3067695.3082468
https://doi.org/10.1145/3067695.3082468
https://doi.org/10.1109/TEVC.2018.2835565
https://doi.org/10.1109/TEVC.2018.2835565
https://doi.org/10.1109/TEVC.2017.2693219
https://doi.org/10.1109/2.75
https://doi.org/10.1147/rd.33.0210
https://doi.org/10.1126/science.1165893
https://doi.org/10.1023/A:1014538503543
https://doi.org/10.1023/A:1014538503543
https://doi.org/10.1162/106365602320169811

262 Genetic Programming and Evolvable Machines (2020) 21:251–262

1 3

 62. A. Teller, Turing completeness in the language of genetic programming with indexed memory, in
Proceedings of the 1994 IEEE World Congress on Computational Intelligence, vol. 1 (IEEE Press,
Orlando, 1994), pp. 136–141. https ://doi.org/10.1109/ICEC.1994.35002 7

 63. P.S. Thomas, B.C. da Silva, A.G. Barto, E. Brunskill, On ensuring that intelligent machines are
well-behaved. CoRR arXiv :1708.05448 (2017)

 64. M. Vechev, E. Yahav, Programming with “big code”. Found. Trends Program. Lang. 3(4), 231–284
(2016). https ://doi.org/10.1561/25000 00028

 65. W. Weimer, S. Forrest, C. Le Goues, T. Nguyen, Automatic program repair with evolutionary com-
putation. Commun. ACM 53(5), 109–116 (2010). https ://doi.org/10.1145/17352 23.17352 49

 66. S.M. West, M. Whittaker, K. Crawford, Discriminating systems: gender, race and power in AI.
Technical report (2019)

 67. P.A. Whigham, Grammatically-based genetic programming, in Proceedings of the Workshop on
Genetic Programming: From Theory to Real-World Applications ed. by J.P. Rosca, Tahoe City,
California, USA, pp. 33–41 (1995). http://divco m.otago .ac.nz/sirc/Peter w/Publi catio ns/ml95.zip.
Accessed 21 Apr 2019

 68. D.G. Wilson, S. Cussat-Blanc, H. Luga, J.F. Miller, Evolving simple programs for playing Atari
games, in Proceedings of the Genetic and Evolutionary Computation Conference, GECCO ’18
(ACM, New York, 2018), pp. 229–236. https ://doi.org/10.1145/32054 55.32055 78

 69. J. Woodward, Evolving turing complete representations, in Proceedings of the 2003 Congress on
Evolutionary Computation CEC2003, ed. by R. Sarker, R. Reynolds, H. Abbass, K.C. Tan, B.
McKay, D. Essam, T. Gedeon (IEEE Press, Canberra, 2003), pp. 830–837. https ://doi.org/10.1109/
CEC.2003.12997 53

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://doi.org/10.1109/ICEC.1994.350027
http://arxiv.org/abs/1708.05448
https://doi.org/10.1561/2500000028
https://doi.org/10.1145/1735223.1735249
http://divcom.otago.ac.nz/sirc/Peterw/Publications/ml95.zip
https://doi.org/10.1145/3205455.3205578
https://doi.org/10.1109/CEC.2003.1299753
https://doi.org/10.1109/CEC.2003.1299753

	Automatic programming: The open issue?
	Abstract
	1 Introduction
	2 What is automatic programming?
	3 Challenges and solutions towards automatic programming
	3.1 Telling the machine what to do
	3.2 Scalability
	3.3 Representation and approaches to code synthesis
	3.4 Benchmarks and baselines
	3.5 GP as a tool
	3.6 Trust, transparency, competence, reliability and ethics
	3.7 Other issues

	4 Conclusion
	Acknowledgements
	References

