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Abstract
Automatic programming, the automatic generation of a computer program given a 
high-level statement of the program’s desired behaviour, is a stated objective of the 
field of genetic programming. As the general solution to a computational problem 
is to write a computer program, and given that genetic programming can automati-
cally generate a computer program, researchers in the field of genetic programming 
refer to its ability to automatically solve problems. Genetic programming has also 
been described as an “invention machine” that is capable of generating human-com-
petitive solutions. We argue that the majority of success and focus of our field has 
not actually been as a result of automatic programming. We set out to challenge the 
genetic programming community to refocus our research towards the objective of 
automatic programming, and to do so in a manner that embraces a wider perspec-
tive encompassing the related fields of, for example, artificial intelligence, machine 
learning, analytics, optimisation and software engineering.
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1 Introduction

In the 10th Anniversary issue of the Genetic Programming and Evolvable Machines 
journal many of the perceived open issues in the field of genetic programming at 
that time were identified  [48]. One additional open issue, perhaps absent through 
its glaringly obvious nature, but arguably the most significant, is that of achieving 
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automatic programming. This was later highlighted by the authors of the open issue 
paper in a tutorial presented at the GECCO conference held in Amsterdam [49] and 
more recently by O’Neill and Fagan at GPTP 2018 as being the “elephant in the 
room” [60] of our research community.

While there have been many significant advances in the field of Genetic Pro-
gramming, including the successful application of Genetic Programming to numer-
ous challenging real-world problems where it has produced solutions better than 
the state-of-the-art [1], we have not solved the problem of automatic programming 
in any meaningfully scalable manner. Much success lies in the generation of sin-
gle line functions through Genetic Programming’s application to Symbolic Regres-
sion (for example see [58]) and design, for example, in the generation of analogue 
circuits  [33–35], robot morphology  [25] and antennae  [40]. Moreover the annual 
HUMIES competition  [1] illustrates, and celebrates the wealth of successes of 
Genetic Programming and related methods in challenging, real-world problem 
domains.

In this article we set out to highlight, what is in our opinion, the open issue for 
our field, that of achieving automatic programming, and to challenge our community 
to focus on this task while embracing a wider perspective in order to achieve scal-
able automatic programming.

2  What is automatic programming?

What do we actually mean by automatic programming? Automatic programming is 
a concept that has witnessed different interpretations over time. Early computer sci-
entists referred to the ability to automatically generate machine code from an assem-
bly language as automatic programming, and similarly with respect to the creation 
of compilers [46]. Our more recent, machine intelligence-inspired definition is per-
haps best captured by Arthur Samuel when he stated “tell the machine what to do, 
not how to do it” [57], encapsulating the definitive high-level language if we inter-
pret to “tell the machine what to do” as being through a natural language, or perhaps 
even a brain–computer interface. As others have highlighted in the past [55], while 
this description may be an aspirational goal for automatic programming it is perhaps 
unrealistic, at least in the foreseeable future. In the following section we highlight 
some of the challenges we face to achieve this aspirational goal. Effectively though, 
automatic programming can be considered to have evolved over time towards 
increasingly higher level programming languages. And, as such, as researchers 
employing artificial evolution we are optimistic that incremental progress can be 
made towards automatic programming’s aspirational goal.

From his earliest work in Genetic Programming Koza has raised the potential for 
Genetic Programming to be used for Automatic Programming amongst other Artifi-
cial Intelligence problems such as sequence induction, pattern recognition, planning 
and machine learning [32]. Additionally, Koza proposed a set of sixteen properties 
that an Automatic Programming system must possess [34], such as, having to start 
with a high-level statement of the problem requirements, with the system generating 
output in the form of a computer program detailing a sequence of steps as to how 
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to solve the problem. Other properties include the ability to automatically organise 
useful groups of steps so that they can be reused, that this reuse has the ability to be 
parameterised, and that a hierarchy of reuse can be constructed automatically. More 
generally, the system should have the property of problem independence, it should 
have wide and scalable applicability, and it should be capable of achieving human-
competitive performance.

3  Challenges and solutions towards automatic programming

There are many obstacles to navigate in order to successfully achieve automatic pro-
gramming. We claim that automatic programming is an example of an AI-complete 
problem, in the sense that solving it fully “requires a full solution to the artificial 
intelligence problem” [41]. In other words, it falls under the grand challenge of Arti-
ficial Intelligence to achieve artificial general intelligence. This leads to a series of 
challenges we have identified by way of example to illustrate some of the key issues 
which will need to be addressed.

If indeed automatic programming is an AI-complete problem, by extension it is 
unrealistic to expect that genetic programming alone will be sufficient to achieve 
automatic programming, it is but one tool in our potential toolkit. A clear example 
of where this is likely to be the case is in the first process, or subsystem, of an ide-
alised automatic programming system, that of capturing user intent through a user-
system interface, where we, in the words of Samuel [57], “tell the machine what to 
do”.

If user intent can be captured sufficiently the subsequent subsystem is likely to 
focus on code synthesis. In addition to the broad and unanswered question of what 
is the best representation to tackle code synthesis, amongst many other related open 
questions, attempts at automatic programming to date have largely been directed at, 
and resulted in, relatively small bodies of code [21]. In essence approaches to auto-
matic programming to date suffer a scalability challenge.

The majority of existing approaches to automatic programming systems also 
represent examples of narrow AI, with application to very constrained and small 
problem instances (e.g., list processing [2, 31], string manipulation [16], constraint 
generation [53]). This is understandable, given the scale of the challenge to tackle an 
AI-complete problem such as automatic programming, we first have to crawl before 
we can walk. To put it another way, there are aspects of the automatic programming 
problem which are hierarchically decomposable, and require different foci in terms 
of, for example, domain knowledge, constraints, representations and benchmark 
problems.

We discuss these and some related issues in more detail below.

3.1  Telling the machine what to do

A significant barrier to the idealised automatic programming scenario is the degree 
of ambiguity that increasingly higher-level descriptions of “what to do” will 
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embody. Think of a web search engine receiving a query for the term “jaguar”. Did 
the searcher mean a big cat or a car? The scale of ambiguities in requirements which 
might arise in the much larger search space of automatically synthesising programs 
is daunting. Understandably this has led to the majority of approaches to automatic 
programming tackling highly narrow, constrained problem instances. Success on 
these is then often achieved, for example, through the adoption of a very small set of 
primitives, minimal control flow structures (if any), and tight specifications and con-
straints on the forms of solutions such that the language is often domain specific and 
may not be Turing complete. Other ways in which the problem is narrowed might be 
through limited data structures or types (e.g., string manipulation by FlashFill), and 
through small datasets where generalisation is a challenge.

Even when we quantify what we are searching for in the form of a fitness function 
in modern day genetic programming, we don’t always get what we think we asked 
for. We will need to move beyond a scalar fitness function to achieve automatic pro-
gramming, and are likely to face problems with multiple and sometimes competing 
objectives. Of course, more generally the related credit assignment problem is a well 
known challenge for machine intelligence (c.f., Bucket Brigade for Classifier Sys-
tems [24]). Stepping stones in the right direction are likely to include software tests 
of various kinds and at various levels of abstraction, ideas of complexification [61] 
and developmental evaluation  [23] with the gradual increase in the complexity of 
the solution and in the difficulty of the problem domain to which candidate solu-
tions are exposed, and smarter selection strategies such as behaviour-based lexicase 
selection [20].

3.2  Scalability

There are many dimensions to achieve scalability of automatic programming. 
Issues to consider include using various kinds of modularity, and multiple and 
possibly complex data types and control structures, and the potential to generate 
new instances of modularity, data and control structures, and to modify these on 
the fly [34, 38]. Where hierarchical decomposition of a problem is achievable, the 
appropriate mechanisms will need to be incorporated into the program synthesis 
representations to facilitate the automatic identification and reuse of modules. The 
incorporation of automated abstraction coupled to semantic modelling are likely to 
reduce the barrier here.

An integral part of achieving scalability is the suitability of the representation 
adopted. This means we need to consider issues such as effective encodings coupled 
to the development and use of effective search operators employed by the search 
and learning algorithms. More generally an open issue for machine learning and 
artificial intelligence, representation has long been a subject of research in genetic 
programming, with work exploring genetic encodings such as binary, integer, tree, 
linear-tree, graphs, and grammars (e.g., [7, 8, 10–13, 27, 32, 42, 43, 67]), along with 
work on searching the representation space itself  [29, 47, 59]. More generally, as 
identified in the field of evolutionary computation, important features in the design 
of representation include locality, redundancy and scaling of alleles [56].
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3.3  Representation and approaches to code synthesis

Adopting evolutionary computation as a tool to synthesise code has resulted in 
the field of Genetic Programming. Using evolutionary computation in this induc-
tive manner is, however, not the only approach to code synthesis. A number of 
approaches, which predate Genetic Programming, are captured by Biermann 
et al.  [5] and include approaches which are logic-based (deductive and inductive), 
use formal specifications, or are based on production rules and the design of effi-
cient data representations. Johnson [26] proposes that we consider links between 
genetic programming and the use of formal methods and program analysis.

Other approaches from which we might learn and adapt include inductive 
logic programming  [44] and the related ADATE  [45], and more recent incarna-
tions such as DeepCoder  [4], IGOR2 [31] and MagicHaskeller  [28], Flashfill  [15] 
and TerpreT  [14]. It is heartening to see the awakening to this wider perspective 
in approaches such as by Bladek et al.  [6] that combine formal specifications and 
genetic programming. The recent emergence of genetic improvement program-
ming  [54], which takes existing code and uses evolutionary heuristics to improve 
upon it in its functional and/or non-functional attributes, builds on the field of 
search-based software engineering  [17]. Such approaches might be used to lever-
age existing code (e.g., the idea of leveraging “big code” in repositories such as 
github  [64]) or propose methods which might be adopted as search operators to 
transform code which is being generated.

Given the diversity and numbers of approaches which have and could be adopted 
for code synthesis it would be desireable to compare and contrast performance. Pan-
tridge et  al. [51] recently attempted such a comparison across PushGP, a form of 
grammar-based GP, FlashFill, TerpreT and MagicHaskeller with the main observa-
tions that each of these approaches to program synthesis are designed to tackle dif-
ferent incarnations of program synthesis problems making comparison a challenge. 
This reminds us of the narrow versus general perspectives on AI we mentioned ear-
lier and how the majority of automatic programming to date has arguably been by 
necessity narrow. To move towards the grand challenge of automatic programming 
we need to move towards more general approaches to program synthesis. Arguably 
GP has the best track record to date with respect to this aspect of the problem, as 
exemplified by work such as [3, 50, 59, 62, 69].

3.4  Benchmarks and baselines

To facilitate the development of automatic programming systems to move from 
narrow to more general classes of problems we require appropriate benchmark and 
grand challenge problems, and to adopt a scientifically rigorous approach with con-
trols and baseline systems to compare to. In the recent Pantridge et al. study compar-
ing multiple approaches to program synthesis [51], the General Program Synthesis 
Benchmark Suite [19] and a set of Basic Execution Model problems were employed. 
The latter represent problems which can be tackled at various levels of abstraction 
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while the former is a suite for general program synthesis requiring a range of data 
types, outputs and control structures. Another potential set of problems to allow 
comparison to, and perhaps hybridisation with, a wider set of machine learning 
algorithms is the Arcade Learning Environment (ALE)  https ://githu b.com/mgbel 
lemar e/Arcad e-Learn ing-Envir onmen t, which was recently tackled using Cartesian 
GP [68] and Tangled Program Graph GP [30]. The adoption of the above problems 
represent the current best practice in selection of benchmarks. We are in no doubt of 
the need for the further principled development of additional benchmarks that can 
be used in a targeted manner to push the boundaries along different dimensions such 
as scalability, generalisation, and adaptation, and to facilitate comparison across a 
range of very different approaches to automatic programming. Also the develop-
ment of Grand Challenge problems is useful to help us push towards more general 
Automatic Programming, and to raise awareness of the potential of this developing 
area to a wider audience with the openly defined HUMIES perhaps being our field’s 
leading example.

3.5  GP as a tool

If Automatic Programming is the application domain, Genetic Programming is a 
method in our toolkit. Is Genetic Programming the best tool to achieve automatic 
programming, an AI-complete problem? On the one hand, it is not unusual for 
Genetic Programming to produce novel solutions that differ in a variety of ways 
from the solutions that humans would produce. This is a source of genetic program-
ming’s unusual power, but it may also present new challenges or exacerbate the 
challenges posed by all artificial intelligence technologies. On the other hand, solu-
tions produced by genetic programming are expressed in the form of code, often 
in high-level languages, that humans can analyze and understand more easily than 
the products of many other artificial intelligence and machine learning technologies. 
With the aid of techniques for evolving more concise and interpretable solutions 
[18, 36, 37], genetic programming may offer benefits with respect to many of these 
issues. We would argue that we do not expect Genetic Programming to be sufficient, 
or at least on its own the most efficient method, to fully realise automatic program-
ming, or at least the most appropriate or efficient method to achieve all the necessary 
functions that an automatic programming system requires.

We can describe an Automatic Programming system in such a manner as to 
include a number of distinct processes. Think of the complex life-cycle of software 
artefacts, designed, built and maintained by humans. The first process is likely the 
capture and translation of user-intent into an objective function, which is then passed 
on to the second process to guide code synthesis, before third and perhaps addi-
tional processes which might include code optimisation, localisation, maintenance 
and adaptation. This automatic programming system will also be a learning agent, 
embodied in and interacting with some environment. It is likely to require the ability 
to build models of its environment and the other agents (e.g., its users) with which 
it interacts, which for example, might facilitate more “intelligent” responses to the 
translation of user-intent into an objective function.

https://github.com/mgbellemare/Arcade-Learning-Environment
https://github.com/mgbellemare/Arcade-Learning-Environment
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It is likely that the best tool(s) for the translation of user-intent into an objective 
function does not include Genetic Programming. For example, natural language pro-
cessing technologies such as neural networks are more likely to dominate here. It is 
more likely that Genetic Programming will play a significant role in code synthesis 
and perhaps its adaptation (think genetic improvement programming), and that other 
heuristics and exact methods might be employed during optimisation (if not also 
during code synthesis). The learning process could employ various approaches to 
Machine Learning, likely hybridised to include neural networks, perhaps evolution-
ary computation, logic and reasoning.

One way to facilitate combining approaches from potentially useful fields such 
as Machine Learning, GP, Analytics, Optimisation, Search-based Software Engi-
neering [17], program repair and improvement [39, 54, 65] etc., might include the 
development of appropriate software. For example, the python implementation of 
PushGP [52] opens this algorithm to a wider community beyond the field of GP, in 
particular those working in analytics and big data.

3.6  Trust, transparency, competence, reliability and ethics

Achieving the idealised form of automatic programming would be  to solve an AI-
complete problem and to facilitate the development of a form of general artificial, or 
machine, intelligence. We therefore have, as a community of researchers, a responsi-
bility to consider the wider implications of such a technology for society. In addition 
to transparency of decision making, trust, competence and reliability of automatic 
programming systems, this work raises legal and ethical questions such as “Who is 
the author?,” “Who is liable when the automatic programming system produces unde-
sirable results?,” and “How do we avoid bias in the algorithms [66]?” These are just 
a sample of issues that need serious attention. One approach is to shift responsibility 
towards the designer of the intelligent algorithm to ensure that it is well behaved [63].

Recently the European Commission’s High-level expert group on Artificial Intel-
ligence published “Ethics Guidelines for Trustworthy AI” [22], which builds upon 
principles identified by the European Group on Ethics in Science and New Technol-
ogies [9]. The key ideas behind trustworthy AI are that AI systems are lawful, ethi-
cal and robust. Being lawful refers to the systems’ adherence to all the relevant regu-
lations and laws. Robustness requires us to have confidence that the AI system will 
perform in a safe, secure and reliable manner and not unintentionally cause harm. 
Being ethical requires that ethical principles and values are respected. In realising 
AI, seven requirements are identified:

1. The need to respect human agency and oversight.
2. Technical robustness and safety.
3. Privacy and data governance.
4. Transparency.
5. Diversity, non-discrimination and fairness.
6. Environmental and societal well-being.
7. Accountability.
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As responsible researchers there are clearly many issues which need to be 
taken into consideration when embarking upon research in this domain, and 
there is a clear need for further research and dialogue to be undertaken in how 
to approach the creation of trustworthy AI. Bringing this back to Automatic 
Programming, one advantage of increasingly higher-level code is its transpar-
ency. Higher-level languages are more open to human readability. This increas-
ing transparency is desirable for multiple reasons, including, trust in the gener-
ated software, the ability to understand the generated software models leading to 
the potential to uncover new scientific knowledge, and the ability to modify and 
maintain the resulting software perhaps improving its competence and reliability. 
These properties would bring us closer to a form of Artificial Intelligence where 
we achieve augmented human performance by being able to work seamlessly in 
collaboration with AI technology such as automatic programming systems.

3.7  Other issues

Many of the open issues identified in the tenth anniversary issue article [48] also 
continue to present challenges to achieving automatic programming, such as the 
halting problem, achieving generalisation, the development of strong theory, the 
pros and cons of domain knowledge and the “A to I ratio,” the large number of 
parameters, and dependence on syntax rather than behaviour and semantics.

4  Conclusion

As a field Genetic Programming has enjoyed significant success perhaps best 
illustrated through its many successful applications captured in the annual 
HUMIES competition. Despite this success, Genetic Programming has not 
achieved its stated goal of realising automatic programming. We presented what 
we mean by automatic programming and discussed some of the obstacles to its 
realisation, and we  challenge the community to refocus its efforts towards the 
goal of automatic programming. We are optimistic that significant gains will be 
made towards automatic programming over the coming years, and that these will 
represent some of the biggest successes and impact that this field can bring to 
computer science and machine intelligence.
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