
Grammatical Swarm: A variable-length

Particle Swarm Algorithm

Michael O’Neill1, Finbar Leahy2, and Anthony Brabazon1

1 University College Dublin, Belfield, Dublin 4, Ireland.
m.oneill@ucd.ie, anthony.brabazon@ucd.ie

2 University of Limerick, Limerick, Ireland.
finbarleahy@gmail.com

This study examines a variable-length Particle Swarm Algorithm for Social
Programming. The Grammatical Swarm algorithm is a form of Social Pro-
gramming as it uses Particle Swarm Optimisation, a social swarm algorithm,
for the automatic generation of programs. This study extends earlier work
on a fixed-length incarnation of Grammatical Swarm, where each individual
particle represents choices of program construction rules, where these rules
are specified using a Backus-Naur Form grammar. A selection of benchmark
problems from the field of Genetic Programming are tackled and performance
is compared to that of fixed-length Grammatical Swarm and of Grammatical
Evolution. The results demonstrate that it is possible to successfully generate
programs using a variable-length Particle Swarm Algorithm, however, based
on the problems analysed it is recommended that the simpler bounded Gram-
matical Swarm be adopted.

1 Introduction

One model of social learning that has attracted interest in recent years is
drawn from a swarm metaphor. Two popular variants of swarm models ex-
ist, those inspired by studies of social insects such as ant colonies, and those
inspired by studies of the flocking behavior of birds and fish. This study fo-
cuses on the latter. The essence of these systems is that they exhibit flexibility,
robustness and self-organization [2]. Although the systems can exhibit remark-
able coordination of activities between individuals, this coordination does not
stem from a ‘center of control’ or a ‘directed’ intelligence, rather it is self-
organizing and emergent. Social ‘swarm’ researchers have emphasized the role
of social learning processes in these models [6, 7]. In essence, social behavior
helps individuals to adapt to their environment, as it ensures that they obtain
access to more information than that captured by their own senses.

2 Michael O’Neill, Finbar Leahy, and Anthony Brabazon

This paper details an investigation examining a variable-length Particle
Swarm Algorithm for the automated construction of a program using a So-
cial Programming model. The performance of this variable-length Particle
Swarm approach is compared to its fixed-length counterpart [15, 17] and to
Grammatical Evolution on a number of benchmark problems. In the Gram-
matical Swarm (GS) methodology developed in this paper, each particle or
real-valued vector, represents choices of program construction rules specified
as production rules of a Backus-Naur Form grammar.

This approach is grounded in the linear Genetic Programming represen-
tation adopted in Grammatical Evolution (GE) [18], which uses grammars to
guide the construction of syntactically correct programs, specified by variable-
length genotypic binary or integer strings. The search heuristic adopted with
GE is a variable-length Genetic Algorithm. A variable-length representation
is adopted as the size of the program is not known a-priori and must itself
be determined automatically. In the GS technique presented here, a particle’s
real-valued vector is used in the same manner as the genotypic binary string
in GE. This results in a new form of automatic programming based on social
learning, which we dub Social Programming, or Swarm Programming. It is
interesting to note that this approach is completely devoid of any crossover
operator characteristic of Genetic Programming.

The remainder of the paper is structured as follows. Before describing
the Grammatical Swarm algorithm in section 4, introductions to the salient
features of Particle Swarm Optimization (PSO) and Grammatical Evolution
(GE) are provided in sections 2 and 3 respectively. Section 5 details the exper-
imental approach adopted and results, and finally section 6 details conclusions
and future work.

2 Particle Swarm Optimization

In the context of PSO, a swarm can be defined as ‘... a population of interact-
ing elements that is able to optimize some global objective through collabo-
rative search of a space.’ [6](p. xxvii). The nature of the interacting elements
(particles) depends on the problem domain, in this study they represent pro-
gram construction rules. These particles move (fly) in an n-dimensional search
space, in an attempt to uncover ever-better solutions to the problem of in-
terest. Each of the particles has two associated properties, a current position
and a velocity. Each particle has a memory of the best location in the search
space that it has found so far (pbest), and knows the best location found to
date by all the particles in the population (or in an alternative version of
the algorithm, a neighborhood around each particle) (gbest). At each step of
the algorithm, particles are displaced from their current position by applying
a velocity vector to them. The velocity size / direction is influenced by the
velocity in the previous iteration of the algorithm (simulates ‘momentum’),
and the location of a particle relative to its pbest and gbest. Therefore, at each

Grammatical Swarm 3

step, the size and direction of each particle’s move is a function of its own
history (experience), and the social influence of its peer group.

220 20253101203220240 102203 55 202221

241 133 30 204 140 39 202 203 10274

Fig. 1. An example GE individuals’ genome represented as integers for ease of
reading.

A number of variants of the particle swarm algorithm (PSA) exist. The
following paragraphs provide a description of a basic continuous version of the
algorithm.

i. Initialize each particle in the population by randomly selecting values for
its location and velocity vectors.

ii. Calculate the fitness value of each particle. If the current fitness value for
a particle is greater than the best fitness value found for the particle so
far, then revise pbest.

iii. Determine the location of the particle with the highest fitness and revise
gbest if necessary.

iv. For each particle, calculate its velocity according to equation 1.
v. Update the location of each particle according to equation 3.
vi. Repeat steps ii - v until stopping criteria are met.

The update algorithm for particle i’s velocity vector vi is:

vi(t + 1) = (w ∗ vi(t)) + (c1 ∗ R1 ∗ (pbest − xi)) + (c2 ∗ R2 ∗ (gbest − xi)) (1)

where
w = wmax − ((wmax − wmin)/itermax) ∗ iter (2)

In equation 1, pbest is the location of the best solution found to-date by particle
i, gbest is the location of the global-best solution found by all particles to date,
c1 and c2 are the weights associated with the pbest and the gbest terms in the
velocity update equation, xi is particle i’s current location, and R1 and R2 are
randomly drawn from U(0,1). The term w represents a momentum coefficient
which is reduced according to equation 2 as the algorithm iterates. In equation
2, itermax and iter are the total number of iterations the algorithm will run
for, and the current iteration value respectively, and wmax and wmin set
the upper and lower boundaries on the value of the momentum coefficient.
The velocity update on any dimension is constrained to a maximum value of
vmax. Once the velocity update for particle i is determined, its position is
updated (equation 3), and pbest is updated if necessary (equations 4 & 5).

4 Michael O’Neill, Finbar Leahy, and Anthony Brabazon

xi(t + 1) = xi(t) + vi(t + 1) (3)

yi(t + 1) = yi(t) if, f(xi(t)) ≤ f(yi(t)) (4)

yi(t + 1) = xi(t) if, f(xi(t)) > f(yi(t)) (5)

After the location of all particles have been updated, a check is made to
determine whether gbest needs to be updated (equation 6).

ŷ ∈ (y0, y1, ..., yn)|f(ŷ) = max (f(y0), f(y1), ..., f(yn)) (6)

3 Grammatical Evolution

Grammatical Evolution (GE) is an evolutionary algorithm that can evolve
computer programs in any language [18, 19, 20, 21, 22], and can be consid-
ered a form of grammar-based genetic programming. GE has enjoyed particu-
lar success in the domain of Financial Modelling [3] amongst numerous other
applications including Bioinformatics, Systems Biology, Combinatorial Opti-
misation and Design [16, 13, 5, 4]. Rather than representing the programs as
parse trees, as in GP [8, 9, 1, 10, 11], a linear genome representation is used. A
genotype-phenotype mapping is employed such that each individual’s variable
length binary string, contains in its codons (groups of 8 bits) the information
to select production rules from a Backus Naur Form (BNF) grammar. The
grammar allows the generation of programs in an arbitrary language that are
guaranteed to be syntactically correct, and as such it is used as a generative
grammar, as opposed to the classical use of grammars in compilers to check
syntactic correctness of sentences. The user can tailor the grammar to pro-
duce solutions that are purely syntactically constrained, and can incorporate
domain knowledge by biasing the grammar to produce very specific forms of
sentences. BNF is a notation that represents a language in the form of pro-
duction rules. It is comprised of a set of non-terminals that can be mapped
to elements of the set of terminals (the primitive symbols that can be used
to construct the output program or sentence(s)), according to the production
rules. A simple example BNF grammar is given below, where <expr> is the
start symbol from which all programs are generated. These productions state
that <expr> can be replaced with either one of <expr><op><expr> or <var>.
An <op> can become either +, -, or *, and a <var> can become either x, or y.

<expr> ::= <expr><op><expr> (0)

| <var> (1)

<op> ::= + (0)

| - (1)

| * (2)

Grammatical Swarm 5

<var> ::= x (0)

| y (1)

The grammar is used in a developmental process to construct a program by
applying production rules, selected by the genome, beginning from the start
symbol of the grammar. In order to select a production rule in GE, the next
codon value on the genome is read, interpreted, and placed in the following
formula:

Rule = c % r

where % represents the modulus operator, c is the codon integer value, and r
is the number of rules for the current non-terminal of interest.

Given the example individual’s genome (where each 8-bit codon is repre-
sented as an integer for ease of reading) in Fig.1, the first codon integer value
is 220, and given that we have 2 rules to select from for <expr> as in the
above example, we get 220 % 2 = 0. <expr> will therefore be replaced with
<expr><op><expr>.

Beginning from the the left hand side of the genome, codon integer val-
ues are generated and used to select appropriate rules for the left-most non-
terminal in the developing program from the BNF grammar, until one of the
following situations arise: (a) A complete program is generated. This occurs
when all the non-terminals in the expression being mapped are transformed
into elements from the terminal set of the BNF grammar. (b) The end of
the genome is reached, in which case the wrapping operator is invoked. This
results in the return of the genome reading frame to the left hand side of the
genome once again. The reading of codons will then continue unless an upper
threshold representing the maximum number of wrapping events has occurred
during this individuals mapping process. (c) In the event that a threshold on
the number of wrapping events has occurred and the individual is still incom-
pletely mapped, the mapping process is halted, and the individual assigned
the lowest possible fitness value. Returning to the example individual, the
left-most <expr> in <expr><op><expr> is mapped by reading the next codon
integer value 240. This codon is then used as follows: 240 % 2 = 0 to
become another <expr><op><expr>. The developing program now looks like
<expr><op><expr><op><expr>. Continuing to read subsequent codons and
always mapping the left-most non-terminal the individual finally generates
the expression y*x-x-x+x, leaving a number of unused codons at the end of
the individual, which are deemed to be introns and simply ignored. A full
description of GE can be found in [18], and some more recent developments
are covered in [3, 14].

4 Grammatical Swarm

Grammatical Swarm (GS) adopts a Particle Swarm learning algorithm cou-
pled to a Grammatical Evolution (GE) genotype-phenotype mapping to gen-
erate programs in an arbitrary language [15]. The update equations for the

6 Michael O’Neill, Finbar Leahy, and Anthony Brabazon

swarm algorithm are as described earlier, with additional constraints placed
on the velocity and particle location dimension values, such that maximum
velocities vmax are bound to ±255, and each dimension is bound to the range
[0,255] (denoted as cmin and cmax respectively). Note that this is a contin-
uous swarm algorithm with real-valued particle vectors. The standard GE
mapping function is adopted, with the real-values in the particle vectors be-
ing rounded up or down to the nearest integer value for the mapping process.
In contrast to earlier studies on GS this study adopts variable-length vectors.
A vector’s elements (values) may be used more than once if wrapping occurs,
and it is also possible that not all dimensions will be used during the map-
ping process if a complete program comprised only of terminal symbols, is
generated before reaching the end of the vector. In this latter case, the ex-
tra dimension values are simply ignored and considered introns that may be
switched on in subsequent iterations. Although the vectors were bounded in
length in earlier studies not all elements were necessarily used to construct
a program during the mapping process, and as such the programs generated
were variable in size.

4.1 Variable-length Particle Strategies

Four different approaches to a variable-length particle swarm algorithm were
investigated in this study.

Strategy I

Each particle in the swarm is compared to the global best particle (gbest) to
determine if there is a difference between the length of the particle’s vector
and the length of the gbest vector. If there is no difference between the vector
sizes then a length update is not required and the algorithm simply moves on
and compares the next particle to gbest. However, when there is a difference
between the vector lengths, the particle is either extended or truncated. If the
current particles, pi vector length is shorter than the length of gbest, elements
are added to the particle’s vector extending it so that it is now equivalent in
length to that of gbest. The particle’s new elements contain values which are
copied directly from gbest. For example, if gbest is a vector containing fifty
elements and the current particle has been extended from forty five to fifty
elements then the values contained in the last 5 elements (46-50) of gbest are
copied into the five new elements of the current particle. If the particle has a
greater number of elements than the gbest particle, then the extra elements are
simply truncated so that both gbest and the current particle have equivalent
vector lengths.

Strategy II

This strategy is similar to the first strategy, the only difference is the method
in which the new elements are copied. In the first strategy, when the current

Grammatical Swarm 7

particle, pi is extended the particle’s new elements are populated by values
which are copied directly from gbest. In Strategy II, values are not copied
from gbest instead random numbers are generated in the range [cmin, cmax]
and these values are copied into each of pi’s new elements.

Strategy III

The third strategy involves the use of probabilities. Given a specified proba-
bility, the length of the particle is either increased or decreased. A maximum
of one elements can only be changed at a time i.e. either an element is added
or removed from the current particle, pi. If pi is longer than gbest then the
last element of pi is discarded. If pi is shorter than gbest then pi is increased
by adding an extra element to its vector. In this situation the new element
takes the value of a random number in the range [cmin, cmax].

Strategy IV

The fourth strategy involves the generation of a random number to determine
the number of elements that will be added to or removed from the current
particle, pi. If the length of pi is shorter than the length of gbest the dif-
ference, dif between the length of gbest and the length of pi is calculated.
Then a random integer is generated in the range [0, dif]. The result of this
calculation is then used to determine how many elements will be truncated
from pi. A similar strategy is applied when the length of pi is smaller than the
length of gbest. However, in this case the random number generated is used
to determine the number of elements that pi will be extended by. After pi is
extended, each of these extended elements are then populated with random
numbers generated in the range [cmin, cmax].

A strategy is not applied every time it was possible to modify the current
particle (pi), instead applying a strategy is determined by the outcome of
a certain probability function i.e. the outcome of this function is used to
determine if a strategy is to be applied to pi. In our current implementation,
a probability of 0.5 was selected. Therefore 50% of the time a length-modifying
strategy is applied and 50% of the time the length of pi is not modified.

For each particle in the swarm, a random number in the range [1,100]
is generated, which determines its initial length in terms of the number of
codons.

5 Proof of Concept Experiments & Results

A diverse selection of benchmark programs from the literature on Genetic
Programming are tackled using Grammatical Swarm to demonstrate proof

8 Michael O’Neill, Finbar Leahy, and Anthony Brabazon

of concept for the variable-length GS methodology. The parameters adopted
across the following experiments are c1 = c2 = 1.0, wmax = 0.9, wmin = 0.4,
cmin = 0 (minimum value a coordinate may take), cmax = 255 (maximum
value a coordinate may take). In addition, a swarm size of 30 running for
1000 iterations is used, and 100 independent runs are performed for each
experimental setup with average results being reported.

The same problems are also tackled with GS’s fixed-length counterpart
(using 100 dimensions) and GE in order to determine how well the variable-
length GS algorithm is performing at program generation in relation to the
more traditional variable-length Genetic Algorithm search engine of standard
GE. In an attempt to achieve a relatively fair comparison of results given the
differences between the search engines of Grammatical Swarm and Grammat-
ical Evolution, we have restricted each algorithm in the number of individuals
they process. Grammatical Swarm running for 1000 iterations with a swarm
size of 30 processes 30,000 individuals, therefore, a standard population size of
500 running for 60 generations is adopted for Grammatical Evolution. The re-
maining parameters for Grammatical Evolution are roulette selection, steady
state replacement, one-point crossover with probability of 0.9, and a bit mu-
tation with probability of 0.01.

5.1 Santa Fe Ant trail

The Santa Fe ant trail is a standard problem in the area of GP and can be
considered a deceptive planning problem with many local and global optima
[12]. The objective is to find a computer program to control an artificial ant so
that it can find all 89 pieces of food located on a non-continuous trail within a
specified number of time steps, the trail being located on a 32 by 32 toroidal
grid. The ant can only turn left, right, move one square forward, and may also
look ahead one square in the direction it is facing to determine if that square
contains a piece of food. All actions, with the exception of looking ahead for
food, take one time step to execute. The ant starts in the top left-hand corner
of the grid facing the first piece of food on the trail. The grammar used in
this problem is different to the ones used later for symbolic regression and the
multiplexer problem in that we wish to produce a multi-line function in this
case, as opposed to a single line expression. The grammar for the Santa Fe
ant trail problem is given below.

<code> ::= <line> | <code> <line>

<line> ::= <condition> | <op>

<condition> ::= if(food_ahead()) { <line> } else { <line> }

<op> ::= left(); | right(); | move();

5.2 Quartic Symbolic Regression

The target function is f(a) = a + a2 + a3 + a4, and 100 randomly generated
input-output vectors are created for each call to the target function, with

Grammatical Swarm 9

values for the input variable drawn from the range [0,1]. The fitness for this
problem is given by the reciprocal of the sum, taken over the 100 fitness cases,
of the absolute error between the evolved and target functions. The grammar
adopted for this problem is as follows:

<expr> ::= <expr> <op> <expr> | <var>

<op> ::= + | - | * | /

<var> ::= a

5.3 3 Multiplexer

An instance of a multiplexer problem is tackled in order to further verify
that it is possible to generate programs using Grammatical Swarm. The aim
with this problem is to discover a boolean expression that behaves as a 3
Multiplexer. There are 8 fitness cases for this instance, representing all possible
input-output pairs. Fitness is the number of input cases for which the evolved
expression returns the correct output. The grammar adopted for this problem
is as follows:

<mult> ::= guess = <bexpr> ;

<bexpr> ::= (<bexpr> <bilop> <bexpr>)

| <ulop> (<bexpr>)

| <input>

<bilop> ::= and | or

<ulop> ::= not

<input> ::= input0 | input1 | input2

5.4 Mastermind

In this problem the code breaker attempts to guess the correct combination
of colored pins in a solution. When an evolved solution to this problem (i.e. a
combination of pins) is to be evaluated, it receives one point for each pin that
has the correct color, regardless of its position. If all pins are in the correct
order then an additional point is awarded to that solution. This means that
ordering information is only presented when the correct order has been found
for the whole string of pins.

A solution therefore, is in a local optimum if it has all the correct colors,
but in the wrong positions. The difficulty of this problem is controlled by
the number of pins and the number of colors in the target combination. The
instance tackled here uses 4 colors and 8 pins with the following target values
3 2 1 3 1 3 2 0.

The grammar adopted is as follows.

<pin> ::= <pin> <pin> | 0 | 1 | 2 | 3

10 Michael O’Neill, Finbar Leahy, and Anthony Brabazon

5.5 Results

Results averaged over 100 runs showing the best fitness, and the cumulative
frequency of success for the four variable length grammatical swarm (VGS)
variants are presented in Figures 2, 3, 4, and 5.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 100 200 300 400 500 600 700 800 900 1000

M
ea

n
F

itn
es

s
(1

00
 R

un
s)

Iteration

VGS - Santa Fe Ant Trail

VGS I - Best
VGS I - Avg
VGS I - Best
VGS II - Avg

VGS III - Best
VGS III - Avg

VGS IV - Best
VGS IV - Avg

 0

 5

 10

 15

 20

 25

 30

 35

 0 100 200 300 400 500 600 700 800 900 1000

C
um

ul
at

iv
e

F
re

qu
en

cy
 o

f S
uc

ce
ss

(1
00

 R
un

s)

Iteration

VGS - Santa Fe Ant Trail

VGS I
VGS II
VGS III
VGS IV

Fig. 2. Plot of the mean fitness on the Santa Fe Ant trail problem instance (left),
and the cumulative frequency of success (right).

Grammatical Swarm 11

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500 600 700 800 900 1000

M
ea

n
F

itn
es

s
(1

00
 R

un
s)

Iteration

VGS - 3 Multiplexer

VGS I - Best
VGS I - Avg
VGS I - Best
VGS II - Avg

VGS III - Best
VGS III - Avg

VGS IV - Best
VGS IV - Avg

 0

 10

 20

 30

 40

 50

 60

 0 100 200 300 400 500 600 700 800 900 1000
C

um
ul

at
iv

e
F

re
qu

en
cy

 o
f S

uc
ce

ss
(1

00
 R

un
s)

Iteration

VGS - 3 Multiplexer

VGS I
VGS II
VGS III
VGS IV

Fig. 3. Plot of the mean fitness on the 3 multiplexer problem instance (left), and
the cumulative frequency of success (right).

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 100 200 300 400 500 600 700 800 900 1000

M
ea

n
F

itn
es

s
(1

00
 R

un
s)

Iteration

VGS - Quartic Symbolic Regression

VGS I - Best
VGS I - Avg
VGS I - Best
VGS II - Avg

VGS III - Best
VGS III - Avg

VGS IV - Best
VGS IV - Avg

 0

 2

 4

 6

 8

 10

 12

 14

 0 100 200 300 400 500 600 700 800 900 1000

C
um

ul
at

iv
e

F
re

qu
en

cy
 o

f S
uc

ce
ss

(1
00

 R
un

s)

Iteration

VGS - Quartic Symbolic Regression

VGS I
VGS II
VGS III
VGS IV

Fig. 4. Plot of the mean fitness on the Quartic Symbolic Regression problem
instance (left), and the cumulative frequency of success (right).

12 Michael O’Neill, Finbar Leahy, and Anthony Brabazon

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500 600 700 800 900 1000

M
ea

n
F

itn
es

s
(1

00
 R

un
s)

Iteration

VGS - Mastermind

VGS I - Best
VGS I - Avg
VGS I - Best
VGS II - Avg

VGS III - Best
VGS III - Avg

VGS IV - Best
VGS IV - Avg

 0

 2

 4

 6

 8

 10

 12

 14

 0 100 200 300 400 500 600 700 800 900 1000
C

um
ul

at
iv

e
F

re
qu

en
cy

 o
f S

uc
ce

ss
(1

00
 R

un
s)

Iteration

VGS - Mastermind

VGS I
VGS II
VGS III
VGS IV

Fig. 5. Plot of the mean fitness on the Mastermind problem instance (left), and
the cumulative frequency of success (right).

Tables 1, 2, 3 and 4 outline a comparison of the results across the four
variable-length particle swarm strategies analysed in this study. While there
is no clear winner across all four problems strategies, III and IV were the
most successful overall, with strategy IV producing best performance on the
Santa Fe ant and Multiplexer problems, while strategy III had the better
performance on the Symbolic Regression and Mastermind instances. It is in-
teresting to note that the mean length of the gbest particle never grows beyond
65 codons at the last iteration across all four problems, demonstrating that
bloat does not appear to have impacted on these results.

Table 1. A comparison of the results obtained for the four different variable-length
Particle Swarm Algorithm strategies on the Santa Fe Ant trail.

Mean Best Successful Mean gbest

Fitness Runs Codon Length

Strategy

I .77 27 50
II .76 24 51
III .78 27 51
IV .8 31 61

Grammatical Swarm 13

Table 2. A comparison of the results obtained for the four different variable-length
Particle Swarm Algorithm strategies on the Multiplexer problem instance.

Mean Best Successful Mean gbest

Fitness Runs Codon Length

Strategy

I .93 54 49
II .94 55 52
III .94 54 57
IV .94 57 53

Table 3. A comparison of the results obtained for the four different variable-length
Particle Swarm Algorithm strategies on the quartic symbolic regression problem
instance.

Mean Best Successful Mean gbest

Fitness Runs Codon Length

Strategy

I .2 12 45
II .19 10 49
III .23 13 55
IV .15 5 54

Table 4. A comparison of the results obtained for the four different variable-length
Particle Swarm Algorithm strategies on the Mastermind problem.

Mean Best Successful Mean gbest

Fitness Runs Codon Length

Strategy

I .89 10 61
II .9 12 57
III .9 14 65
IV .9 12 60

5.6 Summary

Table 5 provides a summary and comparison of the performance of the fixed
and variable-length forms of GS and GE on each of the problem domains tack-
led. The best variable-length strategy outperforms GE on the Mastermind in-
stance and has a similar performance to the fixed-length form of GS. On the
other three problems the fixed-length form of GS outperforms variable-length
GS in terms of the number of successful runs finding the target solution. On
both the Santa Fe ant and Symbolic Regression problems, GE outperforms
GS. The key finding is that the results demonstrate proof of concept that a
variable-length particle swarm algorithm can successfully generate solutions
to problems of interest. In this initial study, we have not attempted parameter

14 Michael O’Neill, Finbar Leahy, and Anthony Brabazon

optimization for the various variable-length strategies and this may lead to
further improvements of the variable-length particle swarm algorithm. Given
the relative simplicity of the Swarm algorithm, the small population sizes in-
volved, and the complete absence of a crossover operator synonymous with
program evolution in GP, it is impressive that solutions to each of the bench-
mark problems have been obtained. Based on the findings in this study there is
no clear winner between the bounded and variable-length forms of GS, and as
such the recommendation at present would be to adopt the simpler bounded
GS, although future investigations may find in the variable-length algorithm’s
favour.

Table 5. A comparison of the results obtained for Grammatical Swarm and Gram-
matical Evolution across all the problems analyzed.

Successful Runs

Santa Fe ant

GS (variable) 31
GS (bounded) 38

GE 58

Multiplexer

GS (variable) 57
GS (bounded) 87

GE 56

Symbolic Regression

GS (variable) 13
GS (bounded) 28

GE 85

Mastermind

GS (variable) 14
GS (bounded) 13

GE 10

6 Conclusions & Future Work

This study demonstrates the feasibility of successfully generating computer
programs using a variable-length form of Grammatical Swarm, and demon-
strates its application to a diverse set of benchmark program-generation prob-
lems. A performance comparison to Grammatical Evolution has shown that
Grammatical Swarm is on a par with Grammatical Evolution, and is capable
of generating solutions with much smaller populations, with a fixed-length
vector representation, an absence of any crossover, and no concept of selec-
tion or replacement. A performance comparison of the variable-length and

Grammatical Swarm 15

fixed-length forms of Grammatical Swarm reveal that the simpler fixed-length
version is superior for the experimental setups and problems examined here.

The results presented are very encouraging for future development of the
relatively simple Grammatical Swarm algorithm, and other potential Social
or Swarm Programming variants.

References

1. Banzhaf, W., Nordin, P., Keller, R.E. and Francone, F.D. (1998). Genetic Pro-

gramming – An Introduction; On the Automatic Evolution of Computer Pro-

grams and its Applications. Morgan Kaufmann.
2. Bonabeau, E., Dorigo, M. and Theraulaz, G. (1999). Swarm Intelligence: From

natural to artificial systems, Oxford: Oxford University Press.
3. Brabazon, A. and O’Neill, M. 2006. Biologically Inspired Algorithms for Finan-

cial Modelling. Springer.
4. Cleary, R. and O’Neill, M. 2005. An Attribute Grammar Decoder for the 01

MultiConstrained Knapsack Problem. In LNCS 3448 Pr oc. of Evolutionary

Computation in Combinatorial Optimization EvoCOP 2005, pp.34-45, Lau-
sanne, Switzerland. Springer.

5. Hemberg, M. and O’Reilly, U-M. 2002. GENR8 - Using Grammatical Evolu-
tion In A Surface Design Tool. In Proc. of the First Gra mmatical Evolution

Workshop GEWS2002, pp.120-123. New York City, New York, US. ISGEC.
6. Kennedy, J., Eberhart, R. and Shi, Y. (2001). Swarm Intelligence, San Mateo,

California: Morgan Kauffman.
7. Kennedy, J. and Eberhart, R. (1995). Particle swarm optimization, Proceedings

of the IEEE International Conference on Neural Networks, December 1995,
pp.1942-1948.

8. Koza, J.R. (1992). Genetic Programming. MIT Press.
9. Koza, J.R. (1994). Genetic Programming II: Automatic Discovery of Reusable

Programs. MIT Press.
10. Koza, J.R., Andre, D., Bennett III and F.H., Keane, M. (1999). Genetic Pro-

gramming 3: Darwinian Invention and Problem So lving. Morgan Kaufmann.
11. Koza, J.R., Keane, M., Streeter, M.J., Mydlowec, W., Yu, J., Lanza, G. (2003).

Genetic Programming IV: Routine Human-Co mpetitive Machine Intelligence.
Kluwer Academic Publishers.

12. Langdon, W.B. and Poli, R. (1998). Why Ants are Hard. In Genetic Program-

ming 1998: Proceedings of the Th ird Annual Conference, University of Wis-
consin, Madison, Wisconsin, USA, pp. 193-201, Morgan Kaufmann.

13. Moore, J.H. and Hahn, L.W. (2004). Systems Biology Modeling in Human
Genetics Using Petri Nets and Grammatical Evolution . In LNCS 3102 Proc. of

the Genetic and Evolutionary Computation Conference GECCO 2004, Seattle,
WA, USA, pp.392-401. Springer.

14. O’Neill, M. and Brabazon, A. (2005). Recent Adventures in Grammatical Evo-
lution. In Computer Methods and Systems CMS’05, Krakow, Poland, pp.245-
252. Oprogramowanie Naukowo-Techniczne.

15. O’Neill, M. and Brabazon, A. (2004). Grammatical Swarm. In LNCS 3102
Proc. of the Genetic and Evolutionary Computation Conferen ce GECCO 2004,
Seattle, WA, USA, pp.163-174. Springer.

16 Michael O’Neill, Finbar Leahy, and Anthony Brabazon

16. O’Neill, M., Adley, C. and Brabazon, A. (2005). A Grammatical Evolution
Approach to Eukaryotic Promoter Recognition. In Proc. of Bioinformatics IN-

FORM 2005, Dublin City University, Dublin, Ireland.
17. O’Neill, M., Brabazon, A. and Adley, C. (2004). The automatic generation of

programs for Classification using Grammatical Swarm. In Proc. of the Congress

on Evolutionary Computation CEC 2004, Portland, OR, USA, pp.104-110.
IEEE.

18. O’Neill, M. and Ryan, C. (2003). Grammatical Evolution: Evolutionary Auto-

matic Programming in an Arbitrary Language. Kluwer Academic Publishers.
19. O’Neill, M. (2001). Automatic Programming in an Arbitrary Language: Evolving

Programs in Grammatical Evolution. PhD thesis, University of Limerick, 2001.
20. O’Neill, M. and Ryan, C. (2001). Grammatical Evolution, IEEE Trans. Evolu-

tionary Computation. 2001.
21. O’Neill, M., Ryan, C., Keijzer M. and Cattolico M. (2003). Crossover in Gram-

matical Evolution. Genetic Programming and E volvable Machines, Vol. 4 No.
1. Kluwer Academic Publishers, 2003.

22. Ryan, C., Collins, J.J. and O’Neill, M. (1998). Grammatical Evolution: Evolving
Programs for an Arbitrary Language. Proc. of the First European Workshop on

GP, 83-95, Springer-Verlag.
23. Silva, A., Neves, A. and Costa, E. (2002). An Empirical Comparison of Particle

Swarm and Predator Prey Optimisation. In LN AI 2464, Artificial Intelligence

and Cognitive Science, the 13th Irish Conference AICS 2002, pp. 103-110, Lim-
erick, Ireland, Springer.

