
Testing a Quantum-inspired Evolutionary
Algorithm by applying it to Non-linear
Principal Component Analysis of the Implied
Volatility Smile

Kai Fan1,2, Conall O’Sullivan2, Anthony Brabazon1 and Michael O’Neill1

1 Natural Computing Research and Applications Group,
University College Dublin, Ireland.
kai.fan@ucd.ie; anthony.brabazon@ucd.ie; m.oneill@ucd.ie

2 School of Business, University College Dublin, Ireland.
conall.osullivan@ucd.ie

Summary. Principal Component Analysis (PCA) is a standard statistical tech-
nique that is frequently employed in the analysis of large correlated data sets. As it
stands, PCA is limited to linear space. We examine a technique for non-linear PCA
by transferring the data from the non-linear space to linear space, where the weights
on the non-linear functions are optimised using a Quantum-inspired Evolutionary
Algorithm. This non-linear principal component analysis is used to examine the lin-
ear and non-linear dynamics of the implied volatility smile derived from FTSE 100
stock index options over a sample period of 500 days.

Key words: Non-linear principal component analysis (NLPCA), quantum-
inspired evolutionary algorithm (QIEA), implied volatility smile (IVS)

1 Introduction

This paper introduces a non-linear principal component analysis (NLPCA)
methodology which uses a quantum-inspired real number encoding rather than
neural network as in the traditional NLPCA approach. The NLPCA is used
to determine the non-linear principal components that drive the variations in
the implied volatility smile over time. The implied volatility smile (IVS) is
how markets represent option prices. Option prices change from day to day to
reflect changes in the asset price that the options are written on, the market
conditions, such as volatility and risk aversion and general economic trends.
This of use in the pricing and hedging of assets depend on the evolution of
the IVS.

2 K. Fan, C. O’Sullivan, A. Brabazon and M. O’Neill

1.1 Quantum-inspired Evolutionary Algorithm

Quantum mechanics is an extension of classical mechanics which models be-
haviours of natural systems that are observed particularly at very short time
or distance scales. An example of such a system is a sub-atomic particle,
such as a free electron. A complex-valued (deterministic) function of time and
space co-ordinates, called the wave-function, is associated with the system: it
describes the quantum state the system is in. The standard interpretation of
Quantum Mechanics is that this abstract wave-function allows us to calculate
probabilities of outcomes of concrete experiments. The squared modulus of
the wave-function is a probability density function (PDF): it describes the
probability that an observation of, for example, a particle will find the par-
ticle at a given time in a given region of space. The wave-function satisfies
the Schrödinger equation. This equation can be thought of as describing the
time evolution of the wave-function — and so the PDF — at each point
in space: as time goes on, the PDF becomes more “spread out” over space,
and our knowledge of the position of the particle becomes less precise, until
an observation is carried out; then, according to the usual interpretation, the
wave-function “collapses” to a particular classical state (or eigenstate), in this
case a particular position, and the spreading out of the PDF starts all over
again.

Before the observation we may regard the system as being in a linear com-
bination of all possible classical states (this is called superposition of states);
then the act of observation causes one such classical state to be chosen, with
probability given by the PDF. Note that the wave function may interfere
with itself (for example, if a barrier with slits is placed in the “path” of a
particle) and this interference may be constructive or destructive, that is, the
probability of detecting a particle in a given position may go up or go down.

More generally, we may seek to observe properties of quantum systems
other than position, e.g., energy, momentum, or the quantum spin of an elec-
tron, photon or other particle. [Spin is incorporated by necessity in Dirac’s
relativistic extension of the wave equation; in fact spin is one of the arguments
of the wave-function.] Such properties are called observables. Observables may
be either continuous (e.g., position of a particle) or discrete (e.g., the energy
of an electron in a bound state in an atom). Some observables may only take
finitely many values, e.g., there are only two possible values for a given par-
ticle’s spin: “up” or “down”. This last is an example of a two-state system:
in such a system the quantum state ψ is a linear superposition of just two
eigenstates, say |0〉 and |1〉 in the standard Dirac bra-ket notation, that is,

ψ = α|0〉+ β|1〉,

where α and β are complex numbers with |α|2 + |β|2 = 1. Here |0〉 and |1〉 are
basis vectors for a 2-dimensional complex Hilbert space. A two-state system
where the states are normalised and orthogonal, as here, may be regarded as

Applying Quantum-inspired Evolutionary Algorithm to non-linear PCA 3

a quantum bit or qubit .3 It is thought of as being in eigenstates |0〉 and |1〉
simultaneously, until an observation is made and the quantum state collapses
to |0〉 (with probability |α|2) or |1〉 (with probability |β|2). The relation |α|2 +
|β|2 = 1 captures the fact that precisely one of |0〉, |1〉 must be observed, so
their probabilities of observation must sum to 1.

A quantum computer is one which works with qubits instead of the (classi-
cal) bits used by usual computers. Benioff [1] first considered a Turing machine
which used a tape containing what we would call qubits. Feynman [6] devel-
oped examples of physical computing systems not equivalent to the standard
model of deterministic computation, the Turing machine.

In recent years there has been a substantial interest in the theory and
design of quantum computers, and the design of programs which could run on
such computers, stimulated by Shor’s discovery of a quantum factoring algo-
rithm which would run faster than possible clasically. One interesting strand
of research has been the use of natural computing (for example Genetic Pro-
gramming (GP)) to generate quantum circuits or programs (algorithms) for
quantum computers [18]. (Genetic programming is an evolutionary algorithm
based methodology inspired by biological evolution to find computer programs
that perform a user-defined task. Therefore it is a machine learning technique
used to optimize a population of computer programs according to a fitness
landscape determined by a program’s ability to perform a given computa-
tional task.) There has also been associated work in a reverse direction which
draws inspiration from concepts in quantum mechanics in order to design
novel natural computing algorithms. This is currently an area of active re-
search interest. For example, quantum-inspired concepts have been applied
to the domains of evolutionary algorithms [15, 8, 9, 20, 21], social computing
[22], neuro-computing [13, 7, 19], and immuno-computing [14, 11]. A claimed
benefit of these algorithms is that because they use a quantum representation,
they can maintain a good balance between exploration and exploitation. It
is also suggested that they offer computational efficiencies as use of a quan-
tum representation can allow the use of smaller population sizes than typical
evolutionary algorithms.

Quantum-inspired evolutionary algorithms (QIEA) offer interesting poten-
tial. As yet, due to their novelty, only a small number of recent papers have
implemented a QIEA, typically reporting good results [20, 21]. Consequently,
we have a limited understanding of the performance of these algorithms and
further testing is required in order to determine both their effectiveness and
their efficiency. It is also noted that although a wide-variety of biologically-
inspired algorithms have been applied for financial modelling [2], the QIEA
methodology has not yet been applied to the finance domain. This study ad-
dresses both of these research gaps.

3Geometrically, a qubit is a compact 2-dimensional complex manifold, called the
Bloch sphere.

4 K. Fan, C. O’Sullivan, A. Brabazon and M. O’Neill

Natural Computing

Evolutionary
computing

Quantum
computing

Quantum evolutionary
computing

Fig. 1. Quantum-inspired evolutionary computing

1.2 Structure of Chapter

The rest of this chapter is organised as follows. The next section provides
a concise overview of QIEA, concentrating on the quantum-inspired genetic
algorithm (QIGA), and introduces NLPCA based on QIGA. We then outline
the experimental methodology adopted. The remaining sections provide the
results of these experiments followed by a number of conclusions.

2 The Quantum-inspired Genetic Algorithm

The best-known application of quantum-inspired concepts in evolutionary
computing is the quantum-inspired genetic algorithm (QIGA) [15, 8, 9, 20, 21].
The QIGA is based on the concepts of a qubit and the superposition of states.
In essence, in QIGAs the traditional representations used in evolutionary al-
gorithms (binary, numeric and symbolic) are extended to include a quantum
representation.

A crucial difference between a qubit and a (classical) bit is that multiple
qubits can exhibit quantum entanglement. Entanglement is when the wave
function of a system composed of many particles cannot be separated into
independent wave functions, one for each particle. A measurement made on
one particle can produce, through the collapse of the total wavefunction, an
instantaneous effect on other particles with which it is entangled, even if they
are far apart. Entanglement is a nonlocal property that allows a set of qubits
to be highly correlated. Entanglement also allows many states to be acted on
simultaneously, unlike bits that can only have one value at a time. The use of
entanglement in quantum computers is sometimes called quantum parallelism,
and gives a possible explanation for the power of quantum computing: because
the state of the quantum computer (i.e., the state of the system considered
as a whole) can be in a quantum superposition of many different classical
computational states, these classical computations can all be carried out at
the same time.

Applying Quantum-inspired Evolutionary Algorithm to non-linear PCA 5

The quantum equivalent of a classical operator on bits is an evolution
(not to be confused with the evolution of EAs). It transforms an input to an
output, e.g., by rotation or Hadamard gate, and operates without measuring
the value of the qubit(s). Thus it effectively does a parallel computation on
all the qubits at once and gives rise to a new superposition.

In the language of evolutionary computation a system of m qubits may be
referred to as a quantum chromosome and can be written as a matrix with
two rows: [

α1 α2 . . . αm

β1 β2 . . . βm

]
. (1)

A key point when considering quantum systems is that they can compactly
convey information on a large number of possible system states. In classical bit
strings, a string of length m can represent 2m possible states. However, a quan-
tum space of m qubits has 2m dimensions (as a complex manifold).4 Thus, a
single qubit register of length m can simultaneously represent all possible bit
strings of length 2m, e.g., an 8 qubit system can simultaneously encode 256
distinct strings. This implies that it is possible to modify standard evolution-
ary algorithms to work with very few, or even a single quantum individual,
rather than having to use a large population of solution encodings. The qubit
representation can also help to maintain diversity during the search process of
an evolutionary algorithm, due to its capability to represent multiple system
states simultaneously.

2.1 Representing a Quantum System

There are many ways that a quantum system could be defined in order to
encode a set of binary (solution) strings. For example, in the following 3 qubit
quantum system, the quantum chromosome is defined using the three pairs of
amplitudes below [

1√
2

√
3

2
1
2

1√
2

1
2

√
3

2

]
(2)

These numbers are the probabilities that a qubit (unit of information) will
be observed in a particular eigenstate rather than another. Taking the first
qubit, the occurrence of either state 0 or 1 is equally likely as both α1 and
β1 have the same amplitude. Following on from the definition of the 3 qubit
system, the (quantum) state of the system is given by

√
3

4
√

2
|000〉+ 3

4
√

2
|001〉+ 1

4
√

2
|010〉+

√
3

4
√

2
|011〉+

√
3

4
√

2
|100〉+ 3

4
√

2
|101〉+ 1

4
√

2
|110〉+

√
3

4
√

2
|111〉 (3)

To provide intuition on this point, consider the system state |000〉. The
associated probability amplitude for this state is

√
3

4
√

2
and this is derived

4It can be shown that, because of entanglement, an m-qubit physical system has
2m+1 − 2 degrees of freedom, much larger than the 2m degrees a classical version
would have.

6 K. Fan, C. O’Sullivan, A. Brabazon and M. O’Neill

from the probability amplitudes of the 0 state for each of the three indi-
vidual qubits (1√

2
∗
√

3
2 ∗ 1

2 = 0.25). The associated probabilities of each
of the individual states (|000〉, |001〉, |010〉, |011〉, |100〉, |101〉, |110〉, |111〉) are
3
32 , 9

32 , 1
32 , 3

32 , 3
32 , 9

32 , 1
32 , 3

32 respectively. Taking the first of these states as an
example, (

√
3

4
√

2
)2 = 3

32 .

2.2 Real-Valued Quantum-inspired Evolutionary Algorithms

In the initial literature which introduced the QIGA, a binary representation
was adopted, wherein each quantum chromosome was restricted to consist of
a series of 0s and 1s. The methodology was modified to include real-valued
vectors by da Cruz et al., [4]. As with binary-representation QIGA, real-
valued QIGA maintains a distinction between a quantum population and an
observed population of, in this case, real-valued solution vectors. However the
quantum individuals have a different form to those in binary-representation
QIGA. The quantum population Q(t) is comprised of N quantum individuals
(qi : i = 1, 2, 3, . . . , N), where each individual i is comprised of G genes
(gij : j = 1, 2, 3, . . . , G). Each of these genes consist of a pair of values qij =
(pij , σij) where pij , σij ∈ < represent the mean and the width of a square
pulse. Representing a gene in this manner has a parallel with the quantum
concept of superposition of states as a gene is specified by a range of possible
values, rather than by a single unique value.

The original QIGA algorithms, e.g., [8, 9] are based very closely on physical
qubits, but the “quantum-inspired” algorithm of da Cruz et al. [4] used in this
chapter draws less inspiration from quantum mechanics since it:

• does not use the idea of a quantum system (in particular, no qubits);
• only allows for constructive (not destructive) interference, and that inter-

ference is among “wave-functions” of different individuals;
• uses real numbers as weights, rather than the complex numbers which arise

in superposition of states in physical systems;
• the PDFs used (uniform distributions) are not those arising in physical

systems.

However, the da Cruz et al algorithm does periodically sample from a distribu-
tion to get a “classical” population, which can be regarded as a wave-function
(quantum state) collapsing to a classical state upon observation.

Algorithm

The real-valued QIGA algorithm is as follows

Set t=0

Initialise Q(t) of N individuals with G genes

While (t < max t)

Applying Quantum-inspired Evolutionary Algorithm to non-linear PCA 7

Create the PDFs (and corresponding CDFs, which describe the probability
distributions of real-valued random variables, see equation(6)) for
each gene locus using the quantum individuals

Create a temporary population, denoted E(T), of K real-valued solution
vectors by observing Q(t) (via the CDFs)

If (t=0) Then C(t)=E(t)
(Note: the population C(T) is maintained between iterations of the algorithm)
Else E(t)=Outcome of crossover between E(t) and C(t)

Evaluate E(t)
C(t)= K best individuals from E(t) U C(t)

End if

With the N best individuals from C(t)
Q(t+1)=Output of translate operation on Q(t)
Q(t+1)=Output of resize operation on Q(t+1)
t=t+1

Endwhile

Initialising the Quantum Population

A quantum chromosome, which is observed to give a specific solution vector
of real-numbers, is made up of several quantum genes. The number of genes
is determined by the required dimensionality of the solution vector. At the
start of the algorithm, each quantum gene is initialised by randomly selecting
a value from within the range of allowable values for that dimension. A gene’s
width value is set to the range of allowable values for the dimension. For
example, if the known allowable values for dimension j are [−75, 75] then qij

(dimension j in quantum chromosome i) is initially determined by randomly
selecting a value from this range (say) -50. The corresponding width value
will be 150. Hence, qij = (−50, 150). The square pulse need not be entirely
within the allowable range for a dimension when it is initially created as the
algorithm will automatically adjust for this as it executes. The height of the
pulse arising from a gene j in chromosome i is calculated using

hij =
1/σij

N
(4)

where N is the number of individuals in the quantum population. This equa-
tion ensures that the probability density functions (PDFs) (see next subsec-
tion) used to generate the observed individual solution vectors will have a
total area equal to one. Fig. 2 provides an illustration of a quantum gene
where N=4.

Observing the Quantum Chromosomes

In order to generate a population of real-valued solution vectors, a series of ob-
servations must be undertaken using the population of quantum chromosomes
(individuals). A pseudo-interference process between the quantum individuals
is simulated by summing up the square pulses for each individual gene across
all members of the quantum population. This generates a separate PDF (just

8 K. Fan, C. O’Sullivan, A. Brabazon and M. O’Neill

-150 -100 -50 0 50 100 150

0.00498

0.00332

0.00166

0.0000

Fig. 2. A square pulse, representing a quantum gene, with a width of 150, centred
on -50. The height of the gate is 0.005

the sum of the square pulses) for each gene and eq. 4 ensures that the area
under this PDF is one. Hence, the PDF for gene j on iteration t is

PDFj(t) =
j∑

i

gij (5)

where gij is the square pulse of the jth gene of the ith quantum individual
(of N). To use this information to obtain an observation, the PDF is first
converted into its corresponding Cumulative Distribution Function (CDF)

CDFj(x) =
∫ Uj

Lj

PDFj(x)dx (6)

where Uj and Lj are the upper and lower limits of the probability distribution.
By generating a random number r from (0,1), the CDF can be used to obtain
an observation of a real number x, where x = CDF−1(r). If the generated
value x is outside the allowable real valued range for that dimension, the
generated value is limited to its allowable boundary value. A separate PDF
and CDF is calculated for each of the G gene positions. Once these have
been calculated, the observation process is iterated to create a temporary
population with K members, denoted E(t).

Crossover Mechanism

The crossover operation takes place between C(t) and the temporary popu-
lation E(t). This step could be operationalised in a variety of ways with [4]
choosing to adopt a variant of uniform crossover, without an explicit selection
operator. After the K crossover operations have been performed, with the
resulting children being copied into E(t), the best K individuals ∈ C(t)∪E(t)
are copied into C(t).

Applying Quantum-inspired Evolutionary Algorithm to non-linear PCA 9

Updating the Quantum Chromosomes

The N quantum chromosomes are updated using the N best individuals from
C(t) after performing the crossover step. Each quantum gene’s mean value is
altered using

pij = cij (7)

so that the mean value of the jth gene of the ith quantum chromosome is
given by the corresponding jth value of the ith ranked individual in C(t).

The next step is to update the corresponding width value of the jth gene.
The objective of this process is to vary the exploration / exploitation char-
acteristics of the search algorithm, depending on the feedback from previous
iterations. If the search process is continuing to uncover many new better so-
lutions, then the exploration phase should be continued by keeping the widths
relatively broad. However, if the search process is not uncovering many new
better solutions, the widths are reduced in order to encourage finer-grained
search around already discovered good regions of the solution space. There are
multiple ways this general approach could be operationalised. For example,
[4] suggests use of the 1/5th mutation rule from Evolutionary Strategies [16]
whereby

if φ < 1/5 then σij = σijg

if φ > 1/5 then σij = σij/g

if φ = 1/5 then σij = σij

where σij is the width of the ith quantum chromosome’s jth gene, g is a
constant in the range [0, 1] and φ is the proportion of individuals in the new
population that have improved their fitness.

In this study we update the width of the ith quantum chromosome’s jth

gene by comparing each successive generation’s best fitness function. If the
best fitness function has improved (disimproved) we shrink (enlarge) the width
in order to improve the local (global) search.

QIGA vs Canonical Genetic Algorithm

A number of distinctions between the QIGA above and the canonical GA
(CGA) can be noted. In the CGA, the population of solutions persists from
generation to generation, albeit in a changing form. In contrast, in QIGA, the
population of solutions in P (t) are discarded at the end of each loop. The
described QIGA, unlike CGA, does not have explicit concepts of crossover
or mutation. However, the adaptation of the quantum chromosomes in each
iteration does embed implicit selection as the best solution is selected and is

10 K. Fan, C. O’Sullivan, A. Brabazon and M. O’Neill

used to adapt the quantum chromosome(s). The crossover and mutation steps
are also implicitly present, as the adaptation of the quantum chromosome in
effect creates diversity, as it makes different states of the system more or less
likely over time. Another distinction between the QIGA and the CGA is that
the CGA operates directly on representations of the solution (the members
of the current population of solutions), whereas in QIGA the update step is
performed on the probability amplitudes of the ground states for each qubit
making up the quantum chromosome(s).

Observing the Quantum Chromosomes

In order to generate a population of real-valued solution vectors, a series of ob-
servations must be undertaken using the population of quantum chromosomes
(individuals). A pseudo-interference process between the quantum individuals
is simulated by summing up the square pulses for each individual gene across
all members of the quantum population. This generates a separate PDF (just
the sum of the square pulses) for each gene and eq. 4 ensures that the area
under this PDF is one. Hence, the PDF for gene j on iteration t is

PDFj(t) =
j∑

i

gij (8)

where gij is the square pulse of the jth gene of the ith quantum individual
(of N). To use this information to obtain an observation, the PDF is first
converted into its corresponding Cumulative Distribution Function (CDF)

CDFj(x) =
∫ Uj

Lj

PDFj(x)dx (9)

where Uj and Lj are the upper and lower limits of the probability distribution.
By generating a random number r from (0,1), the CDF can be used to obtain
an observation of a real number x, where x = CDF−1(r). If the generated
value x is outside the allowable real valued range for that dimension, the
generated value is limited to its allowable boundary value. A separate PDF
and CDF is calculated for each of the G gene positions. Once these have
been calculated, the observation process is iterated to create a temporary
population with K members, denoted E(t).

In the next section we use non-linear principal component analysis (NLPCA)
to decompose the variation of the implied volatility smile into a smaller num-
ber of non-linear principal components. To run NLPCA a set of weights on
a number of non-linear mapping functions must be determined by optimising
the proportion of variation explained by the principal components. Given the
non-linearities inherent in options prices and in the NLPCA method QIEA
is used to determine these weights in case the optimisation problem is not
convex.

Applying Quantum-inspired Evolutionary Algorithm to non-linear PCA 11

3 Non-Linear Principal Component Analysis

Suppose X ∈ Mm,n is a panel data set that contains correlated data points
along the columns, evaluated at different points in time along the rows. Given
that X consists of correlated data points, the variation in X can be decom-
posed into a small number r of orthogonal principal components with r < n,
resulting in a reduction of the dimension of the problem with only a small
loss in information. The principal components from standard PCA are linear
combinations (along the rows) of the original data set. If it is suspected that
the data set contains non-linearities, a common procedure is to “linearise”
the data set using suitable transformations prior to analysis. This approach
has the advantage that it retains the simplicity of the underlying principal
component analysis (PCA) whilst gaining the ability to cope with non-linear
data. To do this we construct a modified data set XNL from the original data
set X:

XNL = G(X), (10)

where G is a function consisting of n individual mapping functions from linear
to non-linear space:

G = w1g1(X) + w2g2(X) + · · ·+ wngn(X), (11)

and where gi(X) is an individual non-linear mapping function of X and wi

is the weight on the function gi. There are an infinite number of mapping
functions gi(X) to choose from and in this paper we consider a small number
of mapping functions we think are important given the domain knowledge of
the problem under consideration (see next section). There are a total of four
functions chosen in this study and they are given as follows:

• Logistic mapping:
g1(X) = 4X ◦ (1−X), (12)

where ◦ denotes element by element matrix multiplication.
• Exponential mapping:

g2 (X) = exp (X) , (13)

where the exponential function is applied on an element by element basis.
• Hénon mapping:

g3 (X (t)) = 1− 1.4 (X(t))2 + 0.3X(t− 1), (14)

where X(t) is a single row of the data set X.
• Auto regressive process:

g4 (X (t)) = 0.25X(t− 1) + ε(t), (15)

where X(t) is as above and ε(t) is a standard normal random variable.

12 K. Fan, C. O’Sullivan, A. Brabazon and M. O’Neill

The objective of this data mapping is to compensate for any non-linearities
within X. That is to linearise the data before implementing PCA. Provided
this is performed as an integral part of the analysis, a non-linear variant
of PCA will result. The method is described as follows: we perform standard
PCA on the non-linear transfromation of the original data set and optimise the
weights on the different mapping functions with the objective of maximising
the proportion of variation explained by the first principal component from
standard PCA. A quantum-inspired evolutionary algorithm is used to find
the weights on the non-linear mapping functions gi ∈ G given the potential
for local minima. The next step in this research is to increase the number
of functions considered and optimise not only the weights but the various
parameters of the functions gi ∈ G. This is work that is currently under
investigation.

4 Implied Volatility Smiles (IVS)

In this section we explain the meaning of the implied volatility smile. A Euro-
pean call (put) option on an asset St with maturity date T and strike price K
is defined as a contingent claim with payoff at time T given by max [ST −K, 0]
(max [K − ST , 0]). The well known Black- Scholes (BS) formula for the price
of a call option on an underlying asset St is given by

CBS (St,K, r, q, τ ;σ) =Ste
−qτN (d1)−Ke−rτN (d1)

d1 =
− lnm +

(
r − q + 1

2σ2
)
τ

σ
√

τ
d2 = d1 − σ

√
τ

where τ = T − t is the time-to-maturity, t is the current time, m = K/S is the
moneyness of the option, r and q are the continuously compounded risk-free
rate and dividend yield and N(·) is the cumulative normal distribution func-
tion. Suppose a market option price, denoted by CM (St,K), is observed. The
Black-Scholes implied volatility for this option price is that value of volatility
which equates the BS model price to the market option price as follows

σBS (St,K) >0
CBS (St,K, r, q, τ ;σBS (St,K)) =CM (St,K)

If the assumptions underlying the BS option pricing model were correct, the
BS implied volatilities for options on the same underlying asset would be
constant for different strike prices and maturities. However in reality the BS
implied volatilities are varying over strike price and maturity. The variation
of implied volatilities over strike price for a fixed maturity is known as the
implied volatility smile. Given that the options are written on a single un-
derlying asset this result seems at first paradoxical, i.e. we have a number

Applying Quantum-inspired Evolutionary Algorithm to non-linear PCA 13

of different implied volatilities for a single asset which should only have one
measure for its volatility. The assumptions in the BS model can be relaxed,
such as allowing the underlying asset price to follow a more complex data gen-
erating process than the log normal stochastic process (as assumed by BS), or
allowing the underlying asset price to experience sudden discontinuous jumps
etc. When the resulting complications of these more general assumptions are
taken into account, the implied volatility smile begins to make sense and is
simply highlighting the erroneous assumptions that underpin the BS model.

Implied volatilities are frequently used in the financial markets to quote
the prices of options. The participants in the options markets do not believe
that the BS model is correct, but use the model as a convenient way of quoting
option prices. The reason is that implied volatilities usually have to be updated
less frequently than option prices themselves and implied volatilities vary less
dramatically than option prices with strike price and maturity. Option traders
and brokers monitor movements in volatility smiles closely. As option prices
change over time the implied volatility smile (for various maturities) also
changes.

If we stack the implied volatility smile (for one particular maturity) accord-
ing to the time the IVS data was recorded, that results is a time series of panel
data with highly correlated entries. Implied volatilities at different strikes are
highly correlated because as the volatility of the asset rises all implied volatil-
ities rise yet some may rise more than others. However the economic forces of
no-arbitrage (no free-lunches) ensures that the implied volatilities cannot get
too detached from one another because if they did this represents a riskless
trading opportunity for savvy investors, who sell the more expensive option
(with the higher implied volatility) and hedge it with cheaper options (with
lower implied volatilities).

PCA is an ideal tool to reduce the complexity of such a data set by ex-
plaining the variation of the IVS over time in terms of a small number of
orthogonal principal factors. The approach has been applied and the dynam-
ical properties of the implied volatility smile has been studied in recent years
using increasingly advanced principal component approaches. See Heynen,
Kemma and Vorst [10] and Fengler, Härdle and Schmidt [5] for PCA applied
to the term structure of at-the-money implied volatilities (implied volatilities
for different maturities and a fixed strike price) and see Skiadopoulos, Hodges
and Clewlow [17] for PCA applied to implied volatility smiles. The evidence
suggests that changes in the implied volatility smile are driven predominantly
by three factors. The first factor is a level factor which controls the overall
height of the implied volatility smile. The second and third factors are slope
and curvature factors across the strike price axis. However options and the
implied volatilities associated with options are multi-dimensional non-linear
instruments and standard PCA may neglect some of non-linear subleties in-
herent in option implied volatilities. This is the reason NLPCA is applied to
the IVS in this paper.

14 K. Fan, C. O’Sullivan, A. Brabazon and M. O’Neill

5 Results

5.1 Data

The data used in this study are option implied volatilities across 11 different
strikes and a number of different maturities on the FTSE 100 index. The
data consists of end-of-day settlement option implied volatilities from the
26th of March 2004 till the 17th of March 2006 consisting of 500 trading
days. FTSE 100 index options are European style options and the underlying
asset is the FTSE 100 performance index. To price options on this index one
must adjust the index by extracting the present value of future cash dividend
payments before each options expiration date. The annualised dividend yield
of the FTSE 100 index was downloaded from Datastream. The one-month
LIBOR rate was used as the risk-free rate where the LIBOR rate was converted
into a continuously compounded rate. The forward price used in the option
calculations is then simply Ft = S0e

(r−q)t where S0 is the current index price
level, Ft is the price for the forward contract maturing at time t, r is the
continuously compounded risk-free rate and q is the continuously compounded
dividend yield. Settlement prices of call and put option are calculated from
the implied volatilities using the Black-Scholes formula.

As calendar time passes the option contracts wind down towards maturity
and the observed implied volatility surface (implied volatilities plotted across
strike price and maturity) is constantly changing in terms of its moneyness
and maturity values, see figure 3. To obtain implied volatilities on a fixed
grid of moneyness and maturity the market implied volatilities were interpo-
lated using a non-parametric Nadaraya-Watson estimator, see Cont and da
Fonseca [3], so that we have interpolated implied volatilities on a fixed grid
of moneyness and maturity for all the days in the data sample. On day t an
interpolated estimate for implied volatility at a moneyness m and a time to
maturity τ is given by

It(m, τ) =

∑nm

i

∑nτ

j It(mi, τj)f(m−mi, τ − τj)∑nm

i

∑nτ

j f(m−mi, τ − τj)
,

f(x, y) = (2π)−1 exp
(−x2/h1

)
exp

(−y2/h2

)
,

where nm and nτ are the number of different option moneyness levels and
maturities available on a particular day in the sample, mi is the moneyness
and τj is the maturity of the (i, j)th observed option and h1 and h2 are the
bandwidths of the estimator across moneyness and maturity. The bandwidths
for the estimator were chosen using cross validation, where one implied volatil-
ity is removed and is then interpolated from all the other available implied
volatilities on that date. The difference between the interpolated and the ob-
served implied volatility is the cross validation error. This is calculated for all
implied volatilities available on a particular day and this error is miminised by
optimising over h1 and h2. For each day t in the sample we define the implied
volatility smile at a fixed maturity τj by

Applying Quantum-inspired Evolutionary Algorithm to non-linear PCA 15

IV S(t) = {It(1, τj), . . . , It(nm, τj)} .

We then stack these implied volatility smiles over time to form the data ma-
trix X = {IV S(1), . . . , IV S(500)}′. Non-linear principal component analysis
(NLPCA) is conducted on the implied volatility smile and logarithm of the
implied volatility smile for maturities ranging from 2 to 6 months.

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Moneyness (K/S)

Im
pl

ie
d

V
ol

at
ili

es

Plot of implied volatility smiles for various maturities on the 25−Oct−2005

24 days
52
87
143
234
325

(a) 05-Oct-2005

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
0.1

0.15

0.2

0.25

Moneyness (K/S)

Im
pl

ie
d

V
ol

at
ili

es

Plot of implied volatility smiles for various maturities on the 17−March−2006

35 days
63
91
182
273
364

(b) 17-Mar-2006

Fig. 3. Implied Volatility Smiles on two different dates.

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
0.05

0.1

0.15

0.2

0.25

0.3

Moneyness (K/S)

Im
pl

ie
d

V
ol

at
ili

es

Plot of interpolated implied volatility smiles for various maturities on the 25−Oct−2005

2 months
3
4
5
6
7

(a) 05-Oct-2005

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
0.1

0.12

0.14

0.16

0.18

0.2

0.22

Moneyness (K/S)

Im
pl

ie
d

V
ol

at
ili

es

Plot of interpolated implied volatility smiles for various maturities on the 17−Mar−2006

2 months
3
4
5
6
7

(b) 17-Mar-2006

Fig. 4. Interpolated Implied Volatility Smiles on the same dates as above.

5.2 Result Analysis

The first three principal components from linear PCA explain up to approx-
imately 96% of the variation in the level of the implied volatility smile, de-
pending on the maturity of the IVS considered. As 96% in PCA analysis may
be overfitting, we would rather target the first principal component than the

16 K. Fan, C. O’Sullivan, A. Brabazon and M. O’Neill

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Moneyness (K/S)

P
rin

ci
pa

l c
om

po
ne

nt
s

Plot of the first three principal components from standard PCA

1st factor
2nd
3rd

(a) 2 month IVS

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Moneyness (K/S)

P
rin

ci
pa

l c
om

po
ne

nt
s

Plot of the first three principal components from standard PCA

1st factor
2nd
3rd

(b) 5 month IVS

Fig. 5. Three linear principal components for an IVS with a maturity of 2 and 5
months.

first three components and this why the objective function in the NLPCA was
chosen to be proportion of variation explained by the first principal compo-
nent.

The analysis of the eigenfactors from standard PCA for the implied volatil-
ity smiles of each maturity shows that the first factor has a positive effect on
all implied volatilities. This eigenfactor can be interpreted as a level or a
volatility factor. An increase in this factor causes the whole IVS to increase
and causes all options to become more expensive since options are increas-
ing functions of volatility. The second factor has a negative effect for implied
volatilities with K < S, e.g. out-of-the-money puts, and a positive effect for
implied volatilities with K > S, e.g. out-of-the-money calls. This factor can
be interpreted as a skew factor and increase in this factor causes out-of-the
money calls to become more expensive relative to out-of-the-money puts. The
third factor has a positive effect for implied volatilities with K < S and K > S
e.g. out-of-the-money calls and puts, and a negative effect for implied volatil-
ities that are close to the money with K ≈ S. This factor can be interpreted
as a curvature factor an an increase in this factor causes out-of-the money
calls and puts to become more expensive relative to near-the-money calls and
puts.

Table 1. Parameters setting in Quantum-inspired Genetic Algorithm

Population size Generation Number Crossover rate Shrinkage Enlargement

200 50 0.7 0.8 1.2

In our NLPCA-QIEA analysis, the weights on the mapping functions are
optimised by using a quantum-inspired genetic algorithm to maximise the
objective function which is the proportion of variation in the data explained

Applying Quantum-inspired Evolutionary Algorithm to non-linear PCA 17

0 10 20 30 40 50
0.62

0.64

0.66

0.68

0.7

0.72

0.74

Population

P
ro

po
rt

io
n

of
 th

e
fir

st
 p

rin
ci

pa
l c

om
po

ne
nt

Local Search

(a) Local Search

0 50 100 150 200
0.66

0.67

0.68

0.69

0.7

0.71

0.72

0.73

0.74

0.75

0.76

Generation

P
ro

po
rt

io
n

of
 th

e
fir

st
 p

rin
ci

pa
l c

om
po

ne
nt

Global Search

(b) Global Search

Fig. 6. Local and Global search

Table 2. Results of QIGA. The proportion explained by the first principal compo-
nent (PC) from the last generation are averaged over 30 runs and compared with
the parameter values from 30 runs of a Matlab optimiser.

Maturity Linear PCA (%) Non-linear PCA(%) Standard deviation(%) Matlab optimiser(%)

2 months 64.15 80.47 0.04 80.97
3 months 69.57 80.27 0.04 81.17
4 months 72.90 80.87 0.03 81.30
5 months 77.01 81.67 0.01 82.04
6 months 80.27 84.35 0.01 84.38

Table 3. Results of QIGA. The optimal and average weights on mapping functions
from the last generation are averaged over 30 runs.

Maturity(months) Logistic Exp Hénon AR

2 0.000 0.3652 0.9814 0.3669
3 0.000 0.3634 0.9791 0.3769
4 0.000 0.3614 0.9800 0.3885
5 0.000 0.3704 0.9800 0.3542
6 0.000 0.3653 0.9815 0.3798

by the first principal component. The weights are also optimised using the
Matlab function fminsearch. Fminsearch uses the simplex search method of
Lagarias et al [12]. This is a direct search method that does not use nu-
merical or analytic gradients. Figure 5 depicts the evolution of the objective
function versus the generation number. The parameter settings in the QIEA
are given in Table 1. NLPCA is more efficient than linear PCA especially
for the options with shorter times-to-maturity. For example, for the 2 month
IVS the 1st principal component from NLPCA explains approximately 80%
of the variation of the data versus only 64% for standard PCA. However the

18 K. Fan, C. O’Sullivan, A. Brabazon and M. O’Neill

outperformance of NLPCA is to be expected given the extra degrees of free-
dom involved since it uses four non-linear functions that first operate on the
data before PCA is applied. It is interesting to note that for the two month
IVS the first component from NLPCA with four non-linear functions explains
80% of the variation whilst the first three components from linear PCA ex-
plain up to 96% of the variation in the data. Although 96% is a higher level
of explanatory power this is more than likely overfitting historical data at
the expense of poor out-of-sample performance. If we forecast the evolution
of the IVS out-of-sample using the techniques in this paper, a parsimonious
procedure would be to include a more general set of time series models in
the set of non-linear functions and use these to forecast the first factor from
NLPCA and reconstruct future IVS’s from the weights derived from histor-
ical analysis. This would be more parsimonious than fitting a separate time
series model to three linear principal components and then reconstructing the
future IVS as would have to be done in linear PCA. Thus, at least for shorter
term options, the NLPCA method can explain 80% of the variation in the
data with one linear combination of non-linear functions of the data versus
approximately 64% for linear PCA. Thus rather than increasing the number
of principal components in the analysis we have shown that another route
is to use non-linear principal components to achieve a statistical significant
increase in explanatory power.

It is interesting to note the weights on the various functions that were
derived in the NLPCA. The weight on the logistic function are always very
close to zero thus this mapping had nothing to contribute to the NLPCA.
The weights on the exponential function and the autogressive function were
approximately the same at a little over 1

3 and the weights on the Hénon func-
tion were close to one. The exponential function is capturing the skew effect
mentioned earlier. The auto regressive function is capturing serial correlation
in the daily movements of the IVS (something that cannot be done under
linear PCA). The fixed value on the AR function was taken to be 0.25 thus
when we multiply this by the weight of appoximately 0.35 this results in se-
rial correlation coefficient of approximately 0.088. Thus there is positive serial
correlation in the data and this represents a possible trading strategy. The
Hénon function is capturing a combination of a curvature effect (mentioned
earlier), due to the squaring of the data, and a time series effect due to the
dependence on past values. The weight on this function is close to one mean-
ing this function is relatively important in the analysis because the average
values of the entries in the vector 1− 1.4X(t)2 + 0.3X(t− 1) are close to one
and the weigth multiplied by this average value are relatively large compared
to the values from the other functions. This implies that the function depend-
ing on the curvature of the current IVS and the past level of the IVS is very
important for explaining the variation in the IVS over time.

Applying Quantum-inspired Evolutionary Algorithm to non-linear PCA 19

6 Conclusions

A non-linear principal component analysis was conducted on the implied
volatility smile derived from FTSE 100 stock index options. It was shown,
at least for shorter term options, that the NLPCA method can explain 80%
of the variation in the data with one non-linear principal component versus
approximately 64% for one linear principal component in linear PCA. Thus
the non-linear functions used in the NLPCA captured some of the higher order
non-linear factors that affect the data and effectly increased the explanatory
power of the method.

The weights on these non-linear functions were optimised using a quantum-
inspired evolutionary algorithm (QIEA). Although the problem considered in
this paper was not high-dimensional, it has potential to be a highly non-linear
non-convex optimisation problem due to the fact that the options data anal-
ysed are highly non-linear and method used to describe the variation in the
options data is a non-linear method. Thus it was thought that this was a
reasonable problem to test out the QIEA with a view to using it for more
extensive analysis in future work. This future work consists of expanding the
number of non-linear functions being considered with a focus on including a
larger number of time series models. This would be very useful in predicting
the IVS out-of-sample and in constructing options trading strategies. Future
work could also look at mutli-objective NLPCA where the proportion of vari-
ation explained by the first factor is maximised followed by the proportion of
variation explained by the second factor, etc. Also it would be useful to relax
the restriction on the parameters of the non-linear functions used in NLPCA
and allow the QIEA to find optimal values for these parameters. All of these
extensions will result in very high-dimensional optimisation problems where
the use of evolutionary algorithms such as the QIEA may be essential.

References

1. Benioff P (1980). The Computer as a Physical System: A Microscopic Quan-
tum Mechanical Hamiltonian Model of Computers as Represented by Turing
Machines. Journal of Statistical Physics 22: 563–591.

2. Brabazon A and O’Neill M (2006). Biologically-inspired Algorithms for Fi-
nancial Modelling. Berlin Springer.

3. Cont R and da Fonseca J (2002). Dynamics of implied volatility surfaces.
Journal of Quantitative finance 2: 45-60.

4. da Cruz A, Vellasco M and Pacheco M (2006). Quantum-inspired evolu-
tionary algorithm for numerical optimization. Proceedings of the 2006 IEEE
Congress on Evolutionary Computation (CEC 2006), 16-21 July, Vancouver,
9180–9187, IEEE Press.

5. Fengler M, Härdle W and Schmidt P (2002). Common factors governing
VDAX movements and the maximum loss. Jounal of Financial Markets and
Portfolio Management 1: 16-19.

20 K. Fan, C. O’Sullivan, A. Brabazon and M. O’Neill

6. Feynman R (1982). Simulating Physics with Computers. International Jour-
nal of Theoretical Physics 21 (6&7): 467–488.

7. Garavaglia S (2002). A quantum-inspired self-organizing map (QISOM). Pro-
ceedings of 2002 International Joint Conference on Neural Networks (IJCNN
2002), 12-17 May 2002, 1779–1784, IEEE Press.

8. Han K-H and Kim J-H (2002). Quantum-inspired evolutionary algorithm for
a class of combinatorial optimization. IEEE Transactions on Evolutionary
Computation 6(6): 580–593.

9. Han K-H and Kim J-H (2002). Quantum-inspired evolutionary algorithms
with a new termination criterion, Hε gate and two-phase scheme. IEEE
Transactions on Evolutionary Computation 8(3): 156–169.

10. Heynen R and Kemma K and Vorst T. (1994). Analysis of the term structure
of implied volatilities. Journal of Financial and Quantitative Analysis 29: 31-
56.

11. Jiao L and Li Y (2005). Quantum-inspired immune clonal optimization. Pro-
ceedings of 2005 International Conference on Neural Networks and Brain
(ICNN&B 2005) 13-15 Oct. 2005, 461–466, IEEE Press.

12. Lagarias J C, Reeds J A, Wright M H and Wright P E (1998). Convergence
Properties of the Nelder-Mead Simplex Method in Low Dimensions. SIAM
Journal of Optimization, Vol. 9, Number 1: 112–147, 1998.

13. Lee C-D, Chen Y-J, Huang H-C, Hwang R-C and Yu G-R (2004). The non-
stationary signal prediction by using quantum NN. Proceedings of 2004 IEEE
International Conference on Systems, Man and Cybernetics, 10-13 Oct. 2002,
3291–3295, IEEE Press.

14. Li Y, Zhang Y, Zhao R and Jiao L (2004). The immune quantum-inspired
evolutionary algorithm. Proceedings of 2004 IEEE International Conference
on Systems, Man and Cybernetics, 10-13 Oct. 2002, 3301–3305, IEEE Press.

15. Narayanan A and Moore M (1996). Quantum-inspired genetic algorithms.
Proceedings of IEEE International Conference on Evolutionary Computa-
tion, May 1996, 61–66, IEEE Press.

16. Rechenberg I (1973). Evolutionsstrategie: Optimierung Technisher Systeme
nach Prinzipien der Biologischen Evolution. Fromman-Holzboog Verlag Stug-
gart.

17. Skiadopoulos G, Hodges S and Clewlow L (1999). The Dynamics of the S&P
500 Implied Volatility Surface. Review of Derivatives Research 3: 263-282.

18. Spector L (2004). Automatic Quantum Computer Programming: A Genetic
Programming Approach. Kluwer Academic Publishers, Boston, MA.

19. Tsai X-Y, Chen Y-J, Huang H-C, Chuang S-J and Hwang R-C (2005). Quan-
tum NN vs NN in Signal Recognition. Proceedings of the Third International
Conference on Information Technology and Applications (ICITA 05), 4-7
July 2005, 308–312, IEEE Press.

20. Yang S, Wang M and Jiao L (2004). A genetic algorithm based on quan-
tum chromosome. Proceedings of IEEE International Conference on Signal
Processing (ICSP 04), 31 Aug- 4 Sept. 2004, 1622–1625, IEEE Press.

21. Yang S, Wang M and Jiao L (2004). A novel quantum evolutionary algo-
rithm and its application. Proceedings of IEEE Congress on Evolutionary
Computation 2004 (CEC 2004), 19-23 June 2004, 820–826, IEEE Press.

22. Yang S, Wang M and Jiao L (2004). A Quantum Particle Swarm Opti-
mization. Proceedings of the Congress on Evolutionary Computation 2004
1:320–324, New Jersey: IEEE Press.

Applying Quantum-inspired Evolutionary Algorithm to non-linear PCA 21

