One-Class Time Series Classification

Stefano Mauceri

M.Sc. University College Dublin
UCD Student Number: 15203663

The thesis is submitted to University College Dublin
in fulfilment of the requirements for the degree of

DOCTOR OF PHILOSOPHY
School of Business

Head of School:
Prof. Anthony Brabazon

Research Supervisors:
Dr. James McDermott
Dr. James Sweeney
Dr. Miguel Nicolau

External Examiner:
Prof. Giuseppe Nicosia

Internal Examiner:
Dr. Paula Carroll

September, 2020

Statement of Original
Authorship

I hereby certify that the submitted work is my own work, was completed
while registered as a candidate for the degree stated on the Title Page, and I
have not obtained a degree elsewhere on the basis of the research presented
in this submitted work.

Abstract

This thesis contributes to the state of the art of time series classification and
machine learning by investigating three novel data-driven representations for
time series in the context of one-class classification. The one-class assumption
is useful for all classification problems where only data of a single class is
available for training a classifier, or those where it is not known if novel classes
may appear at prediction time or what they could look like. Notable examples
that can benefit from our research are: anomaly or novelty detection, fault
detection, identity authentication, etc.

The common thread of our research is to represent time series as feature-
vectors then used for classification. The features we extract are: (1) features
constructed using dissimilarity measures; (2) features constructed using an
evolutionary algorithm; (3) latent features constructed using neural networks.
The proposed representations are thoroughly investigated in a variety of one-
class classification experiments involving numerous benchmark methods, the
85 data-sets of the UCR/UEA archive and a data-set provided by ICON plec.

The key difference between one-class classification and binary or multi-
class classification is in the amount of effort needed to gather training data.
Binary and multi-class classifiers require exhaustively labelled training data.
This can be difficult for problems where all but the samples of one class are
scarcely available and ill-defined, e.g. anomaly detection. Or again, gather-
ing labelled data can simply be impossible due to the cost of expert labour
required to construct an appropriate data-set. Conversely, one-class classi-
fiers are trained using only samples from a single class. We present a subject
authentication problem through accelerometer data as a case study that mo-
tivates our research on one-class time series classification. We argue that it
is not realistic to assume we can gather labelled training data that represent
well both the subject of interest and a fixed population of “others”. Hence,
the need to learn a classifier using data related to the subject of interest only.

We demonstrate that, with respect to the use of raw time series, feature-
based representations allow substantial and compelling savings in terms of
storage and computational requirements, facilitate the interpretability of the

i

solutions found, and enable visualisation of time series data-sets. We find
that these advantages come at the cost of a slight loss in terms of classifi-
cation performance with respect to a 1-nearest neighbour classifier on raw
data. However, by examining data-sets one by one we detail how our repre-
sentations can outperform raw time series. Furthermore, for some applica-
tions, e.g. embedded systems, storage and computational requirements may
be more important than a slight loss in classification performance.

1ii

Acknowledgements

My deepest gratitude goes to my supervisors Dr. James McDermott (9,
Dr. James Sweeney (), and Dr. Miguel Nicolau (%), for their guidance and
advice. The support of Prof. Michael O’Neill () is truly appreciated. Special
thanks to all the colleagues of the NCRA lab for the good time. Finally, I
would like to thank Dr. Alexandros Agapitos () for helpful discussions.

I must thank ICON plc for funding this research.

I must thank the DJEI/DES/SFI/HEA Irish Centre for High-End Computing
(ICHEC) for the provision of computational facilities and support.

Last but not least, I must thank my wife, my parents, and my extended

family for making the difference every day. Thanks to all my friends for the
ninety craic. The best is yet to come.

v

https://orcid.org/0000-0002-1402-6995
https://orcid.org/0000-0002-5649-3233
https://orcid.org/0000-0002-1981-1300
https://orcid.org/0000-0001-8734-417X
http://ncra.ucd.ie/
https://orcid.org/0000-0001-7529-681X
http://www.iconplc.com/
https://www.ichec.ie/

To the quaint Emerald Isle

Contents

Statement of Original Authorship
Abstract

Acknowledgements

Publications Arising

List of Figures

List of Tables

I Background

1 Introduction
1.1 Why is this Research Important?
1.2 Onme-Class Classification
1.3 Time Series Representations
1.4 Scientific Contributions

2 Related Work

2.1 Time Series Mining

2.2 Time Series Classification
2.2.1 Intra-Class Variance
2.2.2 One-Class Classification
2.2.3 Anomaly Detection

2.3 Instance-Based Classification
2.3.1 Neural Networks-Based Classification

2.4 Feature-Based Classification
2.4.1 Dissimilarity-Based Representations .
2.4.2 Evolutionary Computation Techniques

ii

iv

ix

xiv

10
12
12
15
17
18
21
23
25

vi

3 Problem Statement and Experimental Design 27

3.1 Main Concepts 27
3.2 Experimental Data 28
3.2.1 The UCR/UEA Archive 29
3.2.2 Accelerometer Data 29
3.2.3 One-Class Labelling 31

3.3 Classifiers 32
3.4 Performance Evaluation 32
3.5 Dissimilarity Measures 33
3.6 Implementation Details 37
II Experimental Research 39
4 Dissimilarity-Based Representations 40
4.1 Proposed Method oL 41
4.1.1 Overview 41

4.1.2 Prototype Methods 42

4.2 Results. 44
4.2.1 Overview 44

4.2.2 Dissimilarity Measures and Prototype Methods 46
4.2.3 Dimensionality Reduction 49
4.2.4 Visual Exploration of Time Series Data-Sets 50

4.3 Conclusions 52
5 Feature-Based Representations via Grammatical Evolution 53
5.1 Proposed Method L. 54
5.1.1 Overview 55

5.1.2 Grammatical Evolution 56
5.1.3 Grammar and Primitives 57
5.1.4 Fitness Evaluation 59

5.2 Benchmark Methods 60
5.2.1 Random Search 61
52.2 INNwith DTW 61
5.2.3 Function and Sub-Sequence Selection 61

5.3 Experimental Design 62
5.3.1 Experimental Data 62
5.3.2 GE Configuration 63
5.3.3 Implementation Details 63

54 Results 63
54.1 Overview 64

vii

5.4.2 Subject Authentication
5.4.3 Limitations
5.5 Feature-extractors and Interpretability
5.5.1 The Features to Extract
5.5.2 The Sub-sequences from which to Extract
5.6 Conclusions

6 Auto-Encoder-Based Representations
6.1 Proposed Method
6.1.1 Overview
6.1.2 Neural Network Architectures
6.2 Experimental Design
6.2.1 Dissimilarity Measures
6.2.2 Classification Framework and Data-Sets
6.2.3 Benchmark Methods
6.2.4 Implementation Details
6.3 Results.
6.3.1 Overview
6.3.2 Learned DTW
6.3.3 Visual Exploration of Time Series Data-Sets
6.4 Conclusions

7 Comparing the Representations
7.1 Comparing Representations
711 Results.
7.2 Combining Representations
721 Results.
7.3 More Benchmark Methods
731 Results.
7.4 Conclusions o

IIT Conclusions

8 Conclusions
8.1 Scientific Contributions
8.2 Limitations
83 Future Work

Bibliography

79
80
81
82
84
84
85
85
85
87
87
95
96
101

102
102
103
116
117
117
118
119

120

121
121
124
125

128

viil

Publications Arising

1. Stefano Mauceri, Louis Smith, James Sweeney, and James McDermott.
Subject recognition using wrist-worn triaxial accelerometer data. In
International Workshop on Machine Learning, Optimization, and Big
Data, pages 574-585. Springer, 2017

2. Stefano Mauceri, James Sweeney, and James McDermott. One-class
subject authentication using feature extraction by grammatical evo-
lution on accelerometer data. In International Conference on Meta-
heuristics and Nature Inspired Computing, 2018

3. Stefano Mauceri, James Sweeney, and James McDermott. Dissimilarity-
based representations for one-class classification on time series. Pattern
Recognition, 100:107122, 2020

X

List of Figures

2.1

2.2

3.1

Time series intra-class variance. The solid line (—), and the
dashed line (---) are used to show two time series that be-
long to the same class. However, in part (a) class membership
is not immediately recognisable, unless an appropriate trans-
form is applied as in part (b). (1) Amplitude invariance can be
achieved by subtracting the mean, and dividing by the stan-
dard deviation (z-normalisation). (2) Linear trend invariance
can be achieved by de-trending the time series (we use first
order differences in our example). (3) Occlusion invariance
can be achieved by filling the missing values (we use linear
interpolation in our example). (4) Offset invariance can be
achieved by subtracting the mean. (5) Phase invariance can
be achieved by translating along the time-axis. (6) Uniform
scaling invariance can be achieved by scaling the temporal in-
dex by a certain factor (1.5 in our example). (7) Warping
invariance can be achieved by locally warping one time series
to align with the other. In part (a), the dotted lines (----) show
the alignment between the two time series as they were com-
pared through a lock-step measure [250] (e.g. Euclidean dis-
tance). In part (b), the dotted lines (-**+) show the alignment
between the two time series as they were compared through
an algorithm defined to find the alignment that has minimum
cumulative absolute difference (e.g. DTW).
Binary vs one-class classification. In part (a) a binary classifier
(—) trained to separate positive samples from the negative
ones (O/@) fails when a new class of negative samples (H)
appears at prediction time. In part (b) a one-class classifier
(==-) trained on positive samples (O) only is robust against
negative classes either known or not (@/M) at training time. .

Summary of characteristics of the data-sets in use.

14

3.2
3.3

4.1

4.2

4.3

4.4

4.5

4.6

4.7

5.1

Magnitude recordings for one day for one subject.
A randomly selected time series for each data-set in use.

DBR. On the left-hand side there are two prototypes (P1, P2)
and one time series (7') that we project into a 2-dimensional
dissimilarity space shown on the right-hand side. For illus-
tration the prototypes are projected in the dissimilarity space
too. In the brackets it is shown how the new (x,y) coordinates
are derived using a dissimilarity measure (d).
Prototype methods on 2-dimensional random data generated
from a mixture of normal distributions with n = 10. @ Ran-
dom data. [J Prototypes.
Scatter-plots of AUROC performance over all data-sets, anal-
ysed by dissimilarity measure for DBR oo, and RDqggo;.
Counts of data-sets where DBRgoy achieves a better perfor-
mance than RDjgpy (OJ) and vice-versa (M) for the EDR dis-
similarity only.o
Scatter-plots of AUROC performance over all data-sets for
the pair (Manhattan, Percentiles) compared to all the other
prototype methods paired with the same dissimilarity measure
under DBRogy. - o oo
AUROC performance for all pairs of dissimilarity measures
and prototype methods. In part (a) results are averaged over
all data-sets; in part (b) are averaged only data-sets with av-
erage number of training samples greater than 39.
[] Training samples. O Positive test samples. @ Negative test
samples. The shaded area gets darker as the distance from
training samples increases. (al) “FiftyWords”, ED, Closest,
positive class: 6. (bl) “FiftyWords”, DTW, Closest, positive
class: 6. (a2) “FacesUCR”, Ma., Centers-k-means, positive
class: 2. (b2) “FacesUCR”, Ma., Percentiles, positive class:
2. (c) “FordA”, Ch., Support vectors, positive class: -1. (d)
“ShapeletSim”, WD, Furthest, positive class: 0.

Grammar used to evolve the feature extractors.

38

el

5.2

2.3

5.4

2.5

2.6

5.7

5.8

2.9

5.10

5.11

Fitness evaluation of a feature-extractor F'. First the feature-
extractor is applied on each training/validation sample deriv-

ing the respective feature-based representation. The classifier

in use is a INN-ED. The variable x corresponds the number

of the feature we are extracting. The algorithm minimises

the classification error (1—AUROC) and the average squared
Pearson correlation coefficient with previous features on train-

ing data (R2(F)).o oo 60
Average AUROC of our algorithm for all data-sets (@). (a)
AUROC per feature. (b) AUROC per sequence of features.
Secondly, RS average AUROC for all data-sets (H). 66
Average AUROC “AccelerometerData” data-set, subjects 1 to

6. — Only subjects 1-6 are used during the feature-extraction
phase. === All subjects 1-9 are used during the feature-extraction
phase. 68
(a) Average validation (M) and test (@) AUROC for all data-

sets per feature. (b) Average validation and test AUROC for

all data-sets per sequence of features. 69
A time series per each of the 6 classes of the “SyntheticCon-
trol” data-set.o 72

Selection frequency of the grammar primitives for the first two
features extracted from each of the 6 classes of the “Synthet-
icControl” data-set. The horizontal lines represent the bar
heights we would observe if feature-extractors were generated
at random i.e. without regard to fitness. 73
2D feature-based representation of each class of the “Synthet-
icControl” data-set. O Training samples. O Normal test sam-
ples. ® Anomalous test samples. Shading represents distance
from training set. oo 74
Selection frequency of each point within a time series of the
“GunPoint” data-set. — Average time series from the data-
set. =-- Frequencies we would observe if feature-extractors
were generated at random i.e. without regard to fitness. -
Frequencies as per our algorithm. 75
Sub-sequences of the “GunPoint” data-set related to the time
interval [0 : 40]. Part (a) and (b) show the sub-sequences
related to class 1 and 2 respectively. 76
Selection frequency of each point within a time series of the
“AccelerometerData” data-set. The number in brackets in the
top left corner of each plot corresponds to a different class of
the data-set. 78

xii

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

Diagram of the proposed convolutional auto-encoder for uni-
variate time series.o
Histograms (with a log vertical scale) of the differences be-
tween pairwise dissimilarities in the original space and in the
latent space for all the considered data-sets. Numbers on the
top-right corner corresponds to the mean and standard devi-
ation of differences. Results are broken down by architecture
and dissimilarity measure.
Three time series from the “BirdChicken” data-set (class 1)
(a), and their latent representation according to a DissPCE-
DTW (with 10 layers and latent dimensionality equal to 2 X
log,(L), where L is the time series length) (b).
Three time series from the “TwoLeadECG” data-set (class 1)
(a), and their latent representation according to a DissPCE-
DTW (with 10 layers and latent dimensionality equal to 2 X
log, (L), where L is the time series length) (b).
Three time series from the “Worms” data-set (class 1) (a),
and their latent representation according to a DissPCE-DTW
(with 10 layers and latent dimensionality equal to 2 x log, (L),
where L is the time series length) (b).
Three time series from the “Worms” data-set (class 1) (a), and
their latent representation according to a DissPCAE-DTW
(with 10 layers and latent dimensionality equal to 2 x log,(L),
where L is the time series length) (b).
Dissimilarities of all training samples from the class medoid
for three data-sets. For each class of each data-set samples
are ordered according to their DTW dissimilarity from the
class medoid in the original space. Then, using the ordering
found the following dissimilarities from the class medoid are
calculated. DTW dissimilarities in the original space (—),
Euclidean distances in the original space (=*), and Euclidean
distances in the latent space according to a DissPCE-DTW
(with 10 layers and latent dimensionality equal to 2 x log,(L),
where L is the time series length) (---). The graph demon-
strates that the correlation between DTW dissimilarities in
the original space and dissimilarities in the latent space is not
spurious due the ED acting as a confounding factor.
O Positive samples. @ Negative samples. (a) “Adiac”, posi-
tive class: 9. (b) “DistalPhalanxTW?”, positive class: 8. (c)
“NonlnvasiveFatal ECGThorax1”, positive class: 33.

xiil

7.1

7.2

7.3

7.4

Critical difference diagram for the AUROC of all represen-
tations. Groups of representations that are not significantly
different are connected by a horizontal bar. (a) Shows the per-
formance of all the considered representations except FBRGE
that is considered in (b). oL
Count of max AUROC performance by representation accord-
ing to Table 7.1. RD (OJ), DBR (M), AEBR ().
Count of max AUROC performance by dissimilarity measure
according to Table 7.1. DTW (OJ), ED (M), MSM (H).

CC as a function of the time series length L. This is the CC
to represent, and to classify with the considered approaches
and a 1NN classifier equipped with the ED. — RD. --- DBR.
--- FBRGE. == AEBR.

Xiv

List of Tables

3.1
3.2
4.1

5.1
5.2

6.1

6.2

“AccelerometerData” data-set: recorded variables.
Dissimilarity measures used in this work.

The table shows AUROC averaged across all the data-sets and
rounded to the nearest integer..

Primitives used to evolve the feature extractors.
Average AUROC for the data-sets of the UCR/UEA reposi-
tory rounded to the nearest integer. (a) Performance of ev-
ery sequence of features, e.g. 1-10 means all 10 features. (b)
Benchmark methods. Columns in bold relate to our best re-
sult (1-3) (best performance with lowest dimensionality), and
the best benchmark method (INN-DTW).

Considered neural network architectures. Acronyms that con-
tains a “C” refer to convolutional networks, otherwise the net-
work is dense. Acronyms that contains “DissP” refer to net-
works that use the Lp;p loss function. Finally, acronyms that
contains a “V” refer to variational networks.
Summary of results. The table shows AUROC averaged across
all the data-sets and rounded to the nearest integer. Table
cells get darker as the AUROC increases. For each architec-
ture, results are broken down by hyper-parameter configura-
tion (number of layers, latent dimensionality where L is the
time series length, and dissimilarity measure).

XV

6.3

6.4

6.5

7.1

7.2

7.3

7.4

The table shows the Pearson correlation (R?) of pairwise dis-
similarities in the original space and in the latent space. Table
cells get darker as the correlation increases. Data are divided
in three groups: training data (TR), positive test data (TEF),
and negative test data (TEN). For each architecture, results
are broken down by hyper-parameter configuration (number of
layers, latent dimensionality where L is the time series length,
and dissimilarity measure).
The table shows the classification performance of a 1NN clas-
sifier on raw data for each of the three dissimilarity measures
considered in the chapter: DTW, ED, and MSM. Also, the
table shows the performance enabled by the latent represen-
tation of both a DissPCAE and DissPCE trained to preserve
the considered dissimilarity measures. AUROC results, for all
the 86 data-sets introduced in Section 3.2, are rounded to the
nearest integer. Cells get darker as the AUROC increases.
The table shows the Pearson correlation (R?) between pairwise
dissimilarities of raw time series measured according to differ-
ent dissimilarity measures on different sub-sets of data. In
the second part of the table is shown the correlation between
pairwise dissimilarities of raw time series and their latent rep-
resentation according to a DissPCE with 10 layers and latent
dimensionality equal to 2 x log,(L), where L is the time series

The table shows the AUROC, rounded to the nearest integer,
for all the 86 data-sets introduced in Section 3.2. Cells get
darker as the AUROC increases. Also, the table shows the
CC, and the CR allowed by each representation. L is the time
series length and [is the dimensionality of the representation.
The table shows the CC to represent, and to classify with the
considered approaches and a 1NN classifier equipped with the
ED. L is the time series length, [is the dimensionality of the
representation, and N is the number of training samples. . .
The table shows AUROC averaged across all the data-sets and
rounded to the nearest integer..
The table shows AUROC averaged across all the data-sets and
rounded to the nearest integer. L is the time series length.

92

109

. 115

117

. 119

xXvi

Part 1

Background

Chapter 1

Introduction

The aim of the present research project is to advance the field of time series
classification with a focus on one-class classification. As elaborated below,
the emphasis is not placed on specific classification algorithms, but rather on
data representation.

This chapter is organised as follows. In Section 1.1, we explain why our re-
search has several important practical applications. In Section 1.2 and 1.3 we
provide some background about the core topics of our study. In Section 1.4,
we list our scientific contributions.

1.1 Why is this Research Important?

There are many sources of unstructured digital data such as emails, mobile
phones, online transactions, sensors, and social networks. New data is con-
stantly generated resulting in massive volumes and varieties that are difficult
to manage with the technologies currently available to most organisations. At
the same time, organisations are in need of data for the purpose of knowledge
extraction, intelligent and real-time decision making, and complex problem
solving that can deliver consistent economic value. Data has become a valu-
able asset, however it is necessary to have the ability to analyse and make
sense of this resource in order to address any useful task.

The goal of machine learning algorithms [38, 77, 124] is to automatically
learn the characteristics of data and use them for future predictions with
minimal human intervention. In the context of large volumes of data, ma-
chine learning algorithms require (1) efficient learning strategies, and (2) data
representations. In this study we address both these aspects, and in doing
so we focus on a specific data type, (3) time series. We now consider these
three points in turn.

Chapter 1 Par. 1.2

(1) In several real-world scenarios it is impossible to manually annotate
data-sets with class labels due to their large scale, or other reasons. However,
partially labelled data may still be useful. Techniques that leverage such data
are referred to as semi-supervised learners [221]. These approaches combine
aspects of both supervised and unsupervised learning. As most real-world
data-sets are unlabelled and it is expensive or time consuming to label all
data using domain experts, these approaches are in high demand. Many
semi-supervised learning techniques have been proposed in the literature,
however in this work we focus on one-class classification. As detailed below,
the main assumption of one-class classification [126], closely related to the
field of anomaly detection [30], is that training data belong to a single class.

(2) Data representation is a core issue in pattern recognition [61]. The
representation is the way real-world objects and phenomena are numerically
described such that they can be related to each other in some mathematical
framework that allows learning and generalisation [58]. Data representation
is crucial because it can dramatically impact the machine learning algorithm
performance as well as the computational complexity required to solve a
particular problem, and the interpretability of the solutions found.

(3) Time series are ubiquitous as they originate from any dynamic phe-
nomenon whose state can be evaluated at different points in time. For in-
stance, the CPU usage of a computer recorded at a certain frequency for one
hour is a time series. However, although in our example we are tracking a
single variable (the CPU usage), the dimensionality of a sample can escalate
easily as we change the frequency parameter e.g. from minutes to seconds.
The main characteristic of time series is that, in contrast to mere vectors,
nearby values are correlated. In other words, past states of the considered
phenomenon can be used to understand the present state, or forecast future
ones. This has important implications for machine learning algorithms which
need to account for the temporal ordering of time series for best results.

In summary, why is this research important? This research is important
because it tackles real-world issues concerning the deployment of machine
learning algorithms at scale (1), (2). Furthermore, our work deals with time
series (3), a data type that is ubiquitous to any dynamic phenomena, and as
per its intrinsic characteristics requires ad-hoc solutions.

1.2 One-Class Classification

There is a vast range of research topics concerning time series. In this study
we focus on the field of time series classification, and representation. Specif-
ically, as motivated by our review of related works, we focus on the one-class

Chapter 1 Par. 1.3

time series classification problem that is significantly under-explored. In this
section we explain why this is an interesting problem.

In machine learning, classification is the problem of learning a mapping
function that assigns an object to the correct class. In the classical formula-
tion, the learning process is said to be supervised in the sense that the learner
is provided with a set of labelled training data. In these data each class is
expected to be adequately sampled with a number of samples per class that
is related to the complexity, and the dimensionality of the problem at hand.

These requirements of supervised classification are often difficult to satisfy
in real-world applications. This is because it may be difficult or impossible
to sample certain classes of a given problem. For instance, in the context
of network security [29, 198] there may not be known examples of network
intrusion, or there may be some but not representative of all types of intru-
sion, or again checking whether a suspicious network behaviour is related to
an intrusion or not could require up to several hours of expert analysis with
a consequent increase in terms of costs necessary to gather labelled data.

When dealing with problems where only the data related to a single class
is available at training time, or when we have data from multiple classes
but we expect to see data from novel classes at prediction time, one-class
classification may be the right learning framework to use. In one-class clas-
sification a classifier is trained using only the samples of a single class. In
other words, the goal is to learn a concept by only using examples of the same
concept [102]. As a matter of fact, to distinguish an apple from another type
of fruit humans do not need to be trained on all the types of fruit available
on the planet. It is sufficient to see a few examples of the class apple to learn
what is an apple and separate it from what is not.

Finally, another reason why we are interested in the one-class time series
classification problem is its close relation to the anomaly detection problem.
The goal of anomaly detection is to identify objects which do not conform
to the expected (normal) behaviour [30]. It is complex, if not impossible, to
answer the question what is anomalous? by enumerating all the possible ways
in which an object could diverge from its expected pattern. It seems easier
to answer the question by saying that whatever is not normal is anomalous.
Thus, in both one-class classification and anomaly detection we have only
data of a single (normal) class, and we do not know if novel (anomalous)
classes may appear at prediction time or what they would look like.

Chapter 1 Par. 1.4

1.3 Time Series Representations

Throughout classification, representation techniques are used to improve clas-
sification performance, to lower computational complexity, or to increase
model interpretability. The latter two objectives sometimes result in lower
predictive power. However, having models that have low computational com-
plexity, or that readily offer insights in the relationships they have learned
may be of primary importance for certain practical applications.

Well-established techniques (e.g. principal component analysis) which do
not consider the temporal ordering inherent to time series produce represen-
tations that enable poor classification performance [53]. In this study, we
propose three representation techniques defined to take account of the tem-
poral information contained in time series. Besides that, our primary concern
is to develop representations that can be useful in the one-class scenario. Fur-
thermore, the techniques we propose achieve dimensionality reduction, and
make both the problem and solution easier to understand.

We propose and thoroughly investigate three time series representations:
(1) dissimilarity-based representations, (2) feature-based representations via
grammatical evolution [185], and (3) auto-encoder-based representations.

(1) Dissimilarity-based representations transform a time series into a vec-
tor where each coordinate corresponds to its dissimilarity from some other
time series. By selecting dissimilarity measures defined for time series it is
possible to incorporate the temporal information into this representation.

(2) Feature-based representations via grammatical evolution transform
a time series into a vector where each coordinate is the output of a func-
tion comprised of simple building blocks (e.g. mean, standard deviation,
etc.) applied to a specific sub-sequence of the time series itself. As per its
mechanisms, the algorithm selects the functions and sub-sequences which en-
able best classification performance. As pointed out by other studies [258],
sub-sequences are key to the time series classification problem.

(3) The auto-encoder is a neural network designed to compress the in-
put into a lower-dimensional space with minimal loss of information when
the input is mapped back to the original space. In this case, we add a new
constraint: we require the pairwise dissimilarities between time series in the
lower-dimensional space to be equal to their values as measured by a dissimi-
larity measure in the original space. Thus, by selecting dissimilarity measures
specifically defined for time series it is possible to incorporate the temporal
information into this representation. In this way, we do not only learn a
new representation, but also we learn how to approximate the dissimilarity
measure used to derive the representation.

Chapter 1 Par. 1.4

1.4 Scientific Contributions

Our contributions are grounded in novel ideas on one-class time series clas-
sification and representation. As detailed below, we evaluate a wide range
of techniques. To adequately cover the variety and complexity of time series
data we test each approach on a set of 86 time series classification problems.

In Chapter 2, we provide a broad review of the state of the art in time
series classification. Furthermore, we expand the discussion to time series
data mining with a specific focus on anomaly detection. Thus, this chapter
can be considered as a knowledge repository on time series, and one of the
most comprehensive discussions available in the field.

In Chapter 3, we provide some background on one-class time series
classification, and we detail the experimental design common across all the
experimental chapters. Along with the GitHub repository where our code
is publicly available, this can be considered as a resource for researchers
who want to study the one-class time series classification problem. Also, we
introduce a proprietary data-set related to a biometric subject authentication
problem where the objective is to confirm the identity of a person through
the accelerometer time series generated by a wrist worn device. This problem
can be seen as a motivational case study for the entire research project.

In Chapter 4, we evaluate the performance of a nearest neighbour clas-
sifier paired with an extensive set of dissimilarity measures on raw time se-
ries. This is a fundamental baseline for research on one-class time series
classification that is here introduced for the first time. However, the more
important contribution of this chapter is that for the first time in the one-
class scenario, we evaluate and discuss a thorough set of methods to derive
dissimilarity-based representations. This chapter is based on work published
in the Elsevier Pattern Recognition Journal [170].

In Chapter 5, for the first time in the one-class scenario, we propose a
feature extraction framework based on grammatical evolution. In the field of
evolutionary computation there is a lack of consistent comparison of feature
extraction methods for time series with relevant benchmarks. We address
this gap, not only by testing our approach on a large set of problems, but
also comparing our performance with that of several benchmark methods.
Also, as the analysis of the literature reveals, it is not clear how to evolve
multiple features that are not redundant, a problem we tackle through our
fitness function. Finally, we use this technique, and a subject authentication
case study to point out that features extracted in a one-class classification
scenario are able to generalise to classes unseen during the feature extraction
phase. This chapter is based on work published at the 7" International
Conference on Meta-Heuristics and Nature Inspired Computing [169].

Chapter 1 Par. 1.4

In Chapter 6, we combine the non-linear dimensionality reduction power
of auto-encoders with elastic dissimilarity measures which are of central im-
portance to the time series classification problem. We demonstrate how our
approach can be used to reduce the dimensionality of raw time series while
preserving pairwise dissimilarities between samples with respect to a measure
of choice. This work is part of an ongoing journal paper draft.

In Chapter 7, we briefly compare and combine the different representa-
tions defined before. Finally, in Chapter 8 we draw our conclusions about
the overall research project, we summarise limitations, and highlight poten-
tial directions for future work.

Chapter 2

Related Work

In this chapter we discuss the scientific literature relevant to our research.
After a brief introduction to the broad field of time series mining in Sec-
tion 2.1, we turn our focus towards the time series classification problem
examined in Section 2.2. We mention the problem of intra-class variance
that motivates the need for elastic dissimilarity measures for time series in
Section 2.2.1. The one-class classification problem, a central objective of
our research, is considered in Section 2.2.2. We discuss the relation between
one-class classification and anomaly detection in Section 2.2.3.

The rest of the chapter provides the background that relates each of our
experiments to the corresponding area of research. The literature related to
Chapter 4, where we investigate dissimilarity-based representations (DBR),
is reviewed in Section 2.4.1. The literature related to Chapter 5, where
we develop an evolutionary algorithm for feature extraction, is reviewed in
Section 2.4.2. The literature related to Chapter 6, where we investigate
auto-encoder-based representations, is reviewed in Section 2.3.1.

This chapter provides a broad discussion on time series classification with
emphasis on the one-class assumption. To the best of our knowledge, there
are very few works considering one-class time series classification. We hope
that our study will motivate several directions for future research.

2.1 Time Series Mining

A time series is an ordered collection of measurements of a variable usually at
equally spaced time intervals. In most cases the ordering is temporal, how-
ever in some applications the ordering is spatial [47]. Time series are com-
mon across every scientific field including: astronomy, biology, economics,
finance, medicine, music, operational research, robotics, and telecommunica-

Chapter 2 Par. 2.1

tions. Time series research has a history of at least 350 years [129]. Forecast-
ing is often considered the main focus [48], however there are several other
research avenues among which we list the main ones below.

Several time series mining tasks are related. For example, while the
present research project focuses on time series classification, and representa-
tion, in future research some of the techniques we propose could be applied to
anomaly detection, or clustering tasks. Again, matriz profile [260], arguably
the most versatile algorithm in the field, can be used for several time series
mining tasks: anomaly detection, classification, clustering, motif and rule
discovery, segmentation, visualisation, and more.

— Analysis: studies the behaviour of a time series as a function of time [22]
e.g. period, seasonality, spectrum, trend. This is a fundamental task in
time series mining. The aim is to understand the past, and predict the
future behaviour of any dynamic phenomenon.

— Anomaly detection: aims at finding patterns that exhibit a different
behaviour than what is expected according to a base model [31].

— Classification: aims at finding a mapping function that, given a time
series, it assigns it to one of a set of classes [84].

— Clustering: aims at identifying homogeneous groups in a collection of
unlabelled time series [149].

— Dissimilarity measures: are functions defined to evaluate the dissimi-
larity between two time series. They are fundamental for a variety of time
series mining tasks [2].

— Forecasting: concerns the prediction of future values, or characteristics
(e.g. the trend) of a time series [48].

— Indexing: is the task of retrieving the most similar time series in a
database given a query time series or sub-sequence [66].

— Motif discovery: concerns the detection of repeated patterns within a
time series, or a collection of time series [159].

— Pre-processing: concerns a variety of techniques needed to deal with
noise [140], missing values [177], and time series of different length [234].

— Regression: can be seen as a generalisation of forecasting in the sense
that the target variable may belong or not the time series [233].

— Representation: concerns techniques that transform time series in order
to ease, in some regards, a mining task [20].

— Rule discovery: is the problem of finding rules relating patterns within
a time series to other patterns in the same time series, or to patterns in a
different time series [44]. For instance, the relations between the channels
of a multivariate time series can be modelled as a directed graph [257].

— Segmentation: focuses on how to segment a time series with minimum

Chapter 2 Par. 2.2

loss in respect of a certain loss function [163]. A notable application is the
detection of (often anomalous) events referred to as change-points [9].

— Summarisation: concerns techniques that provide a natural language
description of time series to facilitate mining tasks [110].

— Visualisation: concerns the graphic representation of time series to facil-
itate mining tasks [78].

2.2 Time Series Classification

Time series are ubiquitous as they originate from any dynamic phenomenon
whose state can be evaluated at different points in time. Typically, classifi-
cation is the task of assigning a time series to one of a set of classes. Time
series classification is a machine learning task with several practical applica-
tions as demonstrated by the variety of real-world problems included in the
UCR/UEA archive [46] (Section 3.2.1). This is an archive of 128 data-sets
that has proved essential for the progress of the field [12].

Over time, an extensive literature has developed on binary and multi-
class time series classification [12]. However, we have found very few works
that investigate one-class time series classification [170, 256] (Section 2.2.2).

The shape of a time series in terms of its peaks and troughs, ascending
or descending slopes, is of fundamental importance to classify a time series.
This is in line with the large research effort that is posed towards learn-
ing dissimilarity (distance) functions able to take into account invariance
of transformations in the time-axis (Section 2.2.1) as per the widely used
dynamic time warping (DTW) [205]. By treating a time series as a mere
vector, the modeller is likely to discard information needed to discriminate
between different classes. While the order-dependent nature of time series
limits the performance of off-the-shelf classifiers unable to detect sequential
structures, it also fuels the rise of several dedicated ones [12] whose usefulness
is sometimes demonstrated only on just a limited number of cases [46].

The field of time series classification heavily relies on the k-nearest neigh-
bour (kNN) classifier which is a simple and effective algorithm. For instance,
the hierarchical vote collective of transformation-based ensembles (HIVE-
COTE) [155], one of the best performing algorithms [12, 204] when eval-
uated on the data-sets of the UCR/UEA archive, relies on the l-nearest
neighbour classifier (INN) for some of its components. Again, several works
in the literature consider the 1NN classifier equipped with DTW as the stan-
dard benchmark method [12]. However, as a lazy learner [80], the nearest
neighbour classifier does not have any training phase and it needs to scan
through all the training samples each time we want to classify a new time

10

Chapter 2 Par. 2.2

series. Moreover, some hyper-parameters like the neighbourhood size k, or
the warping window size for the DTW dissimilarity, are usually selected by
cross validation [235] further increasing computational complexity.

We identify two main approaches to time series classification: (1) instance-
based methods (Section 2.3), and (2) feature-based methods (Section 2.4).
(1) Instance-based methods require the whole time series to classify. The
main example of instance-based classification is the KNN classifier equipped
with a dissimilarity measure of choice. We also include in this category deep-
learning methods (Section 2.3.1) that, for the most part, require the whole
time series to classify [70]. (2) Feature-based methods represent time series
in a vector space where therefore classification is carried out. A simple ap-
proach is to summarise a time series in a vector using its statistical moments
e.g. mean, standard deviation, etc. Other researches, quite rightly, provide
different ways to categorise approaches to time series classification [2, 12, 70].
Our idea is to separate approaches that learn a new representation of the time
series (2), from those that not (1). Representations with good descriptive
power (i.e. that allow high classification performance), allow us to discard
raw time series and retain only their feature-based representation. This can
offer substantial advantages, in terms of computational complexity, that can
be fundamental to certain applications like classification in embedded devices
that have limited computational and memory resources [21].

In general, our research efforts are directed towards feature-based rep-
resentations for time series. Nevertheless, some of the methods we propose
attempt to bridge instance and feature-based approaches. For instance, in
Chapter 4 we represent time series as vectors of features where each coordi-
nate corresponds to the dissimilarity of a time series from another time series
of a set of carefully selected prototypes. In Chapter 6, we embed time series in
a vector space where they are required to preserve their mutual dissimilarity
as it is in the original space. Both methods transform time series in feature
vectors but they try to preserve the neighbourhood structure of data that is
fundamental to instance-based classification with the NN classifier.

The scope of our research is limited to offline univariate time series clas-
sification. While this is the most common setup for time series classifica-
tion [12], there are also other variants. In the early time series classification
problem [213] the goal is to classify a streamed time series as soon as pos-
sible. This approach is common in fault detection applications [239]. In
ordinal time series classification, a relatively unexplored problem [95], the
goal is to classify time series with ordinal labels. When at each time step we
observe multiple variables we have a multivariate time series. Classification
of multivariate time series is used in applications like activity recognition
from wearable sensors [139], or electroencephalography (EEG) signal classi-

11

Chapter 2 Par. 2.2

fication [227]. The most basic approach to deal with multivariate time series
is to combine all the variables in a single one, thus obtaining an univariate
time series [168]. However, there are several algorithms that first introduced
for univariate time series have later been extended to the multivariate case:
multivariate shapelets [85], multivariate DTW [91], etc.

2.2.1 Intra-Class Variance

Following the taxonomy proposed by Batista et al. [15], in Figure 2.1 we
illustrate the problem of time series intra-class variance. The different types
of intra-class variance are detailed in the figure caption.

Intra-class variance can be easily understood by borrowing an example
from the computer vision domain [225]. An object, for instance a cup, can be
rotated, or scaled, or translated but still is a cup. Similarly, time series can be
affected by a number of transformations that make difficult to recognise that
seemingly different samples actually belong to the same class. Conversely,
in some cases class membership can be “easily” determined when invariance
to such transformations is achieved. For instance, Bagnall et al. [12] point
out that some authors report an error rate of 17% on the “Coffee” data-set
(UCR/UEA archive) using a INN-DTW classifier. However, the error rate
drops to 0% when time series are z-normalised [205].

All the data-sets of UCR/UEA archive are pre-processed to be invariant
to most of the transformations listed in Figure 2.1 and this is not necessarily
a good thing. For instance, while it is true that shape dissimilarity between
time series can be better evaluated if all samples are z-normalised, it is possi-
ble that by removing mean, and standard deviation the modeller is omitting
crucial information for the classification problem at hand. We believe that
further research is needed to better evaluate the impact of pre-processing
techniques on the performance of time series classifiers.

2.2.2 One-Class Classification

One-class classification [126], closely related to anomaly detection [30], is
concerned with learning a classifier when only the data of a single class is
available at training time, and/or at prediction time we might be exposed
to classes that are unknown at training time. Usually, the class we learn is
referred to as the positive (normal) while all the samples that fall outside it
are allocated to a “generic” negative (anomalous) class. Some variants of this
problem exploits a mix of positive and unlabeled data (PU learning) [247].
Figure 2.2 is designed to demonstrate the usefulness of the one-class as-
sumption. In part (a), a binary classifier trained to separate positive /negative

12

Chapter 2 Par. 2.2

\ h ’

N LAY e N
(1) (WA I"‘ HRRN ALY AN \1\—’\\

-
vV Y V v e
R N N N
,/"‘\\\ —// N N PN

@ R

3)

“)

©))

(6)

@)

Figure 2.1: Time series intra-class variance. The solid line (—), and the dashed
line (=--) are used to show two time series that belong to the same class. However,
in part (a) class membership is not immediately recognisable, unless an appropriate
transform is applied as in part (b). (1) Amplitude invariance can be achieved by
subtracting the mean, and dividing by the standard deviation (z-normalisation).
(2) Linear trend invariance can be achieved by de-trending the time series (we use
first order differences in our example). (3) Occlusion invariance can be achieved by
filling the missing values (we use linear interpolation in our example). (4) Offset
invariance can be achieved by subtracting the mean. (5) Phase invariance can be
achieved by translating along the time-axis. (6) Uniform scaling invariance can be
achieved by scaling the temporal index by a certain factor (1.5 in our example).
(7) Warping invariance can be achieved by locally warping one time series to align
with the other. In part (a), the dotted lines (---+) show the alignment between
the two time series as they were compared through a lock-step measure [250] (e.g.
Euclidean distance). In part (b), the dotted lines (*+++) show the alignment between
the two time series as they were compared through an algorithm defined to find
the alignment that has minimum cumulative absolute difference (e.g. DTW).

13

Chapter 2 Par. 2.2

Feature 2
Feature 2

4 2 0 2 4 4 a2 0 2 4
Feature 1 Feature 1

Figure 2.2: Binary vs one-class classification. In part (a) a binary classifier (—)
trained to separate positive samples from the negative ones (O/@) fails when a
new class of negative samples (M) appears at prediction time. In part (b) a one-
class classifier (---) trained on positive samples (O) only is robust against negative
classes either known or not (@/M) at training time.

samples fails when a new class of negative samples appears at prediction time.
The same reasoning can be extended to a multi-class classifier. Conversely,
in part (b) a one-class classifier trained on positive samples only is robust to
negative classes either they are known or not at training time.

There are several real world applications where data from the negative
class are difficult or impossible to obtain. For instance, in biometric subject
authentication problems [168] it is relatively easy to collect some data from
the “target subject” class, however it is less straightforward to collect data
that are representative of the “not target subject” class. Other related ap-
plications are: fraud detection [197], machine fault detection [223], medical
diagnosis [215], network intrusion [29], and signature verification [94].

The solutions to the one-class classification problem can be divided into
three main categories: (1) boundary methods, (2) density methods, and (3)
reconstruction methods [133]. (1) A classifier can learn a boundary that
encloses the training data and allocate objects that fall outside the boundary
to the negative class [237]. In this group can be found purely one-class
learning algorithms such as support vector data description [237] or one-class
support vector machines (OC-SVM) [217] but also the kNN classifier [125].
In this case, kNN considers whether the distance to the nearest training point
exceeds a threshold. (2) Alternatively, a classifier can estimate the density
of the training data and allocate objects that fall in low-density regions to

14

Chapter 2 Par. 2.2

the negative class. For instance, this can be done using Gaussian-mixture
models, or hidden Markov models. (3) Lastly, a classifier can learn a model
to compress and reconstruct a particular class of data. The idea is that
objects that are poorly reconstructed according to the estimated model do
not belong to the positive class. This is the case when using auto-encoders,
and variational auto-encoders for one-class classification [29].

2.2.3 Anomaly Detection

Over time, an extensive literature has developed on the topic of time series
anomaly detection including a number of excellent surveys [30, 41, 73, 96].

The way anomalies are modelled is crucial to every anomaly detection
technique [89]. With respect to time series, if an anomaly is limited to a
single time stamp this is referred to as a point anomaly. When an anomaly
concerns a set of consecutive time stamps this is referred to as a pattern
anomaly [36]. An anomaly may be modelled as a change in one or more
key properties of a time series e.g. a shift of the mean value: this type
of anomaly is known as a change-point. In general, the study of anomalies
concerning values within a single time series is referred to as within-signal
anomaly detection, a well-studied problem [31, 105, 259].

Alternatively, as in the present research, we might want to detect an
anomalous time series with respect to a collection of time series: a variant
of the time series classification problem [170]. This problem is known as
between-signal anomaly detection, and it is relatively understudied [170].

The taxonomy of anomalies may be extended [120], and in general most
authors attempt to provide their own. There is not a single algorithm able
to detect all types of anomaly, neither it is obvious that e.g. a point anomaly
is of interest to every practical application. Thus, the type of anomaly we
aim to detect is inherently connected to the problem at hand and it impacts
the design of the anomaly detection technique [35, 89]. In addition, the
availability of labelled data, and the performance requirements of the problem
at hand are other important factors to consider [30, 65, 89]. Finally, often
it is not only needed to detect anomalies, but also to understand the causal
relationships between variables that have led to the anomaly in order to
deploy optimization, and fault management strategies [131].

According to a widely accepted definition anomalies are samples inconsis-
tent with the rest of the data [92]. This inconsistency may not only concern
anomalies and normal data; it may also be impossible to relate anomalies
between them violating the clustering assumption required by supervised
learning [220]. Thus, Chandola et al. [30] propose to learn from the normal
data only, and to flag as anomalous everything that deviate from that.

15

Chapter 2 Par. 2.2

Learning from a single class of data is a semi-supervised classification
problem known as one-class classification [170]. This approach is relatively
understudied while it is more common to tackle anomaly detection as an
unsupervised problem. Unsupervised approaches are attractive because they
allow to avoid the costs required to acquire labelled data. However, most
unsupervised algorithms fails to adapt to previously unseen, but normal, data
which are recognised as anomalies resulting in high false positive rates [36].
Thus, assuming there is enough data to approximate the true distributions of
normal/anomalous patterns, than supervised approaches may be preferred.
For instance, some network intrusion models detect anomalies using known
attack patterns called signature attacks [34]. While this idea works against
known attacks, it is weak in adversarial settings where new attack strategies
are constantly developed [34]. Accounting of these considerations the active
learning paradigm represents a way to balance the need for labelled data,
and adaptability, while cutting the connected labelling costs [193].

A common assumption of several applications is that anomalies are rare
in comparison to normal samples [30], thus the need to learn from imbal-
anced data [180]. Considering that the normal behaviour of a time series
may change over time adaptive algorithms are required [6]. In this regard,
streaming applications not only must be able to adapt to changing condi-
tions, but also have to operate with little computational complexity in order
to cope with the high velocity, and volume of streaming data [54].

Again, emerging internet of things (IoT) technologies are in need of low
computational complexity anomaly detection techniques. According to the
envisioned IoT revolution, in the near future all the electronic devices are go-
ing to be equipped with sensors/actuators and to be able to interact with each
other [10]. Important applications in the healthcare domain aim to develop
wearable devices for remote health monitoring, for instance, to monitor blood
glucose levels [156], or for cardiac disease prevention [241]. Small (wearable)
electronic devices have limited computational, memory, and power resources.
As discussed throughout the thesis, to ease computational complexity is part
of the scope of the one-class classification techniques we propose. Therefore,
future research could extend our work to the anomaly detection domain.

Concluding, the case of univariate time series anomaly detection is ar-
guably simpler to understand and to deal with than the multivariate coun-
terpart [35]. For instance, given a univariate time series, a value statistically
different from all the others can be classified as anomalous. The same idea
cannot be so easily translated to multivariate data. In fact, the behaviour
of a single time series may be uninformative if not analyzed in light of the
relations that exist between all the time series of the multivariate signal [35].
Also, the amount of literature concerning multivariate time series is much

16

Chapter 2 Par. 2.3

less than that regarding univariate time series. As an example, comparative
studies investigating pre-processing techniques [140], or strategies to deal
with missing values [234] have focused on univariate time series only so far.

2.3 Instance-Based Classification

In this section we provide an overview of instance-based time series classi-
fication. As techniques based on neural networks, part of this group, also
concern one experimental chapter (Chapter 6) they are discussed in a dedi-
cated section (Section 2.3.1).

— Description: This is a diverse group of approaches that require the whole
time series to work and do not learn a new representation.

— Pros: Some instance-based approaches e.g. those that base their decision
on the comparison of time series (or sub-sequences) through a dissimilarity
measure of choice can facilitate problem and solution interpretability, and
perform well with a limited amount of training data.

— Cons: Although several studies aim at speeding up existing algorithms
computational complexity is arguably the main weakness. Secondly, most
instance-based approaches do not learn a new representation, that as dis-
cussed in Section 2.4 can lead to several advantages.

One of the most common approaches to time series classification is to
compare time series through a suitable dissimilarity measure, hence a time
series is assigned to the class to which it is most similar. In general, the
highest classification performance is allowed by those measures that are able
to compensate for distortions in the time axis. Nevertheless, there are many
other aspects to be considered. In this section we do not discuss the details of
the different measures proposed in the literature. However, throughout the
thesis we use several measures that are presented in Section 3.5. Further-
more, Abanda et al. [2] present a comprehensive survey on dissimilarity-based
time series classification, while Paparrizos et al. [187] propose an excellent
comparative study of 71 dissimilarity measures.

It is common to pair a dissimilarity measure of choice with the 1NN
classifier, a simple and effective approach [12]. The 1NN classifier is a non-
probabilistic classifier able to work well with a limited amount of training
data. For instance, the 1NN classifier is able to achieve competitive perfor-
mance on several problems where the average number of training samples
per class is lower or equal to 10 regardless of time series lengths of hundreds
or thousands of time steps [12]. This is a remarkable difference with respect

17

Chapter 2 Par. 2.3

to modern machine learning algorithms (e.g. neural networks) that are ex-
pected to have poor generalisation capabilities with limited amounts of train-
ing data [16]. In other cases, researchers try to adapt existing kernel-based
learning algorithms to time series classification, for instance by developing
methods that first align time series using DTW and then calculate the value
of the kernel function over the warping path [222].

Several state of the art algorithms for time series classification ensemble
a variety of dissimilarity measures that together perform significantly better
than any single measure. Lines et al. [154] ensemble 11 dissimilarity mea-
sures in an algorithm that is a core component of HIVE-COTE [155], one
of the best classifiers when evaluated on the UCR/UEA archive. Tan et
al. [235] propose a number of strategies to significantly decrease the training
time required by Lines’ ensemble, its main weakness. In another attempt to
create a scalable ensemble of dissimilarity measures Lucas et al. [161] pro-
pose a tree-ensemble. The authors introduce three novel splitting criteria
specifically defined for time series. One of these calculates the dissimilarity
of a time series from a randomly selected training sample according to a ran-
domly selected measure. The others draw from dictionary-based approaches,
and sub-sequences summary features (Section 2.4). Overall, this tree-based
classifier allows better performance than HIVE-COTE.

For some problems class membership depends on specific sub-sequences
that may occur anywhere along the time axis. Referred to as “shapelets”,
these sub-sequences are maximally representative of a class according to a
predefined criterion [258]. The presence of a shapelet within a time series is
evaluated by sliding the shapelet along the time series and calculating the
dissimilarity at each step. If the minimum dissimilarity found falls within
a certain threshold the time series is assigned to the class related to the
shapelet. Shapelet-based classification is an important area of research, for
instance a shapelet-based representation named shapelet-transform [104] al-
lows state of the art performance. However, the original shapelet-discovery
algorithm is intractable for large data-sets, thus the majority of the research
related to shapelets focuses on ways to speeding up the discovery phase [109].

Concluding, other approaches to time series classification are based on
neural networks [64], discussed in Section 2.3.1, functional data analysis [195],
hidden Markov models [248], and self-organising maps [188].

2.3.1 Neural Networks-Based Classification

The unrivalled success of neural networks in fields like computer vision [40],
or natural language processing [26] has boosted the research about this family
of algorithms in the time series classification domain, where however, most

18

Chapter 2 Par. 2.3

of the progress has been made only in the last three years [71].

Fawaz et al. [70] evaluate several neural networks for supervised time
series classification on all the data-sets of the UCR/UEA archive, including
the multivariate ones. It is found that a residual neural network achieves
the best performance on univariate time series. This architecture, originally
proposed by Wang et al. [251], is essentially a convolutional neural network
with so-called residual connections that allow the output of a given layer to
jump over the upstream layer in order to be added to the input of a further
layer. Residual connections, introduced in the computer vision domain, are
important to train deep architectures and specifically to avoid the vanishing
gradient problem [103]. The second best performing architecture in Fawaz’s
experiment is also a convolutional network [251]. Convolutional networks
have shown to be particularly effective in detecting sequential structures in
data [93]. This may explain their success with time series where temporal
structures are often essential to identify the class membership. Also, Fawaz
et al. [70] point out that convolutional networks can be trained in much less
time than dense or recurrent networks, and this despite their suggestion to
avoid pooling layers. In fact, it is argued that pooling layers may throw away
important information in favour of a reduced model complexity that is not
needed for time series that in contrast to images have one less dimension and
thus require less computational resources.

Again, Fawaz et al. [71] expand the discussion about convolutional net-
works proposing an ensemble of inception modules [231] that slightly outper-
forms HIVE-COTE. The authors analyse the impact of hyper-parameters on
performance, while it is difficult to draw general conclusions it is argued that
the optimal number of filters or their length may be related to the number
of training samples and the time series length respectively. In this regard,
Rakhshani et al. [204] implement a neural architecture search algorithm based
on differential evolution [202]. Hyper-parameter tuning (number of filters,
activation function, etc.) allows the residual network investigated by Fawaz
et al. [70] to outperform the state of the art ensemble HIVE-COTE. Not only
convolutional networks, but also recurrent networks like those based on long
short-term memory units (LSTM) are particularly suited to model sequential
data [208]. Karim et al. [118], show that both convolutional and LSTM layers
significantly contribute to the performance of their hybrid architecture. A
number of studies consider different aspects of time series classification with
neural networks like adversarial learning [69], data augmentation [112], few-
shot learning [236], metric learning [32], and transfer learning [173]. Despite
the recent progress, neural networks research for time series classification is
far behind other fields e.g. computer vision [71]. On this point, we suggest
that future research may investigate the features learned by the different con-

19

Chapter 2 Par. 2.3

volutional layers of a network [135], and saliency maps for time series [224].

In the context of time series classification auto-encoders are used less
frequently than end-to-end architectures. Typically, auto-encoders are used
for unsupervised tasks like anomaly detection [242], dimensionality reduc-
tion [86], or clustering [178]. However some authors use of auto-encoders as
supervised classifiers e.g. by adding a supervised loss on the middle layer [141],
but we have not found an example of this kind about time series.

In contrast to other research areas of the time series classification domain
we have not found any comprehensive study on auto-encoders that considers
all the data-sets of the UCR/UEA archive. In Chapter 6 we address this gap.
We evaluate different architectures, and we use the learned representations
in a one-class classification scenario. In particular, we use auto-encoder and
encoder-only architectures to learn a low-dimensional representation for time
series that preserves samples’ dissimilarities according to an elastic measures
as for instance DTW. This is a task known as metric learning [56] that, in
different ways, other studies have considered before.

Most research on metric learning for time series rely on siamese net-
works [25]. For instance, Pei et al. [190] use a recurrent network and a
supervised loss function based on binary cross-entropy to learn a dissimilar-
ity measure for time series. Again, Zheng et al. [261] use a hybrid network
with both convolutional and dense layers, and a loss function inspired by
neighbourhood component analysis [210] to learn a time series representa-
tion then used with a 1NN classifier. Their results are competitive with
those of a 1NN classifier paired with different dissimilarity measures on raw
data. Analogously to our approach, Utkin et al. [242] use a siamese auto-
encoder to approximate in the learned space the Euclidean distances between
time series in original space. They also add the reconstruction error and a
contrastive term [98] to the loss function in the context of an anomaly de-
tection problem. There are also some unsupervised approaches. Jansen et
al. [115] use a triplet loss [219] and a convolutional network for unsupervised
audio representation learning. Qiu et al. [203] use a dense neural network
and a ranking loss [171] to approximate a correlation function for time series
in the context of information retrieval.

Differently, other studies use the dissimilarity between samples in the
learned space to induce a dissimilarity measure on the original space. For
instance, Abid et al. [4] use an LSTM-based auto-encoder to reduce the di-
mensionality of time series. Then, the authors optimise the parameters of a
warping function on raw time series in order to approximate their Euclidean
distance in the learned space. Che et al. [32] use a dense network and a large
margin approach to metric learning [253] to learn a representation for mul-
tivariate time series. Then, the authors use the squared Euclidean distance

20

Chapter 2 Par. 2.4

between samples in the learned space to fit a custom warping function that
can be used on raw data.

Concluding, other studies are closely related to our work, but do not use
neural networks. Lods et al. [158] propose an algorithm based on stochastic
gradient descent to embed time series in a shapelet-transform [104] vector
space where the Euclidean distance between samples approximate their DTW
dissimilarity in the original space. The authors argue that their algorithm
is similar to a siamese network with a single convolutional layer. Although
their approach could be used for classification the authors do not consider
this task. Lei et al. [143] use matrix factorisation to learn a time series
representation such that the dot-product between time series in the learned
space approximates their DTW dissimilarity in the original space. However,
as other dimensionality reduction techniques (e.g. t-distributed stochastic
neighbour embedding (t-SNE) [165]) this approach does not learn a map-
ping function from the original to the learned space, thus it cannot be used
for classification. Finally, Mei et al. [172] first align multivariate time series
through DTW and then learn the parametrisation of a Mahalanobis dissim-
ilarity measure.

2.4 Feature-Based Classification

In this section we provide an overview of feature-based time series classi-
fication. As DBR and evolutionary computation techniques, both part of
this group also concern two experimental chapters (Chapters 4-5) they are
discussed in dedicated sections (Sections 2.4.1-2.4.2).

— Description: Time series are transformed into feature-vectors which are
used to complete the classification task through any off-the-shelf classifier.

— Pros: Most feature-based approaches facilitate problem and solution in-
terpretability, and ease computational complexity.

— Cons: It is not trivial to identify distinctive features especially when a
new problem is addressed. Most feature-based approaches are expected to
be weak on problems where features can be shifted along the time axis.

Traditionally, dimensionality reduction can be regarded as the main ob-
jective of time series representation techniques [250]. Usually, dimensionality
reduction is constrained to preserve some characteristics of a given data-
set. For instance, representations that allow lower bounding of a dissimi-
larity measure are of particular interest in the field of information retrieval.
This means that for a certain representation exists a dissimilarity measure
in the induced lower dimensional space that approximates the dissimilarity

21

Chapter 2 Par. 2.4

in the original space. Thus, it is possible to discard part of the comparisons
needed to retrieve the nearest neighbour of a given query enabling savings in
terms of computational complexity. Techniques like discrete Fourier trans-
form (DFT) [39], and piecewise aggregate approximation (PAA) [122] have
this property [250]. However, in Chapter 7 we show that these techniques as
well as other general-purpose dimensionality reduction algorithms (i.e. not
strictly defined to work with time series) like principal component analysis
(PCA) [108], and kernel principal component analysis (KPCA) [216] achieve
lower classification performance than the representations we propose. This
is because feature-based representations are not only concerned with dimen-
sionality reductions but also with classification performance.

Features are properties of an object that contribute to the way the object
appears to the observer [60]; feature extraction aims at finding the most
informative set of features for a certain task [97]. The feature-based approach
to time series classification is convenient for a variety of reasons [63, 179, 255].
(1) To reduce data to a manageable size. This can mitigate the curse of
dimensionality [17], reduce computational complexity, and allow visualisation
of time series data-sets. (2) To highlight properties of a class of time series
enabling understanding of the problem at hand. (3) To reduce the impact of
noise and missing values. (4) To deal with time series of different length.

A feature-based representation affects the choice and the performance of
the classifier and vice versa [57]. In fact, the quality of a representation may
be overestimated if overfitting occurs, however, it may be underestimated if
the classifier relies on assumptions that are violated by the representation
(e.g. a normality assumption for a Gaussian-mixture classifier). In practice,
expert practitioners first exploit their domain knowledge to extract a set of
features. Then, they carry out a statistical analysis of the features before
selecting an appropriate classifier. Conversely, the algorithm we propose in
Chapter 5 extracts features that are not only suited for the problem at hand,
but also for the classifier used in the extraction process.

There are two key questions that arise when dealing with feature-based
time series classification. The first concerns the features to extract, and the
second the sub-sequence from which to extract them. Neither answer is obvi-
ous. The feature extraction process can be manual [168], or automated [51].
Features can be as general as statistical moments, or more carefully designed
for time series like the time-reversal asymmetry statistic [218].

Assuming that the most effective features are not known in advance, some
authors propose to extract several features and then retain only the best ones.
Deng et al. [51] propose a tree-ensemble classifier name time series forest
(TSF) (similar to a random forest). In this case tree nodes calculate simple
features (mean, variance, and slope) on randomly selected sub-sequences.

22

Chapter 2 Par. 2.4

Building on this idea, Flynn [76] et al. propose a tree-ensemble classifier
named contract random interval spectral ensemble (c-RISE). The difference
with TSF is that c-RISE extracts spectral features (power spectrum and
auto-correlation), and also it allows the user to constraint the training time.

Lubba et al. [160] consider 4791 features for time series. Of these, they re-
tain only 22 features because of their classification performance and minimal
redundancy. This subset named “catch22” (C22) is a compact and effective
set of features for time series classification. Middlehurst et al. [174] combine
C22 features and TSF in a classifier, referred to as canonical interval forest
(CIF), that is better than both. Furthermore, as TSF is a component of the
state of the art ensemble HIVE-COTE they have replaced TSF with CIF
demonstrating a significant improvement of performance.

Dempster et al. [49] apply thousands of random convolutional filters on
time series. Resulting feature maps are summarised through two ad-hoc
statistics, then concatenated in vectors, and used for classification. This ap-
proach exploits the success of convolutional neural networks for time series
classification [70]. Finally, the method relies on the implicit feature selec-
tion enabled by a ridge regression classifier in order to avoid overfitting. In
contrast, it is not straightforward how to accomplish feature selection in the
one-class scenario where there are no labelled data to evaluate the classifica-
tion performance of a given classifier on a sub-set of features [116]. Future
work may investigate one-class feature selection for time series.

Concluding, other approaches to transform time series into vectors of fea-
tures include dictionary-based methods, and graph features. In dictionary-
based methods, also known as bag-of-patterns (BOP) methods [151], time
series are transformed into strings using symbolic aggregate approximation
(SAX) [150]. Then, each feature corresponds to the frequency of occurrence
of a specific sub-sequence (or word) within a time series. Some state of the
art algorithms build on the BOP approach, thus the idea is to represent each
time series as a histogram that counts the word frequencies, however the
word code-book is built using an approach called symbolic Fourier approxi-
mation (SFA). This is the case of bag-of-SFA-symbols (BOSS) [211], and the
more scalable word extraction for time series classification (WEASEL) [212].
Graph-based techniques first transform a time series into a graph, then fea-
tures are extracted from this new representation [146]. Nevertheless, it is
also possible to draw from the rich literature related to audio features [144].

2.4.1 Dissimilarity-Based Representations

The idea of DBR [191] is to describe one object through a number of pairwise
comparisons with the elements of a set of reference objects. Thus, to represent

23

Chapter 2 Par. 2.4

raw data in terms of dissimilarities it is required to identify a dissimilarity
measure, and a prototype set. Hence, an object is represented as a vector
where each coordinate corresponds to its dissimilarity to a given prototype.

DBR are used with a variety of data types: graphs [181], images [228],
text [199], and time series [119]. In the context of time series classification,
DBR can be considered as a hybrid between feature-based, and distance-
based approaches. In fact, DBR account for the information about the dis-
similarity of a sample with respect to other samples. This is equivalent to a
INN on raw data when the prototype set includes all training samples.

Kate [119], investigates time series DBR using DTW finding that DBR
performance is better than a INN-DTW on raw data. Also, the author
shows that concatenating DBR, and SAX-BOP [151] representations further
improves the performance. Expanding on Kate’s work, Giusti et al. [87] inves-
tigate several DBR derived from a Cartesian product of four representations,
and six dissimilarity measures showing that by concatenating different DBR
it is possible to improve on the performance of a INN-DTW on raw data.

In terms of prototype selection strategies, Iwana et al. [111] propose to
use AdaBoost [214] to select as prototypes those samples that have highest
impact on performance. Again, Iwana et al. [113], note that when DTW is
used to evaluate the dissimilarity between two time series all the information
about the actual matching is wasted as only the sum of absolute differences
between DTW-aligned time series is considered. Thus, the authors propose
to use the point-wise absolute differences as a new representation. Jain and
Spiegel [114] show that reducing the dimensionality of DBR through PCA has
a positive impact on performance. However, they do not discuss how PCA
could be used to extract a set of prototypes from a training set and this could
be the object of future research. Petitjean et al. [194] use DTW barycenter
averaging (DTW-BA) to identify class centroids for a nearest-centroid time
series classifier showing good results. As discussed in Chapter 4, cluster cen-
troids can be good prototypes. Thus, we argue that the use of DTW-BA in
the context of DBR warrants further research. Finally, prototype selection
strategies for DBR could draw from the related instance-based learning do-
main where the objective is to select the smallest set of training samples that
enable the same (or higher) performance than the original set [24].

A number of authors have explored interesting variants. Spiegel [68] sug-
gests that using time series that are completely unrelated to the problem
at hand as prototypes may lead to improvements on performance. Hills et
al. [104] use shapelets as prototypes to derive DBR. Buza et al. [27] use
DTW and DBR to classify multivariate EEG time series.

In Chapter 4, we propose a comprehensive experiment on DBR. This
is, to the best of our knowledge, the first time that DBR are considered in

24

Chapter 2 Par. 2.4

the context of one-class time series classification. Not only do we evaluate
and discuss a thorough set of methods to derive DBR, but also we introduce
a prototype method named percentiles that shows remarkable performance.
Furthermore, we evaluate the performance of a 1NN classifier paired with an
extensive set of dissimilarity measures on raw time series. This is a funda-
mental baseline for research on one-class time series classification.

2.4.2 Evolutionary Computation Techniques

The majority of prior research concerning evolutionary techniques for time
series classification has applied to ECG time series [74], and sensor time series
for fault detection [148]. Some studies, discussed below, propose general
purpose feature extraction algorithms [63, 101, 246].

Eads et al. [63] use grammatical evolution (GE) [185] to evolve a single
population of feature extractors using a set of 25 primitives. Each feature
extractor is able to target any sub-sequence and return a single scalar. This
hill-climbing algorithm does not make use of any crossover operator. How-
ever, it allows modifications to the current solution (addition, deletion, muta-
tion of feature extractors) only if changes increase the performance, or cause
a negligible impact on performance but a decrease in run-time. Classification
performance, tested on seven data-sets, is better than that of raw data.

Harvey and Todd [101] propose an algorithm based on genetic program-
ming (GP) [132] where 35 primitives are used to evolve sets of feature ex-
tractors. Nearly all the primitives take a time series as input and output a
transformed time series. To reduce time series to a single scalar each fea-
ture extractor must end with a summation. The authors provide a number
of rules to reduce redundancy of final feature extractors and increase their
interpretability. Performance is tested on simulated data.

Finally, Virgolin et al. [246] propose a GP-based algorithm for sequential
feature construction but not on time series. While feature extraction concerns
the extraction of features from raw data, feature construction concerns the
transformation of existing features. They focus on the interpretability of the
GP trees emphasising interpretability of the original features, and limiting
the height of the trees. As discussed in Chapter 5, we point out that in the
time series domain interpretability is aided by knowing which functions, and
sub-sequences allow good classification performance.

The literature reveals a number of gaps that we seek to address in Chap-
ter 5. There is a lack of consistent comparison of proposed methods with
relevant benchmarks. We address this issue by evaluating our approach on
30 problems, all but one from the UCR/UEA archive. Also, we compare
our results against a INN-DTW classifier considered as the standard bench-

25

Chapter 2 Par. 2.4

mark in the literature [12]. It appears that it is not clear how to evolve
multiple features that are not redundant. We tackle this problem by sequen-
tially extracting the features, and requiring that their individual classification
performance is maximised, while their average correlation with previous fea-
tures is minimised. We analyse evolved solutions to expand the discussion
on problem /solution interpretability enabled by evolutionary techniques. Fi-
nally, our algorithm allows modellers to extract features without requiring
any previous knowledge of the field. This is in line with an increasingly
popular research area known as automated machine learning (AutoML) [75].
The goal of AutoML is to automate the typical machine learning pipeline
(e.g. data pre-processing, feature extraction, model and hyper-parameter se-
lection) reducing the amount of human work required to deploy a model.

26

Chapter 3

Problem Statement and
Experimental Design

The key idea of this research project is to investigate novel time series repre-
sentations in the context of one-class classification. In the following chapters
(Chapters 4, 5, 6) we present three different approaches to derive a time se-
ries representation. The objective of this chapter is to gather the background
common across the different experimental chapters. This is not only to avoid
unnecessary repetition, but also to facilitate understanding.

The chapter is organised as follows. We formalise the concepts of time
series and one-class classification in Section 3.1. The data-sets in use are
presented in Section 3.2. The classifiers are detailed in Section 3.3, while
performance evaluation is discussed in Section 3.4. The dissimilarity mea-
sures needed for classification, and in some of the experiments are detailed in
Section 3.5. Finally, some implementation details are provided in Section 3.6.

3.1 Main Concepts

In this section we concisely introduce the main concepts underpinning the
whole body of work. Further background is provided throughout the thesis.

Time Series - A univariate time series T of length L is a collection of real
values ordered according to an index i¢. Given a time series 7', Vi: T; € R,
1<i<L,Te€RE

Time Series Representation - Given a time series 7 : T € RY, a new
representation is achieved by applying a function R on 7" with the objective
to ease, in some regards, a certain data-driven task. R is a mathematical
function. R may leave the dimensionality of 7" unchanged. However, often

27

Chapter 3 Par. 3.2

representations are defined to map 7" to a new space R! with [< L. Finally,
R(T) may preserve the sequential structure inherent to 7" or not. In other
words, R(T") may still be a time series or not.

One-Class Classification - The main difference between binary and multi-
class classification and one-class classification is in the training data. Binary
and multi-class methods require labelled training data for all the classes that
can occur at prediction time. Conversely, one-class methods are concerned
with learning a classifier when all training data belong to a single class.
Usually, the class learned through the training data is called the positive
(normal) class while all the samples that fall outside it are allocated to a
“generic” negative (anomalous) class.

Classes - We denote the positive class as C*!, and the negative class as C~ 1.
Each class is associated with a label ¢: c € {—1,+1}.

One-Class Classifier - A one-class classifier consists of two parts. First,
given a time series T, or its representation R(7'), a function F assigns an
anomaly score to it. Then, the identification function Z maps the score to
a class label. The identification function returns +1 if the condition is true,
and —1 otherwise. A common way to set the threshold A is to choose a value
such that 95% of training data is correctly labelled as below the threshold,
hence positive.

Z(F(T) < h) or
Z(F(R(T)) < h)

3.2 Experimental Data

All the representations considered in this work (except for the approach dis-
cussed in Chapter 5) are evaluated on 86 data-sets. Of these, 85 belong to
the UCR/UEA archive [46] (Section 3.2.1) while one is a proprietary data-set
(Section 3.2.2). An overview over the different time series included in all the
data-sets is shown in Figure 3.3. Nearly of all these data-sets are related to
binary and multi-class problems, in Section 3.2.3 we explain how to adapt
these data-sets to a one-class classification experiment. The classification
performance for a given data-set corresponds to the average performance
over all the classes.

28

Chapter 3 Par. 3.2

3.2.1 The UCR/UEA Archive

The UCR/UEA archive [46] is an important resource for time series re-
searchers. In 2018, the archive was expanded to 128 data-sets, however in
this work we consider only its original body of 85 data-sets.

All the data-sets are partitioned into labelled training and test sets and
have previously been examined in several binary and multi-class time series
classification experiments [12]. All time series are univariate, contain only
real numbers and no missing values, have a fixed length within a given data-
set, and are z-normalised [205].

The data-sets possess different characteristics that, when needed, allow
us to look at results from different angles. In Figure 3.1 it is shown how the
data-sets can be divided in terms of application domain, time series length,
and average number of training samples per class.

Application Domain Time Series Length
29
18 18
17 14 16 17 17
7 7 6 6
T T T T T T T T T T T T
2 E” S 8 2z § 51 0-90 90-250 250-400 400-700 >=700
= £ 2 2 2 3 . .
T T & R £ % =% Avg. Number of Training Samples
S 2 < e L B
¥ = 8 s g @ 20
g S £ b > 17 17 17 15
- £ & & =
S = =

T

0-11 1123 2339 39-125 >=125

Figure 3.1: Summary of characteristics of the data-sets in use.

3.2.2 Accelerometer Data

The “AccelerometerData” data-set [168] is here introduced for the first time
and it is not part of the UCR/UEA archive. The data-set is provided by
ICON plc. as part of a research effort investigating subject authentication
through accelerometer data. In a way, this application has motivated the
whole body of work.

The aim of subject authentication is to confirm the identity of a person.
There are several authentication technologies and applications [252]. In our
case, clinical scientists would like to use accelerometer data for monitoring
the efficacy of treatment options on movement disorders or the impact of

29

Chapter 3 Par. 3.2

drugs on subjects’ free living activity levels [121]. However, first they are in
need of classification models to confirm that a given device is worn only by
the intended subject for the whole trial period. Both errors and misconduct
could invalidate studies of considerable cost and duration.

Accelerometer data come as a sequence of time-ordered real values, thus
this problem falls within the time series classification domain: given a set of
accelerometer time series we want to separate those that are generated by
a specific subject from those that are not. A possibility would be to make
use of a supervised binary classification method to separate those time series
which belong to the intended subject from those which do not. Alternatively,
the same data could be employed to implement a supervised multi-class clas-
sification method. In this case, a group of subjects would be involved simul-
taneously and the aim would be to recognise each single subject. However,
both binary and multi-class methods assume, in a sense, a fixed population of
“others”, well-represented in the data, which is not realistic. Therefore, the
best option may be a semi-supervised one-class classification method where
learning is focused only on the intended subject.

A sample of nine volunteers (not enrolled in a clinical trial), composed of
three females and six males, are each required to wear the mentioned device
for a period of approximately 40 days in free living conditions. All partici-
pants are office workers based in the same location and working Monday to
Friday. We retain only weekdays because weekend days are relatively few. In
order to satisfy data privacy requirements of both the data controller (ICON
plc.), and University College Dublin data has been anonymised: each time
series is associated with its numerical class label only. In principle, it is pos-
sible that information like age, gender, or weekday could help in building
better classifiers, however this is a topic for future research.

Data is collected through wrist-worn tri-axial accelerometers able to mea-
sure linear acceleration within a range of + 16g per axis'. The magnitude
of the acceleration along the three axes is calculated as the square root of
the sum of the square of the single accelerations and rounded to the closest
integer. The time series are indeed a sequence of magnitude values at the
resolution of one data point per minute over an entire day (24 hours). For
each subject we have a total of 23 time series. Of these, using a random split,
18 are included in the training set, and five in the test set. All the variables
recorded are shown in Table 3.1. ID is the subject unique and anonymous
identifier. Axis_ 1,2,3 show acceleration. A graph of magnitude recordings
for one typical day is shown in Figure 3.2.

First, data is collected at a frequency of 1000Hz. Then, in order to reduce

! For further information see ActiGraph: http://www.actigraphcorp.com/.

30

http://www.actigraphcorp.com/

Chapter 3 Par. 3.2

dimensionality to a manageable size, data is downloaded from the device
and down-sampled to a frequency of 1/60Hz using ActiGraph proprietary
software based on a band-pass filter. It may happen that a device runs out
of memory and stop recordings as the internal memory is of just 4GB. Also,
it may happen that some time series predominantly contain “non-wear time”
i.e. time when the device is on but it is set down and stationary. We discard
time series with a cumulative magnitude lower than 500,000g as these miss
most of daily records. In other cases, where time series show a sub-sequence
of missing values lower or equal to 90 minutes (presumably the time needed to
download the data and recharge the device) we fill the missing sub-sequence
with a copy of the values that precede it. This strategy for handling missing
data may seem naive but it is adopted for its simplicity and because it is
required only two to three times per subject.

‘ 1D Date ‘ Hour ‘ Minute ‘ Axis 1 ‘ Axis 2 ‘ Axis 3 ‘ Magnitude ‘
| Subject_1|2016-03-21 | 11 | 36 | 168 | 544 | 563 | 801 |

Table 3.1: “AccelerometerData” data-set: recorded variables.

10000

Magnitude

AN

16 18 20 22

i
0 2 4 6 8§ 10 12 14
Hours

(9]

(=)

S

—] (=)
L 1
—

Figure 3.2: Magnitude recordings for one day for one subject.

3.2.3 One-Class Labelling

We adapt labelled binary and multi-class time series data-sets to the one-
class classification scenario as follows. Given a data-set, while maintaining
the original split between training/test data, each of the classes is considered
in turn as the positive class (and so it is used for training) and all the others
together become the negative class. The classification performance for a given

31

Chapter 3 Par. 3.4

data-set corresponds to the average performance over the classes. When a
validation set is needed we use a 2:1 split of the training data.

Although it may look like this prediction task suffers from a lack of bal-
anced data, this is not the case. As stated in the extensive survey by Haixi-
ang et al. [99], imbalanced learning occurs when in training data one or more
classes have a much greater number of samples than the others. However, in
the one-class scenario we are learning a single class.

3.3 Classifiers

We investigate several different representations, but in all cases we use the
same classifier on top: a one-class 1-nearest neighbour classifier (INN). We
also use other classifiers as detailed in relevant chapters. The 1NN classifier
scores a sample according to its distance from training data. Specifically,
the 1NN considers the distance of a sample from its nearest training sample.
Unless otherwise specified, the 1NN is equipped with the Euclidean distance.

The core idea is to use a simple non-parametric classifier to emphasise
the quality of representations, and make minimal assumptions about class
distributions. Furthermore, parametric classifiers are sensitive to hyper-
parameters which, in principle, are difficult to tune because we assume only
data of a single class are available for training. Thus, in contrast to a typical
supervised classification scenario we cannot evaluate a model on a validation
set.

3.4 Performance Evaluation

The classification performance of all the representations considered in this
work is evaluated through the area under the receiver operating character-
istic curve (AUROC). We believe the AUROC is particularly indicated for
one-class time series classification experiments since it is insensitive to class
imbalance. Furthermore, Gay et al. [83] advocate the use of the AUROC for
binary and multi-class time series classification experiments too.

During the prediction phase, a sample is assigned a classification score
according to the classifier in use. By imposing a threshold on the scores, a
sample can be classified as either positive or negative. As mentioned before,
in real-world applications for one-class classification a common way to set
the threshold is to choose a value such that 95% of training data is correctly
labelled as below the threshold, hence positive. However, this approach can
require some fine tuning according to the specific problem at hand. In order

32

Chapter 3 Par. 3.5

to avoid this and have a method that can be consistently applied across all
data-sets and experiments we use the AUROC. The AUROC is obtained
by computing the underlying area of a curve constructed by plotting the
true positive rate against the false positive rate at various threshold settings.
Threshold values are calculated as the midpoint between each pair of sorted
classification scores.

3.5 Dissimilarity Measures

In this section we describe 12 dissimilarity measures used in this work. All
the measures are collectively presented in Table 3.2. Some of these are true
metrics e.g. the Euclidean dissimilarity, others are not e.g. dynamic time
warping (DTW) [205]. In general, it is more important that a dissimilarity
measure is able to detect the difference between two time series than that it
is a true metric.

The first dissimilarity measures we use are derived from the family of ¢#
norms and they are extensively studied in the time series classification liter-
ature where they are usually referred to as lock-step measures [250]. These
measures assume both time series have the same length and they compare
the i-th point of a time series with the i-th point of another. We evaluate the
¢, (Manhattan), ¢ (Euclidean), and ¢, (Chebyshev) norms. These measures
can be criticised because of their inability to deal with transformations in the
time-axis [15], however, they are efficient to compute and easy to interpret.

The cosine dissimilarity (Eq. 3.1) is a lock-step measure, hence is also
vulnerable to time-axis transformations. It is used in the time series domain
especially for fault diagnosis [162]. This function computes the cosine of the
angle between two vectors and can be interpreted as proportional to the angle
between the two vectors. The cosine dissimilarity is not a metric because it
does not satisfy the triangle inequality. Given two time series T} and T3 the
cosine dissimilarity is calculated as follows:

T, - Ts
1Ty 172,

Some measures are referred to as elastic measures because they allow
the comparison of one point of a time series to many points of another in
order to find the “best” match [250]. We evaluate three elastic measures:
DTW [205], the edit distance on real sequences (EDR) [33], and the move
split merge dissimilarity (MSM) [230], which are all dynamic programming
algorithms. DTW finds the alignment that minimises the cumulative sum
of absolute differences between two time series. EDR counts the number of

Cosine Diss. =1 —

(3.1)

33

Chapter 3 Par. 3.5

times the absolute difference between two time series is greater than a certain
threshold. Finally, MSM is similar to DTW, but also it can set a value in a
time series as equal to either its preceding, or following value. In this way, the
dissimilarity between matched values does not only depend on their absolute
difference, but also on the absolute difference between their neighbours.

DTW (Eq. 3.2) is a distance measure of central importance in the lit-
erature related to time series mining [205]. It is used to find an optimal
alignment between two time series, i.e. the alignment that allows the mini-
mal distance. DTW provides a temporal alignment of two time series and
is able to guarantee warping invariance [15], as discussed in Section 2.2.1.
Furthermore, DTW can work with two time series of different length. DTW
is not a metric because generally it does not satisfy the triangle inequality.
To calculate the DTW distance between two time series T and 75 first we
compute the cost matrix C i.e. for each pair of elements ¢ € T} and j € T,
we calculate the cost C; ; = |11, — 15 ;|. The objective is then to find a path
through the distance matrix D with minimal cumulative cost by applying
the following recurrence:

Di,j = Oi,j + min{Di,l,j,l, Difl,ja Di’jfl} (32)

When the entire matrix D is filled we have DT'W Diss. = Dy, 1, (where
L, and Ly are the lengths of the two time series).

Generally, researchers use a hyper-parameter named “warping window
size” to limit the maximum gap between two matched points; this avoids
matching points that are too far apart in time, speeds up computation, and
increases classification performance [250]. Unless otherwise motivated, we
do not optimise the warping window size, usually selected through cross-
validation, because our work focuses on one-class classification so we do not
want to rely on data from other classes, as explained a few sections earlier.

Wang et al. [250] show that the performance of EDR (Eq. 3.3) is com-
parable to that of DTW for time series classification with a 1INN. As with
DTW, EDR can work with two time series of different length. The EDR
counts the number of times the absolute difference between two time series is
greater than a certain threshold. To calculate the EDR, given two time series
T and T, we first calculate a cost matrix C' as done for DTW. Then we find
the the minimum cost alignment by applying the following recurrence to the
distance matrix D:

Di,j = min{Di_Lj_l + penalty, Di—l,j + 1, Di,j—l + 1} (33)

The penalty is equal to 0 if C;; < €, 1 otherwise. We set the threshold
€ to 0.25 x o (where o is the standard deviation of all the training time

34

Chapter 3 Par. 3.5

series concatenated together) [33]. When the entire matrix D is filled we
have EDR Diss. = Dy, 1, (where L and Lo are the lengths of the two time
series). The EDR violates the triangle inequality and so it is not a metric.

The MSM dissimilarity (Eq. 3.4) uses three editing operations (move,
split, and merge) to calculate the cost needed to transform one time series into
another. As opposed to other elastic measures e.g. DTW or EDR, MSM is a
metric. Given two time series 77 and 15, the MSM dissimilarity is calculated
by applying the following recurrence on an appropriately initialised matrix
D (we omit initialisation steps for brevity):

D;j = min{D;_1 j_1 + |Th; — To],
Di*l,j =+ COSt(TL,L', Tl,ifla TQ,j)a (34)
Di,j—l + COSt(TQJ‘, Tl,ia T27j_1)}

where the Cost function is defined as follows:

citTh; 1 STy <ThyorTi; 1 >2T; =T
c+ mm{|T1,Z - Tl,z'—1|7 |T1,i - T27j|} otherwise
(3.5)

The parameter ¢ corresponds to the cost required to make a split/merge
operation (the cost of a move operation is equal to absolute value of the
difference between the old and the new value). We set the parameter ¢ as
equal to 0.25 x ¢ as done for the EDR dissimilarity. When the entire matrix
D is filled we have MSM Diss. = Dy, 1, (where L; and Lo are the lengths of
the two time series).

The auto-correlation dissimilarity [79] (Eq. 3.6) measures the correlation
between time series values separated by a certain lag. In time series anal-
ysis and forecasting it is important to study the auto-correlation structure
of a time series. For instance, this information is useful to estimate the pa-
rameters of auto-regressive and moving-average models. In this work, we
compare the auto-correlation structure of two time series to see if this can
result in an effective dissimilarity measure. Given two time series 7} and
T, of equal length L we calculate their auto-correlation for all the lags from
1 to L-1 obtaining two vectors of auto-correlation values R; and Ry. The
auto-correlation dissimilarity corresponds to the Euclidean distance between
these two vectors multiplied by a vector of weights W (weights decrease
with the lag and are calculated using a geometric progression in the inter-
val [1,0.001]). In their original formulation, the authors propose to use the
squared Euclidean distance, however we use the Euclidean distance because

Cost(Th;,Th,-1,T5;) = {

35

Chapter 3 Par. 3.5

with the former, the auto-correlation dissimilarity is not a metric.

Auto-correlation Diss. = |[(R1 — Rz) x W], (3.6)

The Gaussian kernel and the Sigmoid kernel dissimilarities are defined
in Eq. 3.7 and Eq. 3.8 respectively. The Gaussian and the Sigmoid kernels
measure the similarity between a given pair of inputs; we turn them into
dissimilarity measures by a change of sign. These measures are not metrics
because they violate the identity, and triangle inequality axioms. There are
a number of studies that investigate the use of kernel methods for time series
classification [2]. In Eq. 3.7, to calculate the Gaussian kernel dissimilarity
we set the scale parameter 202 = L (where L is the time series length).

Ty =T
Gaussian k. Diss. = —exp| — 73 = T2l (3.7)
202

The Sigmoid kernel dissimilarity (Eq. 3.8) takes two hyper-parameters:
a and c¢. Langkvist et al. [138] explain in detail the implications of these
hyper-parameters in the context of kernel methods. When a > 0, a can be
interpreted as a scaling factor of the input data while ¢ is a threshold that
can be used to set the point where the function output is equal to 0. We set
a = 1/L (where L is the time series length), and ¢ = 0.

Sigmoid k. Diss. = —tanh(a(Ty - Ts) + ¢) (3.8)

Generally, the Kullback-Leibler dissimilarity (Eq. 3.9) [117] and the Wasser-
stein dissimilarity (Eq. 3.10) [245] are used to evaluate the difference between
two probability distributions. These measures ignore the temporal structure
of time series, treating each time series as a random variable. The Kullback-
Leibler dissimilarity is not a metric because it violates the identity, symmetry,
and triangle inequality axioms. A symmetric version [117] can be derived as
follows: K Lg(p1,p2) = KL(p1,p2) + KL(ps, p1).

To calculate the Kullback-Leibler dissimilarity, given two time series, first
we merge them and find the bin edges from 10 equal-width bins. Then for
each time series we count the bin frequencies p; and p,. We add 1 to each
bin to avoid empty bins.

i—1 j i—1 D2

1,2

10 D 10 DL
KL, Diss. = Zpu log P2 4 me- log £l (3.9)
p .

The first Wasserstein dissimilarity [186] between two one-dimensional dis-
tributions (Eq. 3.10), also known as earth mover’s distance, considers not

36

Chapter 3 Par. 3.6

only how different two probability distributions are, but also it takes into
account the amount of “work” needed to transform one distribution into an-
other. Adapted to the time series context the Wasserstein dissimilarity is
not a metric because it violates the identity axiom. Given two time series we
calculate their cumulative histograms, F} and F5, and a vector of the first
order differences between the two time series I.

Wasserstein Diss. = <|F1 — Fy| x I) (3.10)
‘ Dissimilarity Measure Type ‘ Complexity ‘ Metric ‘
Manhattan Lock-step O(L) Yes
Euclidean Lock-step O(L) Yes
Chebyshev Lock-step O(L) Yes
Cosine Lock-step O(L) No
DTW Elastic O(L?) No
EDR Elastic O(L?) No
MSM Elastic O(L?) Yes
Auto-correlation Statistical O(L?) Yes
Gaussian Kernel Lock-step O(L) No
Sigmoid Kernel Lock-step O(L) No
Kullback-Leibler Probabilistic O(L) No
Wasserstein Probabilistic O(Llog(L)) | No

Table 3.2: Dissimilarity measures used in this work.

3.6 Implementation Details

All the experiments are implemented in Python. There are three main li-
braries we use. (1) Scikit-learn [189] is used for the classifiers, some of the
dissimilarity measures, and other utilities. (2) PonyGE2 [72] is used to imple-
ment the evolutionary algorithm proposed in Chapter 5. (3) Tensorflow [1]
is used to implement the neural networks relevant to Chapter 6. The code
related to published works is available on GitHub?.

Most of the experiments are run on CPU nodes on the University College
Dublin NCRA Galapagos server cluster®. The experiments related to convo-
lutional auto-encoders described in Chapter 6 are run on GPU nodes of the
DJEI/DES/SFI/HEA Irish Centre for High-End Computing (ICHEC)?.

2 Code available at: https://github.com/spaghettix/.
3 NCRA lab: http://ncra.ucd.ie/.
4 ICHEC: https://www.ichec.ie/.

37

https://github.com/spaghettix/
http://ncra.ucd.ie/
https://www.ichec.ie/

Chapter 3 Par. 3.6

1 - AccelerometerData

2 - Adiac

3 - ArrowHead

4 - Beef

ek Mgy, | N TN TN [N

5 - BeetleFly

6 - BirdChicken

7- CBF

8- Car

9 - ChlorineConcentration

10 - CinCECGTorso

11 - Coffee

12 - Computers

N [[ﬂ

13 - CricketX

14 - CricketY

15 - CricketZ

16 - DiatomSizeReduction

AWM A [T [[N N 7

17 - DistalPhalanxOutlineAgeGroup

18 - DistalPhalanxOutlineCorrect

NN

19 - DistalPhalanxTW

20 - ECG200

N M [e

21 - ECG5000

v e i

22 - ECGFiveDays

25 - FaceAll

26 - FaceFour

23 - Earthquakes

24 - ElectricDevices

~ |

27 - FacesUCR

28 - FiftyWords

32 - GunPoint

A

34 - HandOutlines

35 - Haptics

36 - Herring

S [A ([NN

37 - InlineSkate

38 - InsectWingbeatSound

39 - ItalyPowerDemand

40 - LargeKitchenAppliances

41 - Lightning2

L

42 - Lightning7

43 - Mallat

44 - Meat

45 - Medicallmages

46 - MiddlePhalanxOutlineAgeGroup

47 - MiddlePhalanxOutlineCorrect

48 - MiddlePhalanxTW

NN

49 - MoteStrain

50 - NonInvasiveFatalECGThorax1

51 - NonInvasiveFatalECGThorax2

52 - OSULeaf

T T e [[T

53 - OliveOil

54 - PhalangesOutlinesCorrect

A NN

55 - Phoneme

56 - Plane

57 - ProximalPhalanxOutlineAgeGroup

58 - ProximalPhalanxOutlineCorrect

59 - ProximalPhalanxTW

NN NN

61 - ScreenType

62 - ShapeletSim

63 - ShapesAll

60 - RefrigerationDevices

(AL

64 - SmallKitchenAppliances

| LL. | AN |~ |

65 - SonyAIBORobotSurfacel

66 - SonyAIBORobotSurface2

67 - StarLightCurves

68 - Strawberry

NN N A [N N

69 - SwedishLeaf

70 - Symbols

71 - SyntheticControl

72 - ToeSegmentation1

S U S

73 - ToeSegmentation2

74 - Trace

75 - TwoLeadECG

76 - TwoPatterns

AN L [T T ke] e [

77 - UWaveGestureLibraryAll

78 - UWaveGestureLibraryX

79 - UWaveGestureLibraryY

80 - UWaveGestureLibraryZ

Pl | TN [N T

81 - Wafer

—

82 - Wine

83 - WordSynonyms

84 - Worms

A\ A W N AT A%

85 - WormsTwoClass

86 - Yoga

AR WIS [SN N

Figure 3.3: A randomly selected time series for each data-set in use.

38

Part 11

Experimental Research

39

Chapter 4

Dissimilarity-Based
Representations

In this chapter we investigate dissimilarity-based representations (DBR) [191]
as a means to attain a vectorial representation of time series that, while
preserving the information that allows classification, could enable scalable
machine learning algorithms [106]. DBR are studied in the context of the
little-explored one-class time series classification problem.

Our main contributions can be summarised as follows. As outlined in
Chapter 2, there is no research using DBR for time series in the context
of one-class classification, and very little using other representations. We
address this gap evaluating a variety of DBR derived through a Cartesian
product of 12 dissimilarity measures and eight “prototype methods” Pro-
totype methods are strategies designed to extract a subset of samples (pro-
totypes) from a set of training samples. Subsequently, these prototypes are
used along with a dissimilarity measure to derive the DBR. We benchmark
the classification performance of DBR against raw data (RD). We find that
the performance of DBR and RD is close. However, DBR have an advantage
on problems where the class membership depends on the global time series
shape. Also, DBR enable dimensionality reduction and so savings in terms
of computational time, and visual exploration of time series data-sets.

The chapter is organised as follows. In Section 4.1, we show how to derive
DBR of time series. In Section 4.2, we report and analyse our results. Finally,
in Section 4.3 we summarise our conclusions and discuss future work.

40

Chapter 4 Par. 4.1

4.1 Proposed Method

We provide an overview of the proposed method in Section 4.1.1. Then, we
present all the considered prototype methods in Section 4.1.2.

4.1.1 Overview

As detailed below, we propose to represent a time series as a vector of dis-
similarities from a set of carefully selected time series. Then, we use a simple
INN classifier equipped with the Euclidean distance (INN-ED-DBR)) on this
representation. The 12 dissimilarity measures we evaluate are introduced in
Section 3.5. The prototype methods are presented in Section 4.1.2.

As shown in Figure 4.1, to represent RD in terms of dissimilarities we need
a dissimilarity measure and a prototype set. Hence an object is represented
as a vector where each coordinate corresponds to its dissimilarity to a given
prototype. It is not required that a dissimilarity measure has the strict metric
properties, however it is important that it is in monotonic relationship with
whatever aspect of difference we want to capture. The prototype set can
include all the elements of the training set or be constructed according to a
user defined strategy. In other contexts, a prototype can be considered as the
element of a set that is most similar to any of the elements of the set [191].
However, in previous work by Pekalska and others [147, 192] and in our
work, prototypes are chosen on the basis of leading to useful dissimilarity
representations, not necessarily on the basis of being typical.

/\/\/Tpe 1-P1 Dissimilarity Space

Prototype 2 - P2 @PBR(T) = (d(T, P1), (T, P2))

Time Series - T
/L _DBR(P2)

Distance from Prototype 1

) DBR(P1)

Distance from Prototype 2

Figure 4.1: DBR. On the left-hand side there are two prototypes (P1, P2) and
one time series (7') that we project into a 2-dimensional dissimilarity space shown
on the right-hand side. For illustration the prototypes are projected in the dissim-
ilarity space too. In the brackets it is shown how the new (z,y) coordinates are
derived using a dissimilarity measure (d).

41

Chapter 4 Par. 4.1

4.1.2 Prototype Methods

In this section we describe the eight prototype methods evaluated in this
work. A visual overview of their functioning is provided in Figure 4.2.
There is relatively little literature on prototype methods in the context of
DBR. This topic is often analysed in the context of nearest prototype clas-
sification [137]. The nearest neighbour rule suffers from several drawbacks
such as high storage requirements, low efficiency at test time, and low noise
tolerance, therefore it is argued that by reducing the training set to a smaller
set of prototypes it is possible to mitigate all these weaknesses while improv-
ing generalisation performance [238]. Pekalska et al. [192] note that the set
of prototypes should be large and diverse enough to be representative of the
entire class we want to approximate; if these assumptions are not violated
than even a random selection can lead to good classification performance.
The prototype methods can be divided into two groups: methods that
select samples from the training data (1, 4, 5, 7, 8) [81], and methods that
generate “synthetic” prototypes (2, 3, 6) [238]. All of the prototype methods
can be used to obtain a variable number of prototypes through a user-defined
hyper-parameter that we refer to as n. Since each prototype gives one di-
mension in the resulting representation, this allows the modeller to reduce
any time series to any desired dimensionality. We study several prototype
methods found in the literature and a new one named “percentiles”.

1. Borders: the first prototype to be selected is the training sample that on
average is furthest from all the others. Next prototypes are the samples
that on average are furthest from all the others used as prototypes.

2. Centers Gaussian-mixture: a Gaussian-mixture model with n compo-
nents is fit on training data. The mean of each component is used as a
prototype.

3. Centers k-means: a k-means model with £ = n is fit on training data.
The centroid of each cluster is used as a prototype.

4. Closest: the n training samples that on average are closest to all the
others are used as prototypes.

5. Furthest: the n training samples that on average are furthest from all
the other training samples.

6. Percentiles: according to this prototype method, here introduced for the
first time, we synthesize n prototypes by taking n sample-wise percentiles
of the training data. E.g. for n = 3 we take the 0th, 50th, and 100th
percentiles. For the special case n = 1 we take only the 50th percentile.

42

Chapter 4 Par. 4.2

7. Random: n samples are randomly selected from training data with uni-

form probability.

. Support vectors: We adapt the idea of using the support vectors of
a support vector machine (SVM) classifier as prototypes, originally pro-
posed by Li et al. [147] in the context of supervised classification, to the
one-class classification framework. SVM classifiers find a decision bound-
ary as a weighted combination of elements of the training set called sup-
port vectors. Similar to prototypes, support vectors are critical elements
of the training set that enable the classification of an unknown object.
We can see the dissimilarity-based approach to classification as a general-
isation of the SVM algorithm where dissimilarity measures correspond to
kernels and prototypes to support vectors.

According to this prototype method a one-class SVM (OC-SVM) model
is fit on training data. The n closest support vectors to the decision
boundary are used as prototypes. For this model we use a Gaussian
kernel with scaling parameter v = 1/20? set to 1/L (where L is the time
series length). Also, we set v = 1/N (where N is the number of training
samples). The parameter v represents a lower bound on the number of
training samples that can be used as support vectors.

Borders

Centers Gm

Centers k-means

Closest
W W

fge e

. O

e
&- :

o . :M oo . : o L] . :M
o R R S A - SR A
Furthest Percentiles Random Support vectors

T
B o

Figure 4.2: Prototype methods on 2-dimensional random data generated from a
mixture of normal distributions with n = 10. @ Random data. [J Prototypes.

43

Chapter 4 Par. 4.2

4.2 Results

An overview of the experimental results is provided in Section 4.2.1. Fol-
lowing, we elaborate on the impact of dissimilarity measures, and prototype
methods (Sections 4.2.2). Finally, we demonstrate the ability of our approach
in enabling dimensionality reduction (Sections 4.2.3), and visualisation of
time series data-sets (Section 4.2.4).

4.2.1 Overview

All pairwise combinations of dissimilarity measures and prototype methods
(Section 4.1) are evaluated on the 86 data-sets introduced in Section 3.2.

The classifier we use on the DBR is the 1NN classifier equipped with
Euclidean distance (INN-ED-DBR). Also, we evaluate the performance of
the INN classifier on RD when this is equipped with each of the 12 dissimi-
larity measures considered (INN-(-)-RD). A summary of results is shown in
Table 4.1. For each dissimilarity measure and prototype method results are
averaged over all the data-sets. The associated standard deviations are in
the range [11, 16] as expected since some problems are far harder than others.

We evaluate the impact of the number of prototypes on the classification
performance of INN-ED-DBR by varying n={1,2,10%,20%,100%}. For in-
stance, when n=1 we use only one prototype; when n=10% we use a number
of prototypes equal to [N x0.1] (where N is the number of training samples).
When n=100% prototype methods are not needed because all the available
training samples are considered as prototypes. For each value of n shown in
the table there is also a row titled “RD”. In this row is shown the performance
achieved using 1INN-(-)-RD with n randomly selected training samples. We
use this approach as a point of comparison for the DBR performance.

The best performance (80% AUROC) is achieved in two cases by the dis-
similarity measure MSM: for DBRgg%, and RD1go%. When n = 100% other
dissimilarity measures like DTW, EDR, Euclidean, and Manhattan achieve
a performance between 77-78% AUROC. Again for n = 100% the worst per-
formance is achieved by Chebyshev and Kullback-Leibler (between 70-73%
AUROQC). Tt is not surprising that most dissimilarity measures achieve sim-
ilar performance. As pointed out in other studies this can happen because
strengths and weaknesses of individual measures are cancelled out by the
variance over the large number of data-sets examined [250].

Concerning other values of n (1,2,10%,20%), by comparing the average
value of rows “Avg” and “RD” we see that the performance of DBR and
RD are close. However, the maximum performance of DBR (average value
of row “Max”) is always superior to that of RD (except n = 1).

44

Chapter 4 Par. 4.2

| | AC | Ch. | Co. | DTW|EDR| ED | Gk | KL | MSM| Ma. | Sk | Wa. | Avg. |

| DBR; |
Borders 63 60 61 63 59 60 60 59 61 60 61 60 61
Centers-Gm 66 65 68 67 64 67 67 62 66 68 68 64 66
Centers-k-means | 66 65 68 67 64 67 67 62 66 68 68 64 66
Closest 66 62 66 68 64 64 63 65 66 65 66 64 65
Furthest 63 60 61 63 59 60 60 59 61 60 61 60 61
Percentiles 66 63 67 67 65 66 66 63 67 68 67 65 66
Random 65 61 64 66 63 62 62 62 65 63 64 62 63
Support vectors 64 60 63 66 61 61 61 63 65 61 64 63 63
Avg. 65 62 65 66 62 63 63 62 65 64 65 63 64
Max 66 65 68 68 65 67 67 65 67 68 68 65 66
RD; 67 62 65 70 68 65 65 62 70 66 65 64 66
‘ DBR; ‘
Borders 71 66 69 71 68 68 67 64 70 70 70 68 68
Centers-Gm 70 68 72 72 69 71 71 65 72 72 72 68 70
Centers-k-means | 71 68 72 72 69 72 72 65 72 73 73 69 71
Closest 68 63 68 69 66 64 64 66 67 65 69 65 66
Furthest 68 65 68 67 64 66 66 61 66 67 68 65 66
Percentiles 70 66 71 70 66 70 69 63 71 75 71 63 69
Random 69 64 68 70 67 66 65 65 68 66 69 67 67
Support vectors 70 64 68 71 67 66 66 65 69 67 69 67 67
Avg. 70 66 70 70 67 68 67 64 69 69 70 66 68
Max 71 68 72 72 69 72 72 66 72 75 73 69 71
RD, 69 65 68 72 71 68 68 65 73 69 68 67 68
| DBRyy |
Borders 70 67 70 72 69 69 68 65 72 70 71 67 69
Centers-Gm 71 70 73 73 71 72 71 66 73 73 73 68 71
Centers-k-means | 71 70 73 73 71 72 72 66 73 74 73 68 71
Closest 68 64 69 70 66 65 64 67 67 66 70 65 67
Furthest 69 66 69 70 67 68 67 63 69 68 70 65 68
Percentiles 70 68 71 73 70 71 69 67 73 75 72 67 70
Random 70 67 71 72 69 68 67 66 71 69 71 67 69
Support vectors 70 67 71 72 69 69 68 66 71 69 70 68 69
Avg. 70 67 71 72 69 69 68 66 71 70 71 67 69
Max 71 70 73 73 71 72 72 67 73 75 73 68 71
RDygy 70 65 69 73 71 69 69 66 73 70 69 68 69
| DBRuy,
Borders 72 69 72 74 72 71 70 67 74 72 73 69 71
Centers-Gm 72 71 75 75 73 74 73 68 75 74 74 70 73
Centers-k-means | 72 71 74 75 73 74 73 68 76 75 74 70 73
Closest 69 64 70 70 67 65 64 69 67 67 71 66 67
Furthest 71 68 73 72 70 70 69 66 72 70 73 69 70
Percentiles 71 69 72 74 72 71 70 68 75 76 72 69 72
Random 72 68 72 73 70 69 68 68 72 71 72 69 70
Support vectors 72 68 71 73 70 69 68 68 72 70 72 69 70
Avg. 71 69 72 73 71 70 69 68 73 72 73 69 71
Max 72 71 75 75 73 74 73 69 76 76 74 70 73
RDy 72 68 72 75 74 72 72 69 76 73 72 71 72
| DBRio%
4 73 75 78 78 76 75 70 80 7 75 73 5
RD1g0% 75 72 7 78 7 7 s 71 80 78 7 74 76

Table 4.1: The table shows AUROC averaged across all the data-sets and rounded
to the nearest integer.

45

Chapter 4 Par. 4.2

4.2.2 Dissimilarity Measures and Prototype Methods

In Figure 4.3 performance of DBRgg% and RD1qgy for each data-set is broken
down by dissimilarity measure. Performance appear to be highly correlated
and so nearly always tightly distributed along the diagonal.

Again in Figure 4.3, we note that for the EDR measure the performance
of DBRgg% is higher than that of RD1gge in a good number of cases. Batista
et al. [14] state that “several papers propose a method that is able to win
on some, tie on many, and lose on some of the data-sets of the UCR/UEA
archive and so authors claim that their method has some value. However, it
is not useful to have an algorithm that can be accurate on some problems
unless you can tell in advance on which problems it will be more accurate”.

AC Ch. DTW o EDR Eu.

o
n (—J
[—] (—)

1 1
1 1
]
1 1
A
\9

1 1
1

1 1

MSM Sk Wa.

0 50 1000 50 100 0 50 100 0 50 100 0 50 100 0 50 100
AUROC - Raw Data

S o
Q
5
A
=
=
0

AUROC - n=100%
o 2

[—J
1

Figure 4.3: Scatter-plots of AUROC performance over all data-sets, analysed by
dissimilarity measure for DBRgg9, and RDqgg9;.

In Figure 4.4, we select only the EDR dissimilarity, and we divide the
86 data-sets into two groups: a group where DBR;y% achieves better per-
formance, and a group where RDqgoy does. We further break down the two
groups in terms of application domain, average number of training samples,
and time series length. For each sub-group we test whether the difference
between DBR oo and RD1ggy is significant or not using a Wilcoxon signed-
rank test with a threshold on the p-value of a = 0.05 [254]. We find that
DBRigoy is significantly better than RDjgoy when the application domain
is “image outlines”. Duin and Pekalska [59] state that “dissimilarity based
comparison of objects may be seen as the effort of transforming one struc-
ture into another”. Accounting for this point of view we argue that the EDR
measure is successful because it asks the right question: how expensive is
it to transform one object into the objects found in the set of prototypes?
Finally, it is found that DBR;ggy is significantly better than RDjg0% when

46

Chapter 4 Par. 4.2

the average number of training samples is greater than 125, and also better
when the time series length is lower than 90.

Application Domain Avg. N. of Training Samples Time Series Length
18 - 1 1
16 - 1 1
14 + 1 ilm
12 1 1 1

Count
)
[—]

ECG
Electric D.
Image O.
Motion C.
Sensor R.
Simulated
0-11

11-23
23-39
39-125
>=125
0-90
90-250
250-400
400-700
>=700

Spectrographs

Figure 4.4: Counts of data-sets where DBR;yge; achieves a better performance
than RDqgoy (O) and vice-versa (M) for the EDR dissimilarity only.

With respect to prototype methods, row-averages of Table 4.1 show that
the best mean AUROC (73%) is achieved in DBRygy by the prototype meth-
ods Centers-Gm and Centers-k-means. The effectiveness of these two proto-
type methods is consistent for other values of n.

In terms of the best pairing of dissimilarity measure and prototype method,
the highest performance (76% AUROC) is achieved by MSM paired with
Centers-k-means in DBRygy, and by Manhattan paired with Percentiles again
in DBRyyy,. However, the latter pair shows a consistent performance for other
values of n achieving 75% AUROC since n = 2.

In Figure 4.5, we investigate the interaction between the Manhattan dis-
similarity and the prototype methods under DBRygy. In particular, we want
to understand how the performance of the pair Manhattan /Percentiles com-
pares to other prototype methods paired with the Manhattan dissimilarity. It
is noted that Percentiles is superior to all the other methods under the Man-
hattan dissimilarity, however all the other methods win for some data-sets
confirming that they all have some potential value. Under the Manhattan
dissimilarity, the difference between Percentiles and all the other prototype
methods is significant according to a Wilcoxon signed-rank test (a = 0.05).

47

Chapter 4 Par. 4.2

Borders Centers-Gm Centers-k-means Closest

100 Caa? 1

. . '. o..// .
c®,

n
=]
1
1
L]

1

=}
1
1
1

Furthest Random Support vectors

AR a4

0 50 100 0 50 100 0 50 100
AUROC - Other Prototype Methods

AUROC - Percentiles
n
[—}

<
1

Figure 4.5: Scatter-plots of AUROC performance over all data-sets for the pair
(Manhattan, Percentiles) compared to all the other prototype methods paired with
the same dissimilarity measure under DBRygg;.

The results discussed so far have considered a 1INN-ED classifier that
achieves an average performance over all the variants DBR; 210% 20%.100%
equal to 68% AUROC. Now we discuss whether this choice has an important
effect. In this regard we evaluate four other classifiers. (1) A centroid classi-
fier assigns a score to a test sample that corresponds to its distance from the
centroid of the training set. The average performance of this classifier over all
the variants DBR 2 10% 20%.100% is equal to 63% AUROC. Notably, for DBRy
when the representation is derived using the pair (Manhattan, Percentiles)
this classifier achieves 75% AUROC. This good performance suggests that the
representation is suitable for this classifier, and we know this classifier tends
to do well if positive samples are projected towards the centre of a sphere
and negative samples are projected far from it. (2) A kernel density estima-
tion classifier (KDE) [28] which tends to mimic the performance of INN-ED.
The average performance of this classifier over DBR 2 10%.20%,100% is equal to
65% AUROC. (3) A OC-SVM classifier that has shown substantially lower
performance than 1INN-ED. The average performance of this classifier over
DBR1 2.10%.20%.100% is equal to 61% AUROC. (4) An isolation forest classi-
fier (IF) [157] whose performance over DBR 210%20%,100% is equal to 65%
AUROC. Although the average performance of IF equals that of KDE the
first do not exceed 70% AUROC for any pairing of dissimilarity measure and
prototype method. While the centroid classifier is a non-parametric classi-

48

Chapter 4 Par. 4.2

fier the other three are sensitive to the choice of hyper-parameters. Given
the lower level of performance compared to the INN, and the challenges of
hyper-parameter selection in the context of one-class classification, we decide
not to investigate this further. Finally, we have evaluated some variants of
the parameter k (k={1,2,3,5}) for the kNN classifier but the performance of
INN-ED is the best.

4.2.3 Dimensionality Reduction

As mentioned before, DBR allow us to reduce RD to vectors of arbitrary
dimensionality by varying the number of prototypes. In Figure 4.6 (a), we
can see that for all the pairs of dissimilarity measure/prototype method, per-
formance tends to increase when we increase the number of prototypes. In
this case a peak in performance is achieved when all the training samples
are used as prototypes i.e. DBRygg. However, if we look at Figure 4.6 (b)
where we have considered only data-sets with an average number of train-
ing samples greater than 39, we can see that improvements in performance
between DBR;gy; and DBR;goy are relatively limited. Thus, for large data-
sets using all the training samples as prototypes can lead to little or no
improvement. This result can have a significant impact in terms of savings
in computational time, especially when we use elastic dissimilarity measures
such as DTW, EDR or MSM, subject to the number of prototypes we use,
the length of the time series, and the number of test samples.

(b)

80 -
75 1
701 =
65
60 -

55 T T T T T T T T T T
1 2 10% 20% 100% 1 2 10% 20% 100%

n - Number of Prototypes

AUROC

Figure 4.6: AUROC performance for all pairs of dissimilarity measures and pro-
totype methods. In part (a) results are averaged over all data-sets; in part (b) are
averaged only data-sets with average number of training samples greater than 39.

49

Chapter 4 Par. 4.2

4.2.4 Visual Exploration of Time Series Data-Sets

Visualisation of time series data is important to enable understanding and
decision making. It is particularly important in the context of anomaly
detection where often modellers are not simply concerned with the detection
of anomalies but are interested in understanding their dynamics and root
causes, for instance in the context of fault detection, and medical diagnosis.
By selecting only two prototypes DBR allow us to visualise a time series
data-set in a 2-dimensional space as shown in Figure 4.7.

Sometimes, given the same data-set, the choice of the dissimilarity mea-
sure or the prototype method can make the difference in terms of perfor-
mance. This aspect is not clear from Table 4.1 where results are averaged
over all the data-sets. In part (al)/(a2) of Figure 4.7, the positive and the
negative class are not as easy to separate as in part (b1l)/(b2). In part (al)
and (bl), two dissimilarity measures, ED and DTW, given the same pro-
totype method (Closest) achieve a different performance (65% vs. 89%) on
the “FiftyWords” data-set. Similarly, in (a2) and (b2), two prototype meth-
ods, Centers-Gm and Percentiles, given the Manhattan dissimilarity achieve
a different performance (76% vs. 91%) on the “FacesUCR” data-set.

In both part (¢) and (d) of Figure 4.7 are shown two examples where
DBR achieve poor performance. The data-sets considered are “FordA” and
“ShapeletSim”. From the experiment conducted by Bagnall et al. [12] we
know that on both these problems shapelet-based and bag-of-patterns clas-
sifiers achieve a particularly good performance. Our understanding is that
DBR are weak on problems where discriminative features are short distinc-
tive sub-sequences (shapelets) or their frequencies (bag-of-patterns).

20

Chapter 4 Par.

4.2

w0
L

(al)

« 25
%]
=
£ 20
S
S
A

151
E o
= oo
L=
o 101 o
]
=
=
3
]
a

>
L
o

()
a
J
20 25

—
'S
<

—
[
=]

Distance from Prototype 2
g 2

(=)
=

60 80 100 140

Distance from Prototype 1

=]
L

=
L

Distance from Prototype 2
~N -

>
o

Distance from Prototype 1

175

2

2 150

~
wm

L

n
=

L

Distance from Prototyp

— —
=3 »~
= wn
L L

»~
wn
L

(b1)

<
L
[m}

Distance from Prototype 2

e
—_
=)

Distance from Prototype 2
=3 = =3 =
=3 = > =3
~ - =N o

0.00 -

bt
=
o

I |

0 50 100 150

Distance from Prototype 1

210 220

200

Distance from Prototype 1

(d)

0.000 0.025 0050 0.075 0.100 0.125

Distance from Prototype 1

Figure 4.7: O Training samples. O Positive test samples. @ Negative test sam-
ples. The shaded area gets darker as the distance from training samples increases.
(al) “FiftyWords”, ED, Closest, positive class: 6. (bl) “FiftyWords”, DTW, Clos-
est, positive class: 6. (a2) “FacesUCR”, Ma., Centers-k-means, positive class: 2.
(b2) “FacesUCR”, Ma., Percentiles, positive class: 2. (c¢) “FordA”, Ch., Support

vectors, positive class: -1. (d) “ShapeletSim”, WD, Furthest, positive class: 0.

51

Chapter 4 Par. 4.3

4.3 Conclusions

For the first time (to the best of our knowledge) we have conducted a com-
prehensive one-class classification experiment on the main archive of time
series data-sets available in the literature (UCR/UEA archive).

We have investigated DBR as a methodology to derive a vector from a
time series while maintaining information of its shape comparison to a set of
carefully selected time series (prototypes) through a dissimilarity measure.
In this regard, we have evaluated a Cartesian product of 12 dissimilarity
measures, and 8 prototype methods (strategies to select prototypes).

We have argued that DBR are advantageous for problems where the class
membership depends on the global time series shape. On the other hand,
DBR are weak on problems where the class membership depends on short
distinctive sub-sequences (shapelets), or their frequencies (bag-of-patterns).

As evidence from other studies confirm, there is no silver bullet that
can achieve best performance over all problems. However, given the “right”
pairing of dissimilarity measure and prototype method DBR. can achieve high
performance using only a sub-set of the available training samples (10-20%).
This can guarantee dimensionality reduction and so improvements in terms of
computational requirements. Finally, we have shown that by using only two
prototypes this method can be used to visualise a data-set in a 2-dimensional
space, enabling understanding of the problem at hand.

We have benchmarked the performance of DBR against a 1NN classifier
equipped with each of the 12 dissimilarity measures considered on RD. As
observed before in several binary and multi-class time series classification
experiments this “simple” approach establishes a strong baseline.

DBR could enable the use of several off-the-shelf classifiers which gener-
ally perform poorly on raw time series. However, although we have evaluated
five classifiers the 1NN is the one that has achieved the best performance. For
three of the other classifiers, KDE, OC-SVM, and IF we believe this result is
caused by the fact that we have used the same hyper-parameters throughout
all the data-sets. This is because hyper-parameter selection is difficult in
the context of one-class classification. In future we propose to investigate
this problem. Again about hyper-parameter selection, we have not investi-
gated how to select the best hyper-parameters for some of the dissimilarity
measures in use. For instance, future research might examine how to select
the best warping window for DTW when only samples from a single class
are available for training (and validation). Also, future research is needed to
extend our method to multivariate time series. Additionally, the possibility
of ensembling multiple DBR, or to combine DBR with other representations
warrants further investigation.

52

Chapter 5

Feature-Based Representations
via Grammatical Evolution

Feature-based approaches to time series classification transform time series
into feature-vectors that can be used with any off-the-shelf classifier. The
basic assumption underlying the feature-based approach is that we can find
an unequivocal “description” for a class of time series. Thus the question
arises: how to determine a convenient description?

The feature extraction process should normally be customised to the prob-
lem at hand. Often, when researchers deal with a new problem they do not
know which features could have the best discriminative power. Thus, a com-
mon approach is to construct an initial set of features and then select the
subset that yields the best performance [51, 160]. Conversely, there is growing
interest in algorithms that enable the data-driven discovery of useful features
as made possible by deep learning methods [142]. A clear advantage is that
modelers can redirect their efforts from the construction of the solution to
the construction of the learning framework. While the former may be useful
solely on a particular problem the latter may be effective on many.

We investigate grammatical evolution (GE) [185] as a means to attain a
data-driven feature-based representation of time series. GE is an evolution-
ary computation technique related to genetic programming (GP) [132]. Our
ultimate goal is to implement an automated feature extraction framework
that could learn one feature at the time until a certain level of performance
is achieved, or no further improvements are found. We exploit the flexi-
bility allowed by GE as a learning framework. By starting from a set of
“simple” functions e.g. mean, standard deviation, etc., GE allows the con-
struction of complex features as required by the problem at hand. Each
feature summarises a time series in a single scalar, thus by concatenating
multiple features we can create representations of arbitrary dimensionality.

23

Chapter 5 Par. 5.1

Previous research on time series classification has shown that class mem-
bership may depend on features related to the whole time series, or on fea-
tures related to one or more of its sub-sequences [12]. We hypothesize that
the same features extracted from a different time interval may lead to differ-
ent performance. Taking this into account, we have enabled our algorithm
to investigate both the features to extract and the sub-sequences from which
to extract them. We demonstrate that these choices are of central impor-
tance. This is not only in terms of classification performance but also to
allow understanding of the problem at hand.

Motivated by the requirements of a subject authentication problem we
have recently investigated [168], the classification performance of extracted
features is evaluated using a one-class classifier [170]. The aim of subject
authentication is to confirm the identity of a person. Both binary and
multi-class methods assume, in a sense, a fixed population of subjects, well-
represented in the data, which is not realistic for this scenario. Thus the best
option may be a one-class classifier tailored to the intended subject only.

Although we use a one-class classifier, our algorithm requires labelled
data to evaluate the fitness function that drives the extraction process. This
is in contrast with the requirements of one-class classification where only the
samples of a single class are available before the test phase. However, we
use our subject authentication problem to show how GE-evolved features are
able to generalise to classes unseen during the feature extraction phase.

We compare our algorithm against a 1-nearest neighbour classifier equipped
with dynamic time warping (DTW) [205] (INN-DTW) on raw data, consid-
ered as the standard benchmark in the literature [12] (Section 5.2.2). Finally,
we conduct an experimental analysis to demonstrate the impact of interval
and function selection on performance (Section 5.5).

The chapter is organised as follows. In Section 5.1, we describe the overall
GE-based algorithm for feature extraction. In Section 5.2 we describe the
benchmark methods. In Section 5.3 we describe the experimental design. In
Sections 5.4-5.5 we analyse our results. Finally, in Section 5.6 we summarise
our conclusions and discuss future work.

5.1 Proposed Method

In this section we describe our evolutionary algorithm for feature extraction
from time series based on GE. The core components of our approach are the
grammar (Section 5.1.3), and the fitness function (Section 5.1.4).

o4

Chapter 5 Par. 5.1

5.1.1 Overview

Our algorithm relies on GE, a grammar-based form of GP. We choose GE to
implement our algorithm because, as opposed to GP, it allows us to handle
a mixture of data types. While the type constraint could be handled with
other approaches e.g. strongly typed GP [175], we believe that the grammar
is a particularly convenient way to express the syntax of admissible solutions,
and also we want solutions to be readable Python code as this can facilitate
understanding.

The grammar allows the modeller to exploit her/his domain knowledge,
and to impose syntactical constrains to guide the search of feasible solu-
tions. In this study we have used our knowledge of the TSC domain to
define the proposed grammar. We have designed the grammar to be bal-
anced rather than explosive [183], giving a bias towards short solutions. In
many cases, the primitives included in the grammar are high-level functions
specifically defined for time series e.g. the complexity estimate [14]. How-
ever, a practitioner specialising in a particular sub-domain of T'SC could add
further domain knowledge, e.g. spectral features known to be useful in that
domain. In addition, the grammar allows the selection of any sub-sequence.
Sub-sequences may be key to class membership as demonstrated by TSC
algorithms like shapelets [258], or bag-of-patterns [152].

The solution space of our algorithm consists of feature-extractors. Each
feature-extractor F'is a function which takes as input a specific sub-sequence
[a : b] of a time series T" e.g. T'[20 : 50]. The output is a single scalar i.e. a
feature. In Eq. 5.1 is shown an example of a feature-extractor. Note that all
the primitives included in a given feature-extractor are applied to the same
sub-sequence.

F = Mean(T[20 : 50]) x Skewness(T[20 : 50]) (5.1)

Our algorithm outputs a single feature-extractor. Thus, to extract mul-
tiple features we have to run the algorithm multiple times. Sequential ex-
traction allows control over the “quality” of all features. If we were to evolve
a number of features all at once we would not know which ones are con-
tributing to classification performance, or which ones are even harming it.
Furthermore, by extracting one feature at a time we are oriented towards
finding the minimum number of features for the problem at hand. In fact,
we can extract one feature at a time and stop as soon as we meet the required
level of performance, or we do not observe any meaningful improvement. On
the other hand, our greedy approach to feature extraction may not find the
global optimum. The alternative to evolve a set of feature-extractors at once,
already considered by Eads et al. [63], warrants further investigation.

95

Chapter 5 Par. 5.1

Concluding, the fitness function requires each feature to have good clas-
sification performance, while being minimally correlated with previous fea-
tures. While the first component of the fitness function is defined to extract
features of good predictive power, the second one weakens the redundancy
of extracted features.

5.1.2 Grammatical Evolution

GE is an evolutionary algorithm used for several machine learning tasks like
AutoML [67], automatic program synthesis [226], feature extraction as in
the present study, and it is also used in other fields like bioinformatics [176],
finance [167], etc. Similarly to GP, GE exploits Darwinian evolution ideas to
implement a search heuristic. Through an iterative process, automatically
created candidate solutions are combined and tweaked until the process ends
and the best solution found is returned.

The main difference between GP and GE is that while the former evolves
solutions as executable trees, the latter evolves solutions as arrays of integers
that are then mapped to executable code in an arbitrary language accord-
ing to the rules written in an ad-hoc grammar. As a consequence most of
the operators defined to select, combine, and modify solutions in GP are
different from those used in GE [207]. Furthermore, and more importantly
to the present discussion, GE allows modellers to enforce the structure of
solutions through the grammar. This not only ensure the validity of evolved
solutions that will not cause errors when executed, but also allows modellers
to change the structure of admissible solutions by simply making changes to
the plain text grammar. For instance, one could exploits hundreds of time
series functions readily available in freeware software packages [37] as plug-in
components that can be inserted in our grammar discussed in Section 5.1.3.

The first step required by GE is the creation of the grammar. The gram-
mar contains the rules to generate candidate solutions for the problem at
hand using the Backus—Naur syntax [130]. Each component of the solution
is enclosed in angular brackets <->. Proceeding left to right from the starting
point (<F> in our grammar), the algorithm selects one of the available alter-
natives for each component encountered. Specifically, the algorithm selects
the i'" alternative with i = (¢ mod n), where ¢ is an integer, and n the
number of alternatives. At each choice the algorithm consumes one of the
integers contained in the array (c). The main steps of the GE algorithm are
listed below, more discussion of the algorithm and variants are provided in
previous work [185].

1. Generate a set of solutions at random.

26

Chapter 5 Par. 5.1

2. Map solutions from arrays of integers to executable binary trees.
3. Score each solution according to a fitness function (Section 5.1.4).
4. Combine and tweak solutions (Section 5.3.2).

5. Stop if the termination criteria is met, otherwise go to Step 2.

5.1.3 Grammar and Primitives

The grammar guiding the search of feature-extractors is shown in Figure 5.1.
The general idea is to compose a feature-extractor <F> by selecting its indi-
vidual components one at the time. Each component, enclosed in the angle
brackets (<->), requires a choice from a set of predefined equally probable
alternatives, separated by pipe symbols (|). Finally, the actual extraction is
carried out by a wrapper function Eztract that simply takes the input argu-
ments and arranges them in the form shown in Eq. 5.1, returning a feature.
Note that T (a time series) is not enclosed in the angle brackets. This is
because T' is an argument that we pass to the function at call time.

As said before, a feature-extractor consists of a function <fun> applied to
a sub-sequence of a time series T'. To select a specific sub-sequence we need
to choose a lower bound <1b> and an upper bound <ub>. These indices are
chosen from the range [1, L], where L corresponds to the time series length.
Since a requirement is that the lower bound is below the upper bound, if
this condition is violated <1b> and <ub> are swapped. The grammar allows
<ub> to have a None value. In this case if <bool> is True we select the
sub-sequence [1 : <1b>], if False the sub-sequence [<1b>: L].

A function <fun> can use one or more elements of the <primitive> set.
Multiple primitives are related through the operators {+, —, *, AQ} con-
tained in <op>. In <op>, AQ (analytic quotient) is a function defined to
perform division while avoiding division by 0 error [182]. This is achieved
by transforming a divisor d into va + d?. We set a = 1 as suggested by the
authors of this function.

In <fun>, <primitive> is repeated twice while <op> only once. This is
done to make the selection of <primitive> twice as likely than <op> thus
interrupting the recursion triggered by the <op> rule. In fact, as mentioned
before each feature-extractor is represented as a list of integers each of which
allows only one choice from the grammar. If all the integers are used up before
the feature-extractor is completed this is considered an invalid solution.

The set of 17 primitives, presented in Table 5.1, includes functions able
to take a sub-sequence as input and output a single scalar. These are among
the simplest and most commonly used functions in feature-based time series
classification.

o7

Chapter 5 Par. 5.1

‘ Primitive Description
Mean -
Standard deviation | -
Median -
Skewness -
Kurtosis -
Max -
Min -
Above0 Number of values above 0.
Below0 Number of values below 0.
AbsoluteEnergy Sum of the absolute value.
AR Coefficient of an auto-regressive model of order 1.
Autocorrelation Auto-correlation at lag 1.
CE Measure of shape complexity known as “complexity estimate” [14].
FFT Amplitude associated with the largest coefficient of a fast Fourier transform.
LinearTrend Slope of a linear regression model.
MeanChanges Mean of first order differences.
TRAS Measure of non-linearity known as “time reversal asymmetric statistic” [218].
Table 5.1: Primitives used to evolve the feature extractors.
<F> ::= Extract(T, <1b>, <ub>, <bool>, <fun>)
<fun> ::= <primitive> | <primitive> | <op>
<primitive> ::= AboveO | AbsoluteEnergy | AR | Autocorrelation |
Below0O | CE | FFT | Kurtosis | LinearTrend |
Max | Mean | MeanChanges | Median | Min |
Skewness | Std | TRAS
<op> 1= (<fun>+<fun>) | (<fun>—<fun>) |

(<fun>x<fun>) | AQ(<fun>, <fun>)

<lb>x=1121|..|L
<ub> ::= <1b> | None
<bool> ::= True | False

Figure 5.1: Grammar used to evolve the feature extractors.

o8

Chapter 5 Par. 5.1

5.1.4 Fitness Evaluation

The fitness function, shown in Eq. 5.2, drives the search through the solution
space. The fitness score is crucial because it influences the probability of a
feature-extractor to be selected, breed with other feature-extractors, and thus
pass on to future generations. The fitness evaluation process is illustrated in
Figure 5.2. Our goal is to sequentially extract features that are all able to
achieve a good classification performance individually, while having minimum
linear dependence between them.

As an example, suppose we want to extract two features for a certain
classification problem. This means we have to run our algorithm z = 2
times with each run outputting a single feature-extractor. The first feature-
extractor is evolved aiming at the minimisation of the classification error on a
validation set. The classification error is defined as 1—AUROC. On the other
hand, the second feature-extractor is evolved aiming for both minimisation
of the classification error on a validation set, and minimisation of the average
squared Pearson correlation coefficient with previous features R2(F). This
coefficient is calculated as follows. We take the feature-based representation
of training data according to a candidate feature-extractor. Then, we cal-
culate its squared Pearson correlation with the feature-based representation
of the same data according to each of the feature-extractors outputted from
previous runs (FZ) Finally, we calculate the average value. Both the clas-
sification error, and the average squared Pearson correlation coefficient have
magnitude in the range [0, 1] thus they are commensurate in scale, and have
the same impact on the fitness score. This process is repeated three times us-
ing 3-folds cross-validation. Thus, the final fitness score of a feature-extractor
corresponds to the average score of the 3-folds.

In summary, after all the feature-extractors of an initial population are
assigned a fitness score, the crossover and the mutation operators are applied
to create a new generation. The evolutionary process continues until a certain
number of generations is reached. At that point the feature-extractor with
the lowest fitness is considered the final solution of the algorithm.

29

Chapter 5 Par. 5.2

Training Samples Validation Samples Feature-Based Repr.
F . i1 [
e.g. — | —] i ! —

Mean(TJ[a:b]) zm_/\\-/ , W 2| |f

Fitness Score b a ib L) Lyl
1 — AUROC

True
_ <+— |AUROC| <— |INN-ED
1 — AUROC + R? (F) m

Figure 5.2: Fitness evaluation of a feature-extractor F'. First the feature-extractor
is applied on each training/validation sample deriving the respective feature-based
representation. The classifier in use is a INN-ED. The variable x corresponds the
number of the feature we are extracting. The algorithm minimises the classification
error (1-AUROC) and the average squared Pearson correlation coefficient with
previous features on training data (R2(F)).

Fitness(F) = 1 = AUROG, — ife= 1 (5.2)
1 — AUROC + R?(F), otherwise
— -t
R(F) = ——) R(IF) (5:3)
T o=l
(RF)]
RQ(F,FZ-) - [W] (5.4)
o(F) x o(F;)

In Eq. 5.4 cov(+) and o(-) represent the covariance and the standard deviation
functions respectively.

5.2 Benchmark Methods

In this section we describe the benchmark methods we compare with. We
consider a random search (Section 5.2.1), a distance-based approach (Sec-
tion 5.2.2), and a feature-based approach with some variants (Section 5.2.3).

60

Chapter 5 Par. 5.2

5.2.1 Random Search

Random search (RS) is often used to evaluate whether the evolutionary pro-
cess brings any benefit over the random generation of solutions. Thus, it
disentangles the effect of the grammar from the effect of the search process.

Following the rules of our grammar, the RS creates a number of feature-
extractors (# generations X population size, Section 5.3.2) with no duplicates
allowed. Feature-extractors are evaluated through the fitness function, and
the best one is selected to benchmark our algorithm. As per our algorithm,
the RS is repeated multiple times in order to extract multiple features.

5.2.2 1NN with DTW

The INN-DTW classifier (with warping window set through cross-validation
[206]) is considered the standard benchmark in the time series classification
literature [12]. Unlike all the other approaches used in this study INN-DTW
does not involve feature-vectors but raw time series. This is a dissimilarity-
based classification approach that compares two time series using DTW. In
the one-class classification framework each test sample receives a classifica-
tion score equal to the DTW distance to its nearest training sample.

For the warping window size we have tested all the values in the range
[1,0.1x L] (where L is the time series length) using a 10-fold cross-validation
on validation data.

5.2.3 Function and Sub-Sequence Selection

As discussed in Section 5.1, our algorithm can dynamically decide both the
features to extract and the sub-sequences from which to extract them. A
parallel can be drawn with the manual approach where features and sub-
sequences can be selected according to fixed user-defined strategies. To in-
vestigate the behaviour of our data-driven algorithm we evaluate a Cartesian
product of the alternatives mentioned below.

In terms of features to be extracted we consider two sets. (1) The 17
primitives used in our algorithm (Section 5.1.3) and (2) the C22 features
discussed in Section 2.4. Overall, C22 features are different and more complex
with respect to our primitives.

In terms of segmentation strategies we consider three approaches. (1) We
extract the features from the whole time series. (2) We segment time series
into a number of (approximately) equally sized sub-sequences. Then, fea-
tures are extracted from each sub-sequence and concatenated into a feature-
vector. (3) We segment time series using a change point model. Generally

61

Chapter 5 Par. 5.3

speaking, change point models are used to divide a time series into distinct
homogeneous sub-sequences [9]. We use the bottom-up segmentation algo-
rithm proposed by Keogh et al. [123]. In order to define the number of
sub-sequences and their boundaries for a given data-set we implement the
following algorithm. Given a training set we select 50% of the samples at
random. We segment each sample using the bottom-up algorithm and we
record the number of sub-sequences found. Then, we compute the average
number of sub-sequences (rounding to the nearest integer). Continuing, we
re-run the segmentation algorithm on the same samples imposing as stop-
ping criterion the average number of sub-sequences found before. Finally, we
average resulting indices.

5.3 Experimental Design

We provide an overview of the data-sets used in Section 5.3.1. A summary
of the main components of the evolutionary framework is provided in Sec-
tion 5.3.2. We report some implementation details in Section 5.3.3.

5.3.1 Experimental Data

We test our feature extraction algorithm on 30 data-sets. Of these, 29
are selected from the UCR/UEA archive, while one is a proprietary data-
set [168]. This data-set concerns a subject authentication problem through
acceleromter data collected using wrist-worn devices.

When carrying out a time series classification experiment it is good prac-
tice to consider all the data-sets of the UCR/UEA archive [46]. This is to
avoid spurious results, and allow a thorough comparison between different
studies. However, we consider only 29 data-sets selected as follows: from the
original body of 85 data-sets of the archive, first we filter out those where
there is at least one class with less than 17 training samples. Then we sort
the remaining ones according to their total number of samples and select the
smallest 29. The rationale is that our algorithm requires a validation set to
evaluate the quality of candidate feature-extractors during the evolutionary
process. Thus, we want to ensure that there is always a sufficient amount of
samples to allow a meaningful training/validation split. Specifically, we use
a 2:1 split of training data. Of Furthermore, we prefer smaller data-sets as
our current implementation is very expensive in terms of runtime.

62

Chapter 5 Par. 5.4

5.3.2 GE Configuration

The evolutionary process is configured with parameters that are common
across the field [200]. The algorithm follows a generational approach with a
population of 500 individuals (feature-extractors) for 40 generations. In the
GP literature it is most common to use 50 generations [132], however 40 is
also often used [43]. In their review of the GP literature, Poli et al. [200] state
that the number of generations typically falls in the range [10, 50], where the
most productive search is usually performed.

The population is randomly initialised with uniform probability. Genomes
are initialised with length 200, while the max length is set to 500. Individuals
are recombined with each other using two-point crossover with probability
0.8, and no wraps are allowed. Given two individuals, the crossover operator
creates two new individuals by randomly selecting two different points on
each genome. Then, the initial and final sections of one genome are merged
with the mid section of the other. We increase the selection pressure setting
the tournament size to five. After the crossover phase, the resulting pop-
ulation is subject to the mutation operator. We use the int-flip mutation
operator that may change with probability 0.01 each gene of a given individ-
ual. Elitism is used to preserve the best individual through the generations.

5.3.3 Implementation Details

The experiment took about 5,000 CPU hours. Our current implementation
is expensive especially if compared with the benchmark methods which take
just a few hours to run. However, it is not straightforward to draw conclu-
sions about the computational complexity, and scalability of our algorithm.
First, for each data-set we run the algorithm 30 times for statistical purposes.
However, this would not be required in real-world use. Continuing, runtime
depends on several implementation details (e.g. the primitives included in the
grammar) which could be reconsidered in future research. Finally, the ex-
pensive feature extraction phase is balanced by savings during the prediction
phase. In fact, during the prediction phase our algorithm allows the classi-
fier to work with low-dimensional feature-based representations. In contrast,
INN-DTW always requires the whole time series to work.

5.4 Results

An overview of the experimental results is provided in Section 5.4.1. In
Section 5.4.2, we present an excursus on the generalisation capabilities of our
algorithm when tested on classes that are not available during the extraction

63

Chapter 5 Par. 5.4

phase. Algorithm limitations are discussed in Section 5.4.3. Following, we
unfold the discussion on feature extractors in Section 5.5).

5.4.1 Overview

Classification performance for the data-sets of the UCR/UEA archive is
shown in Table 5.2. Results related to our subject authentication problem
are discussed in Section 5.4.2. For each data-set we extract 10 features and
we repeat this process for 30 independent runs. We standardise features to
have zero mean and unit variance (with reference to the training set).

We compare the performance of the features evolved through our algo-
rithm with that of two benchmark sets of features. Of these, PR is the set of
primitives used in the grammar, while C22 is the set of features selected by
Lubba et al. [160]. These features are used to derive feature-based represen-
tations of time series according to three different strategies. (1) Features are
extracted from the whole time series (columns 1-PR/1-C22). (2) Time series
are broken down into 5 adjacent and equally sized sub-sequences. Then, fea-
tures are extracted from each sub-sequence and grouped together in a feature-
vector (columns 5ES-PR/5ES-C22). (3) Time series are broken down in a
number of adjacent sub-sequences using a change point model [123]. Then,
features are extracted from each sub-sequence and grouped together in a
feature-vector (columns CPM-PR/CPM-C22). We observe that the average
number of sub-sequences per data-set found through the change point model
is 5 and this is why we use this number in item (2). Concluding, we compare
against a dissimilarity-based classification approach (column INN-DTW).

Our algorithm is superior to any benchmark method. Our algorithm
gives better results than INN-DTW. It also improves on the C22 features
considered the state of the art for feature-based time series classification [160].

We consider column 1-3 our best result (in the trade-off between best
average performance subject to the lowest dimensionality achievable, which
is our aim), while INN-DTW is the best benchmark method for comparison.
We find that the difference between column 1-3 and INN-DTW is statistically
significant using a Wilcoxon signed-rank test with a p-value threshold of a =
0.05 [254]. We observe that the p-values decrease monotonically as additional
features are added, as we would expect. If a Bonferroni-Holm correction for
multiple testing [3] is applied, statistical significance is achieved for all tests
from 1-2 onward. As 1-3 is the point with the largest reduction in p-value
relative to the preceding feature number choice (1-3, p-value=0.007 vs. 1-
2, p-value=0.024), we select this as our optimal result in the performance
vs. dimensionality reduction trade-off.

Comparing the average performance of columns 1-3 and 1-PR in Table 5.2,

64

Chapter 5 Par. 5.4

we can see that our algorithm is able to exploit and combine the functions
included in the set of primitives in a way that allows +17% AUROC relative
to the use of the functions alone. Furthermore, our algorithm achieves the
highest average performance using only 3 features. This gives the time series
representation with lowest dimensionality. In fact, PR and C22 require at
least 17 and 22 features respectively, while INN-DTW requires the whole
time series. Dimensionality has an impact on storage requirements, and
computational complexity at prediction time.

To extract features from a segmented time series has a positive impact on
performance. We note a +11/10% AUROC comparing the average perfor-
mance of column 1-PR with that of columns 5ES-PR/CPM-PR. Conversely,
the same does not hold comparing 1-PR with C22. In that case segmentation
has little or no impact on performance. This seems to depend on the na-
ture of features. The PR set mainly includes simple statistical moments like
mean, standard deviation etc. Although these features are easy to compute,
their descriptive power is weak when they are extracted from the whole time
series. Moreover, all time series of the UCR/UEA archive are z-normalised
so they all have 0 mean and a standard deviation of 1. When a time series
is segmented, PR features have more descriptive power.

On the other hand, C22 features are more complex, thus they are able to
capture some distinctive characteristics even when they are extracted from
the whole time series. In order to evaluate if 1-C22 features are overfitting
we measure their performance on validation data. The average performance
across all data-sets on validation data is equal to 66% AUROC. Considering
that the performance of 1-C22 features on test data is 70% AUROC we can
conclude that these features are not overfitting.

On average, the performance achieved by segmenting a time series in
equally sized sub-sequences is nearly the same as that achieved by segment-
ing through a more complex model, as we can see comparing columns 5ES-
PR/5ES-C22 with columns CPM-PR/CPM-C22. It is difficult to explain
such a result within this experimental study. Investigating this result in
more detail is the focus of further research. However segmentation in equally
sized segments can be considered as a strong baseline.

Our method converges to the maximum performance with only three fea-
tures. In Figure 5.3 we show the average AUROC for all data-sets of our
algorithm (@). As shown in part (a), the “quality” of features decreases
by 4% from the first to the third feature. The performance remains steady
from the third to the tenth feature (when rounded to the nearest integer).
This demonstrates that individually features maintain a similar level of per-
formance. In part (b), we can see that by combining multiple features the
AUROC increases by 2% between the first and the third feature. Then we

65

Chapter 5 Par. 5.4

can observe a weak but positive trend. Features extracted by our algorithm
are not explicitly required to improve the overall classification performance
when grouped with those that have been extracted before. This objective is
pursued indirectly by minimising the linear correlation between features.

Secondly, Figure 5.3 shows RS average AUROC for all data-sets (). In
order to speed-up the computation we do not repeat the RS for 30 runs, as
done for our algorithm. The variance between RS runs is expected to be low
because the sample size is large, and there is no danger of an “unlucky” initial
population, as in GE itself. Also, as we have a large enough number of data-
sets, the variance across data-sets makes our results statistically significant.
Our algorithm is better than RS. However, RS performance rivals INN-DTW,
a strong baseline. This demonstrates that both our grammar and the search
contribute strongly to performance.

a b
%0 - (a) 80- (b)
e ®©0® 000000
§75-o‘ 75-.-______
" ®o0 oo 0o
270 "FTEORC S0 9
65|||||||||| 65|||||||||
12345678910 AR IRR IS
NNNNNNNNY
Feature Range of Features

Figure 5.3: Average AUROC of our algorithm for all data-sets (®). (a) AUROC
per feature. (b) AUROC per sequence of features. Secondly, RS average AUROC
for all data-sets (M).

5.4.2 Subject Authentication

This data-set, which we refer to as “AccelerometerData”, concerns a subject
authentication problem we have recently investigated [168]. To collect this
data a group of nine subjects wore a watch-like tri-axial accelerometer for
about a month in free living conditions. Each time series corresponds to the
average acceleration per minute over an entire day.

Features extracted by our algorithm enable good classification perfor-
mance when tested on data that include subjects not available during the

66

Chapter 5 Par. 5.4

(MIA-NNT) Poyjewl {IeWDUaq s8¢ Y} PuR ‘(AI[RUOISUSTUIP s0MmO[1M doueuriojrad 1seq) (g-T) Jnsel
1S9 INO 0} d)R[AI P[O] Ul SUWN][O)) "SPOYIOUW YIewpuag (q) ‘soinjyesj O [sueow ()T-] "8'0 ‘sonjes jo 9ouanbos AI10A0 Jo

90URMLIONDJ (®) "19897Ul }Sa1eall 8} 0} papunol Aroysodel W) /YD) @Y} JO s1es-eiep o)} 10} DOY(V 98RI0AY :Z'G 9[qR],

| € 69 69 T2 1L 0L 09| . LL L. LL L LL L L. 9L WL ogerony |
L9 0L 1L 0L 19 09 6V| 9 ¥9 P9 € € € 9 F9 99 €9 SSR[DOMTSTLION
LL 18 08 P8 9L WL €S| 6. 9L G ¢ G G ¥. €L € 0L SULIOA\
66 PG 0¢ LF 19 99 €S| 19 09 68 6¢ 8§ 64 65 8¢ 8% G our
8 ¥6 6 96 96 86 96| 00T 00T 00T 00T 00T 00T 00T OOT 00T 00T ooel],
0L 9 g9 L 9 9 €| 08 6L 6L 6L 6L 08 6L 8L L. VL guOLRIUOWSAG0],
€9 19 9 99 ¥9 €9 6¢| @ @L T IL 0L 69 69 89 99 ¥9 [UO1RIUSaGa0],
66 S 9. 66 66 66 96| 66 00T 00T 00T 66 66 66 66 66 66 [OTUODO1IOYIUAS
66 F9 89 €L 89 99 7G| 08 08 08 0% 08 0% 08 I8 I8 6L soowerddyuotypiryrewg
¢ €6 69 L& T € 0% 09 09 09 09 19 19 19 19 09 8¢ odA T us010g
g9 09 19 €9 9% LG 0S| S99 P9 PO ¥9 P9 ¥9 F9 F9 9 ¥9 SOOIAO(JUOTIRIDTLOY
88 03 @ @ L8 @ 6.L| € € € € € € €6 T 6 16 M IXU[RY J[RWIXO0I]
L9 08 L. 6L I8 89 G9| 08 08 08 I8 @8 68 98 L8 06 TG | dnorneSyourpnOXueey Jemxol]
98 8, I8 € € I8 G| 08 08 08 08 I8 I8 I8 I8 08 8. 7eTNSO
L 1. 1L € T ¥, ©.| €& €& @ & @ @ @ T ©w 1L MILXURTRJDIPPIN
€6 L¢ LC 8¢ 9 PG 8P| L& 98 .G LG L& 8¢ 8¢ 8¢ 8¢ 6¢ | dnorpeSyeurnOxuererJa[ppiy
L6 76 98 98 86 86 FL| 96 96 96 L6 L6 L6 L6 86 L6 6 RESYN
LL69 L& 99 L9 ¥9 9¢| WL WL WL WL GL S WL %L 0L ¥9 ZBumySr
L 66 19 1L 8¢ @9 T1¢| L. L. L. 8L 8. 8L 6L 6L 8L Gl soouerddyuotypryposre]
€6 T¢ ¢ I¢ 6F 0% 09| € € € € PG € € €S € 19 Suroy
9 09 96 09 29 € I¢| S9 F9 ¥9 FO ¥ P9 €9 €9 €9 €9 sondeyy
G 9¢ G¢ G¢ 8¢ €& IG| 69 0L 0L 69 69 69 89 L9 G909 ey
96 8 ¢ 08 0. 8. 6%| € @6 @6 6 68 88 L8 98 I8 16 JuoJuns
68 @8 L8 P8 ¢ G 19| 06 06 06 06 06 63 88 L8 G 08 qstd
9GS €¢ 99 PG 9¢ 0G| 0L 69 69 69 89 89 89 89 89 L9 soxyenbryjrey
g8 ¢ 08 . 9. 03 9%| 8 8 98 98 98 98 I8 €8 8 08 00¢90d
z8 9. WL € 6. 03 €| @ @& 18 8 8 8 I8 18 I8 IS MIXURRYTRISI
99 19 09 0L 99 09 6G| 8 8. 6. 6. 6. 08 08 08 08 18| dnormoSyompmoxwereyessiq
¢ T¢ ¢ 9¢ € g¢ IG| ¥9 ¥9 ¥ ¥ ¥ 99 99 99 L9 g9 swnduo))
66 ¢ 16 S @6 € 19| 8 86 66 66 66 66 66 66 86 16 9a[0))

MIAd @D @ed D dUd ¥d ud

NNT -INID -SA¢ T-INdD -Sd¢ T 01T 6T 8T LT 9T ¢T T €T &1 1 jos-ere(]

(a)

M~
Ne)

Chapter 5 Par. 5.4

extraction phase. In other words, features learned to distinguish subject 1
from subjects 2-6 are also effective to distinguish subject 1 from subjects 7-9.

Figure 5.4 shows the average classification performance achieved by our
algorithm on a subset of subjects (1-6). The solid line (—) represents the
performance achieved when, during the feature-extraction phase, we use a
validation set that includes only subjects 1-6. The dashed line (---) repre-
sents the performance achieved when, during the feature-extraction phase,
we use a validation set that includes all subjects (1-9). In both cases, ex-
tracted features are evaluated on a test set including all subjects (1-9). The
two lines follow almost the same trajectory. Excluding the first feature, the
average absolute difference between the two lines is equal to 0.3% AUROC.

P X e b

. IIQ
NNN N NN NN D

Range of Features

Figure 5.4: Average AUROC “AccelerometerData” data-set, subjects 1 to 6. —
Only subjects 1-6 are used during the feature-extraction phase. === All subjects
1-9 are used during the feature-extraction phase.

5.4.3 Limitations

Our algorithm reveals a number of limitations. The first limitation concerns
the runtime required by our current implementation. Although, as discussed
in Section 5.3.3, there are several aspects to consider, overall the algorithm
would greatly benefit from any substantial improvement of its runtime.
Continuing, we observe that the algorithm tends to overfit. As shown in
Figure 5.5 part (a), average AUROC of features 1 to 10 on validation data is
approximately 11% higher than on test data. This value drops to 6% if we
consider sequences of features, as shown in part (b). The performance per

68

Chapter 5 Par. 5.5

feature seems to follow the same pattern on both validation and test data.
Conversely, the performance per group of features exhibits a weak negative
trend on validation data, and a weak positive trend on test data showing
that together multiple features generalise better. Also, the performance of
our algorithm remains better than baselines on test data. While overfitting
is a problem it also presents an opportunity to improve our results through
regularisation strategies, as we plan to do in future work.

Finally, one possible weakness in our fitness function is that as the number
of extracted features increases the correlation penalty is averaged over an
increasing number of features as well. While this could make the penalty
very small, after a large number of feature-extractors have been created, we
observe that a small number of features (e.g. 3 in Table 5.2) achieves best
average performance.

(a) 851, (b)
" B g mEgmEnm
EE gguulEpg

80 1 80 1

AUROC

70 .T?f?f????m ———
12345678910 & my»s

NNNN

SR

NNN

4.
2y,

=)

Feature Range of Features

Figure 5.5: (a) Average validation (M) and test (®) AUROC for all data-sets per
feature. (b) Average validation and test AUROC for all data-sets per sequence of
features.

5.5 Feature-extractors and Interpretability

In this section we show how the evolutionary process leads to the selection of
specific features and sub-sequences according to the problem at hand. This
not only enables good classification performance but also understanding.
The development of interpretable machine learning models is an impor-
tant research topic [55]. Interpretability is not only essential to machine
learning practitioners, e.g. understanding a model allows understanding of
its limitations, but also legislation can require model interpretability. For

69

Chapter 5 Par. 5.5

instance, the General Data Protection Regulation act! introduced in the
European Union gives to citizens a “right to explanation” with respect to
decisions taken by algorithms using their data.

Several researchers have shown that GP can be used to enable inter-
pretability of so-called black-box models (models that are not easy to inter-
pret) [246]. Others have shown that evolutionary algorithms can be as effec-
tive as black-box models with the advantage of being more interpretable [145].

Our algorithm allows interpretability of the classification outcome in sev-
eral ways. In Sections 5.5.1-5.5.2, we expand the discussion about feature-
extractors and interpretability in the context of TSC, however here we pro-
vide some more general considerations. First, as the search for feature-
extractors is driven by the classification performance they allow through
a INN classifier, it is expected that our approach considers a sample to
be normal if it is “close enough” to other samples we already know to be
normal (i.e. training data). This type of decision by analogy resembles hu-
man thinking [184]. Continuing, extracted features are immediately inter-
pretable as they are expressed as readable Python code. Also, as extracted
features are composed of high-level functions e.g. mean, standard deviation,
etc. predictions made by our algorithm can be explained in the context of
the problem at hand. Finally, as our algorithm gives good classification per-
formance with two or three features, it allows useful visualisation of time
series data-sets (Figure 5.8), and data visualisation is considered key to in-
terpretability [145]. On the other hand, as the number of primitives included
in a feature-extractor increases they become more difficult to interpret (Sec-
tion 5.5.1). As suggested by Lensen et al. [145] in the context of data visual-
isation, future work may investigate multi-objective fitness functions able to
trade-off between classification performance and complexity of the solutions
found.

5.5.1 The Features to Extract

We use the “SyntheticControl” data-set [7] as a case study to illustrate the
ability of our algorithm to discover the right features for the problem. As
shown in Figure 5.6 this data-set contains 6 different classes of simulated
time series. In (1) time series are generated by sampling from a Normal
distribution. In (2) time series are generated by sampling from a Normal
distribution and adding a cyclic component through a sine function. In (3)
and (4) time series are generated by sampling from a Normal distribution

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEXY
3A32016R0679&qid=1603268249651

70

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32016R0679&qid=1603268249651
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32016R0679&qid=1603268249651

Chapter 5 Par. 5.5

and adding or subtracting a trend component. In (5) and (6) time series are
generated by sampling from a Normal distribution and adding or subtracting
a trend component only after or before a certain time point.

We count the selection frequency of each function and operator used
in the first two feature-extractors evolved for each class of the “Synthet-
icControl” data-set. Without loss of generality we focus on the first two
feature-extractors because this eases our discussion and enables visualisation
as shown in Figure 5.8. Feature-extractors used to generate Figure 5.8 are
listed below. In the text T" represents a time series and L its length. Feature
extractors are composite functions that can be read and interpreted by hu-
mans. They can be as short as to include only one or two primitives. On the
other hand, longer feature extractors may be broken down in order to evalu-
ate the impact of single components. In principle, the maximum number of
primitives to be included in a feature extractor may be limited by the user.

e Feature 1

— Class (1): Min(T[1:59]1)+CE(T[1:59])

— Class (2): AQ(FFT(T[1:57]) ,Kurtosis(T[1:571))

— Class (3): AQ(Mean(T[9:L]1)*STD(T[9:L])-Max(T[9:L]),
STD(T[9:L1))

— Class (4): Min(T[4:34])

— Class (5): Mean(T[1:50])*AQ(Min(T[1:50]) ,Mean(T[1:50]1))

— Class (6): AQ(BelowO(T[36:L]),LinearTrend(T[36:L])
*Min (T[36:L])*Median(T[36:L])-TRAS(T[36:L])

e Feature 2

— Class (1): Above0(T[1:53]1)-AQ(AR(T[1:53]),Max(T[1:53]))

— Class (2): AQ(FFT(T[1:34]),AQ(AR(T[1:34])+FFT(T[1:34])),
AbsSum(T[1:34])*AQ(FFT(T[1:34]) ,AQ(AR(T[1:34])+
LinearTrend(T[1:34])*LinearTrend(T[1:34]),TRAS(T[1:34])

— Class (3): AQ(Max(T[1:34]1),AQ(Min(T[1:34]) ,AQ(Mean(T[1:34])
*Skewness(T[1:34])+Max(T[1:34])*AR(T[1:34]),
Median(T[1:341))))

— Class (4): Above0(T[22:L]1)-AQ(AQ(AQ(AboveO(T[22:L]),
Autocorrelation(T[22:L])),AbsSum(T[22:L])
-LinearTrend(T[22:L])+Min(T[22:L])) ,Mean(T[22:L]))
-AQ(Max(T[22:L]),Min(T[22:L])+LinearTrend(T[22:L])

— Class (5): Max(T[7:L])*Mean(T[7:L])

— Class (6): BelowO(T[7:22]1)-AQ(AR(T[7:22])*Max(T[7:22]),
AQ(AQ(AQ(Min(T[7:22])*Autocorrelation(T[7:22]),
BelowO(T[7:22]1)),AQ(MeanChanges(T[7:22]),CE(T[7:22]))),
CE(T[7:22]1))-AbsSum(T[7:22])+Mean(T[7:22]))

71

Chapter 5 Par. 5.5

In Figure 5.7 we can see that the algorithm selects specific groups of
functions and operators for each class of the data-set. As reflected by the
bar heights, the algorithm finds that class 1 is mainly characterised by the
coefficient of an auto-regressive model (AR), and a measure of complexity
(CE). The cyclic component of class 2 is captured through the FFT and
the auto-correlation functions. Classes 3 and 4 requires similar features like
max, min, and the mean. In addition, class 4 is characterised by the linear
trend. Finally, classes 5 and 6 require functions like linear trend, max, min,
mean, and number of values above and below zero. Finally, the algorithm
most often relates multiple functions through the AQ) operator for all classes.

Concluding, as mentioned before, features are standardised (with refer-
ence to the training set) hence as shown in Figure 5.8 our algorithm tends to
concentrate the samples of the normal class around the origin even though
this is not explicitly required. This aspect shows that our algorithm could
also work well using “simple” classifiers, for instance a radial basis function
classifier which has the advantage of requiring only a single hyper-parameter,
i.e. a distance threshold from the origin.

(1) Normal (2) Cyclic (3) Increasing trend
1 . 4 4
0 AWM. -
= -11 i i

-Q T T T T T T

-é (4) Decreasing trend (5) Upward shift (6) Downward shift
g] _ |
0- 4 4
-1- i i

0 50 0 50 0 50

Time

Figure 5.6: A time series per each of the 6 classes of the “SyntheticControl” data-
set.

72

Chapter 5 Par. 5.5

(1) Normal (2) Cyclic

20 — 1 M

10 1

0 |_||_||_| M ey T o o e o I_“_”_' . l."T"T‘H'T"T‘ BI=ToTmIN P =TI n]
S (3) Increasing trend (4) Decreasing trend
? 20 _ 1 —
¥ 104
=
8 0 |_||_||_| AL I, 'T"T".“.”.“T"T'H'.'m'? I_II_IH b i =T m =T H'Ti'Ti'T".”."T"T"T'
= (5) Upward shift (6) Downward shift

20 _ N

10 1

0 |_||_||_| o= Yo T P 1 T Y B P I_II_“—I S oo ===y e =T

MRCCEE: Fasp EEE T H e B ey FEE R LR

2253 “3%%“5: z SSESTREERS R
2532 El EQ Z - 25353 Eﬁ go E =
4% 2] v E UE __92 <% o/ Z g UE ﬁ

= ’5 L = w2 - s > = 7

s2 5 8 22 E §

2z g 23 =

<< 23

Function

Figure 5.7: Selection frequency of the grammar primitives for the first two features
extracted from each of the 6 classes of the “SyntheticControl” data-set. The hori-
zontal lines represent the bar heights we would observe if feature-extractors were
generated at random i.e. without regard to fitness.

73

Chapter 5 Par. 5.5

(1) Normal (2) Cyclic (3) Increasing trend
@9 0 ° 20 -
5 - .‘0‘
0 & & oo
(") 0 (] an
U ®
10 sB° o & 0
N i T T T ‘ I‘
& -10 0 S 0 5 0 20
=
§ (4) Decreasing trend (5) Upward shift (6) Downward shift
= Q
10
0
-10 T T T T T T
-10 0 10 -10 0 10 0 10

Feature 1

Figure 5.8: 2D feature-based representation of each class of the “SyntheticControl”
data-set. O Training samples. O Normal test samples. ® Anomalous test samples.
Shading represents distance from training set.

5.5.2 The Sub-sequences from which to Extract

To offer insight into which sub-sequences are most useful we consider the
“GunPoint” data-set [258], and our “AccelerometerData” data-set [168].
Figure 5.9 is derived by averaging over the two classes of the “GunPoint”
data-set. In this case, our algorithm over-selects two specific sub-sequences.
The most frequently selected one corresponds to the sub-sequence underly-
ing the large peak at the begin of the dotted line. The other corresponds to
the sub-sequence underlying the small peak towards the end of the dotted
line. Ye and Keogh [258] demonstrate that the time series of this data-
set can be classified with high performance using “shapelets”. Shapelets are
sub-sequences that are maximally representative of a class according to a pre-
defined criterion [258]. In another study related to shapelets Hills et al. [104]
show that there are two important sub-sequences in the “GunPoint” prob-
lem, the same are identified by our algorithm. Also, they report that the top
five most important shapelets extracted by their algorithm are related to the
end of the time series. However, our algorithm over-selects the sub-sequences
at the beginning of the time series. This means that our algorithm is able to
target sub-sequences that are relevant for the problem, but overall it works

74

Chapter 5 Par. 5.5

in a way that is different from shapelets. Thus, our representation could be
a good addition to a representation based on shapelet-transform [104].

In Figure 5.10, we show all the sub-sequences of the “GunPoint” data-set
related to the time interval [0 : 40]. This is the most selected time interval
according to the analysis related to Figure 5.9. Sub-sequences are divided
per class: part (a) and (b) of the figure show the sub-sequences related to
class 1 and 2 respectively. The figure provides insights into the sub-sequences
that are important for classification according to our algorithm. Visual as-
sessment of the sub-sequences allows us to claim that most time series could
be correctly classified if we were able to catch shape dissimilarities between
the two classes in the considered time interval. As shown in Table 5.2, our
algorithm achieves approximately 90% AUROC on this data-set. Thus, not
only our algorithm is able to detect important sub-sequences, but also it is
able to extract useful features.

1) Ry F100
. '/ N >
\"'wl ~g‘ g
2 [I "- \‘\ \ g
= P \ g
-g 0.5 S . Swe, r50 =
g /’ N 2
g -~ |
I/ ,, \\; §
0 AP %

0 25 50 75 100 125 150

Time

Figure 5.9: Selection frequency of each point within a time series of the “GunPoint”
data-set. — Average time series from the data-set. =-- Frequencies we would
observe if feature-extractors were generated at random i.e. without regard to
fitness. ==+ Frequencies as per our algorithm.

75

Chapter 5 Par. 5.6

Variable

Figure 5.10: Sub-sequences of the “GunPoint” data-set related to the time inter-
val [0 : 40]. Part (a) and (b) show the sub-sequences related to class 1 and 2
respectively.

Finally, in Figure 5.11 considers all the nine classes of the “Accelerome-
terData” data-set. We can see that each person is characterised by her/his
activity during a specific part of the day. In the time axis 0 corresponds to
Oam and 1440 to 11.59pm. Most subjects are characterised by their activity
between 6.30-8.30am, presumably the time they wake up and go to work.
Two subjects are characterised by their activity during 0-6.30am (1,6). Also,
for three subjects (6,7,9) the activity between 9-11pm seems to be important
for their classification.

5.6 Conclusions

We propose a data-driven evolutionary algorithm for feature extraction from
time series. The goal is to find a low-dimensional feature-based representation
that enables good one-class classification performance with minimum human
intervention.

The search for suitable solutions is guided by our grammar specifically
defined for time series. In fact, our algorithm can select both the features
to extract, and the sub-sequences from which to extract them. Both aspects
can be key to TSC problems, as revealed by several related studies.

Evolved features are composed of high-level functions e.g. mean, stan-
dard deviation, etc. By choosing the number of features to be extracted a
high-dimensional time series can be reduced to a feature-vector of arbitrary
dimensionality. This not only lowers computational complexity at prediction
time, but also allows the visualisation of time series data-sets. Furthermore,

76

Chapter 5 Par. 5.6

the analysis of the functions/sub-sequences that are most frequently selected
during the evolutionary process enables understanding about the problem at
hand. Finally, our algorithm enables better classification performance than
considered benchmark methods.

Future work could investigate further the generalization capabilities of
our algorithm in a one-class classification scenario where new classes appear
at prediction time. Another avenue of research could investigate other prim-
itives to be included in the grammar. A remaining issue of our algorithm is
the tendency to overfit. This suggests that our results could be improved, an
interesting topic for future work.

77

Chapter 5 Par. 5.6

” -
(1) S i S e AT TS A
g s
o “

-
-
53 - ‘__

-—
- intal PN

) st

et ad
Lo *,

Variable

0

0 200 400 600 800 1000 1200 1400
Time

n
S
Selection Frequency %

Figure 5.11: Selection frequency of each point within a time series of the “Ac-
celerometerData” data-set. The number in brackets in the top left corner of each
plot corresponds to a different class of the data-set.

78

Chapter 6

Auto-Encoder-Based
Representations

In this chapter we investigate simple neural networks as tools for time se-
ries representation learning. We use both auto-encoder and encoder-only
architectures to learn a representation that not only is of substantially lower
dimensionality with respect to the time series length, but also is able to
preserve the complex non-Euclidean neighbourhood structure of the original
space according to a dissimilarity measure of choice e.g. DTW [205]. Our ap-
proach to representation learning [19] draws from multi-dimensional scaling
(MDS) [42], and Siamese networks [25].

In our approach, we leverage neural networks as function approxima-
tors [107] to learn elastic dissimilarity measures (Section 6.2.1) that are cen-
tral to time series classification [12], as already discussed in Chapter 2 and
in Section 3.5. We require simple neural networks (Section 6.1.2) to map
time series to a latent space where the FEuclidean distance (ED) between
samples approximates their dissimilarity in the original space according to a
measure of choice. Then, we use the latent representations in the context of
one-class classification [170] (Section 6.2.2) with a 1NN classifier equipped
with the ED. In principle, if pairwise dissimilarities in the original space were
perfectly preserved in the latent space our approach would allow the same
classification performance as a 1NN classifier on raw data when equipped
with the same measure used to derive the representation.

To preserve the topological structure of data is fundamental for time
series classification [2], and this is best informed by non-Euclidean measures
like DTW [12]. The measurement of the dissimilarity between time series is
required by several other time series mining applications like clustering [5],
indexing [203], motif discovery [153].

In particular, elastic measures, like DTW, are of interest because of their

79

Chapter 6 Par. 6.1

ability to align two time series that are misaligned or warped with respect to
each other, leading to better classification performance than lock-step mea-
sures like ED [12]. We pose here an interesting new challenge for neural
networks: to learn elastic dissimilarity measures for time series. This is an
ambitious objective as most elastic measures are dynamic programming al-
gorithms able to deal with misalignment that can appear everywhere along
the time axis and with varying degrees of warping. Studies in many differ-
ent applications have shown that neural networks can approximate dynamic
programming algorithms [201], but not on elastic measures for time series.
At the present stage, we are not learning elastic dissimilarity measures in
their general form, but we are learning an embedding that preserves pairwise
dissimilarities in the context of a given data-set. Nevertheless, our work sets
an important first step towards neural approximation of elastic dissimilarity
measures for time series. This idea, can allow nearest neighbour classifica-
tion, a fundamental approach to time series classification [2, 187], at scale
and in resource-constrained environments.

Our main contributions can be summarised as follows. As outlined in
Section 2.3.1, to the best of our knowledge there is no comprehensive study
investigating auto-encoders as tools for representation learning in the context
of time series classification. We address this gap by evaluating a variety of
auto-encoder and encoder-only architectures on all the 85 data-sets of the first
version of the UCR/UEA archive [46] plus a proprietary data-set [168]. We
demonstrate that our approach, designed to achieve a dissimilarity-preserving
transformation (isometry), gives the possibility of computing geometric infor-
mation of interest in the learned coordinate space. In fact, our work lies at the
intersection of manifold [164] and metric learning [56]. Specifically, we show
that learned representations allow classification performance that is close to
that of raw data, but in a space of substantially lower-dimensionality. This
implies remarkable savings in terms of computational and storage require-
ments for nearest neighbour time series classification. Finally, our approach
enables visual exploration of time series data-sets.

The chapter is organised as follows. In Section 6.1, we present our ap-
proach to time series representation learning. In Section 6.3, we report and
analyse our results. Finally, in Section 6.4 we summarise our conclusions and
discuss future work.

6.1 Proposed Method

We provide an overview of the proposed method in Section 6.1.1. Then, we
present all the considered neural network architectures in Section 6.1.2.

80

Chapter 6 Par. 6.1

6.1.1 Overview

We propose to embed time series in a latent space where pairwise Euclidean
distances between samples are equal to pairwise dissimilarities in the original
space, for a given dissimilarity measure. To this end we use auto-encoder and
encoder-only neural networks.

An auto-encoder is an unsupervised neural network that learns to com-
press and reconstruct data with minimal distortion [13]. It consists of two
components that are connected through a middle layer. Usually, the middle
layer is of substantially lower dimensionality than the input. The first com-
ponent is referred to as the encoder (f), and its purpose is to compress the
input. The second component is referred to as the decoder (g), and its pur-
pose is to reconstruct the compressed input. In encoder-only architectures
there is no decoder.

Given an input time series T the auto-encoder outputs a time series
T" = g(f(T)). Typically, the auto-encoder is trained so that the mean
squared error (MSE) between the input and the output is minimised. This
loss function is referred to as the reconstruction loss and it is presented in
Eq. 6.1 for a time series T' of length L.

1
LRec = i [T,”; (6.1)

Our main objective is to preserve pairwise dissimilarities between time
series in the latent space for a given dissimilarity measure (d). Specifically,
we want to approximate d in the latent space using the ED. This requires us
to define another loss function that is presented in Eq. 6.2 for all the pairs
1,7 of a training batch of n time series T" and their latent representation
t = f(T). We refer to this loss function as the dissimilarity-preserving loss.
This is equivalent to the MSE between the dissimilarity matrix induced by d
in the original space, and the dissimilarity matrix induced by the ED in the
latent space.

1 n n
= > 2 (T, Ty) — [t — 1],)* (6.2)

=1 j=1

EDiSSP -

We use Lre and Lpissp together or separately in a variety of experiments
that are detailed in Section 6.2. It is common practice to add a regularisation
term to the loss function of a neural network to penalise large weights, but
we avoid this to better isolate the effect of Lr.. and Lpip on performance.

81

Chapter 6 Par. 6.1

6.1.2 Neural Network Architectures

We evaluate several neural network architectures that are collectively pre-
sented in Table 6.1. The first distinction we consider is between auto-encoder
and encoder-only architectures. As stated before, our main concern is to em-
bed time series in a low-dimensional space where pairwise dissimilarities are
preserved and approximated by the ED. To this end we take inspiration from
the typical auto-encoder architecture, but in principle we could achieve the
same objective using only the encoder part. Thus, we evaluate both alterna-
tives: auto-encoder architectures where the loss function is equal to the sum
of Lrec and Lpissp, and encoder-only architectures where the loss function is
given by Lp;sp only.

Continuing, we compare dense and convolutional networks. Dense net-
works are the most typical architecture [90]. A dense network is just a
sequence of dense layers organised following the instructions provided in Sec-
tion 6.2.4. Differently, convolutional networks are less straightforward to
design because a variety of architectures are possible. We illustrate our con-
volutional architecture in Figure 6.1.

When building a convolutional auto-encoder for univariate time series we
have to consider two main issues: (1) how to reduce input dimensionality,
and (2) how to deal with multiple filters.

(1) An auto-encoder gradually compresses the input down to the middle
layer. One can design a convolutional auto-encoder using only convolutional
layers, and can reduce input dimensionality by setting the stride parameter
to a value that is greater than one [229]. Another possibility is to use no
padding, so that the kernel size causes the reduction. Alternatively, input
dimensionality can be reduced using pooling layers. As shown in Figure 6.1,
we use max-pooling layers. This type of layer can help translation invari-
ance [90] that can be useful in the context of time series classification [258].
The (approximate) inverse of a max-pooling layer is the unpooling layer [11]
which we use in the decoder part.

(2) A convolutional layer with a single filter transforms a time series into
another time series by applying a sliding filter. Thus, by using several filters a
univariate time series is transformed into a multivariate one with a number of
channels equal to the number of filters applied. When it comes to the latent
layer, we may wish to reduce to a univariate time series, and we can do this
by applying a 1x1 convolution [232]. Alternatively, we could concatenate all
the channels to a single vector and use a dense layer to achieve the desired
dimensionality. However, we avoid this as the dense layer would add a large
number of extra weights to be learned.

Finally, we use two dense layers, one in the encoder, and one in the de-

82

Chapter 6 Par. 6.2

coder. In the encoder, one dense layer is needed after the last convolutional
layer to ensure that the input is compressed to the desired latent dimension-
ality. The output of this layer is the latent representation that we use in
our classification experiments. Thus, our latent representation is not a time
series. In the decoder, the first layer is dense and it is needed to recover the
dimensionality of the last convolutional layer of the encoder. However, it is
possible to recover the original time series length only by doubling the dimen-
sionality of the last convolutional layer of the encoder the same number of
times as we halve it by pooling in the encoder, which in our implementation
is at most two.

In addition to dense and convolutional architectures, we evaluate a varia-
tional auto-encoder [128]. This neural network is designed to learn the prob-
ability density function of the input data [128]. In contrast, non-variational
architectures discussed before do not have a probabilistic foundation. The
variational auto-encoder relies on Bayesian inference and it assumes that the
relation between input data 7" and its latent representation ¢ is described by
a distribution py. Specifically, py(t) is the prior distribution, pe(7T'|t) is the
distribution of the input given the latent representation (the likelihood), and
pe(t|T) is the distribution of the latent space given the input (the posterior).
The objective of the network is to learn the parametrisation . However,
instead of learning py(¢|T") that is typically intractable, the posterior distri-
bution is approximated using a Gaussian distribution A (u, 02). The loss
function of the variational auto-encoder is shown in Eq. 6.3.

1
£VAE = EReC + § EtNN(u,UQ) {/J2 + O'2 —-1- log(az)} (63)

‘ Architecture H Loss Function ‘

AE ['Rec
CAE LRec
VAE Lyag
CVAE Lyag
DissPAE LRec + LDissp
DissPCAE Liec + Lissp
DissPE Lpissp
DissPCE £DissP

Table 6.1: Considered neural network architectures. Acronyms that contains a
“C” refer to convolutional networks, otherwise the network is dense. Acronyms
that contains “DissP” refer to networks that use the Lpissp loss function. Finally,
acronyms that contains a “V” refer to variational networks.

83

Chapter 6 Par. 6.2

-
=
— — —
=

=

=]
= = kS - = o.
2 = E = = =
=1 = S ° 2 = = S
2 — S > 4 S _ =
2 = ~ = 5 S = =]
> 1 <) a (=7 > —
— = » @) = = =
=) s) o >
ol [Z] |Ix Of [&
- Q
e — e e -
X
o

|—'—l
_J W Middle Layer J W
Encoder Decoder

Figure 6.1: Diagram of the proposed convolutional auto-encoder for univariate
time series.

6.2 Experimental Design

In this section we provide all the necessary background needed to implement
our experiments. In Section 6.2.1, we present the considered dissimilarity
measures. In Section 6.2.2, we present the classification task we are investi-
gating, and the data-sets in use. In Section 6.2.3, we discuss how we bench-
mark our results. Finally, in Section 6.2.4, we provide all the implementation
details related to the considered neural network architectures.

6.2.1 Dissimilarity Measures

We try to learn an embedding that preserves pairwise dissimilarities ac-
cording to each of these three measures: DTW, ED, and move-split-merge
(MSM). DTW, and MSM are elastic dissimilarity measures able to account
for distortions in the time axis in order to find the alignment that allows
the minimum dissimilarity between two time series. DTW is of interest as
it is extensively studied in the literature [209]. On the other hand, MSM
has demonstrated slightly better performance in both supervised and semi-
supervised time series classification experiments [12, 170]. While DTW is not
a metric as it violates the triangle inequality, MSM is [230]. The ED is also
a metric, and a useful baseline [187]. Further details about these measures
are provided in Section 3.5.

84

Chapter 6 Par. 6.2

6.2.2 Classification Framework and Data-Sets

In this study, first, only the samples related to a single class are used to
learn the representation. Then, in the learned space, only the samples of
the class used to derive the representation are used to train the one-class
classifier in use. The classifier is a one-class 1NN, i.e. it is a threshold on
the ED distance to the nearest neighbour in the latent space. We evaluate
classification performance using the AUROC.

We evaluate all the architectures on the 85 data-sets of the first version of
the UCR/UEA archive plus a proprietary data-set [168] related to a subject
authentication problem through accelerometer data. All the data-sets are
partitioned into labelled training and test sets and have previously been
examined in several supervised time series classification experiments [12].
All the time series are univariate, contain only real numbers, have a fixed
length within a given data-set, and are z-normalised [205]. We normalise all
the time series to unit norm as we notice that this has a positive impact on
training time and no major impact on performance. Also, we normalise the
dissimilarity matrix of training data to unit norm. This helps to align the
scale of the ED between latent representations with the original dissimilarities
we aim to approximate.

6.2.3 Benchmark Methods

As mentioned before, if pairwise dissimilarities in the original space were
perfectly preserved in the latent space our approach would allow the same
classification performance as a 1NN classifier on raw data when equipped with
the same measure used to derive the representation. Hence, we consider the
INN classifier on raw data our natural benchmark.

6.2.4 Implementation Details

In this section we describe all the implementation details regarding the ar-
chitectures used in this study. Some design choices depend on the fact that
we need to evaluate all the architectures on 86 data-sets of time series of
different length. For instance, as discussed below, we use at most two max-
pooling layers in convolutional architectures. This is because halving some
time series more than twice may result in an output length that is too short
for any meaningful convolutional filter length.

For each architecture we investigate different numbers of layers: {1, 3, 10}.
In the case of dense architectures, the number of layers is counted as the num-
ber of dense layers between the input and the middle layer inclusive. In the

85

Chapter 6 Par. 6.3

case of convolutional architectures, the number of layers is counted as the
number of convolutional layers between the input and the middle layer. Other
types of layer, either max-pooling, 1x1 convolution, and dense layers are ex-
cluded from this count (Figure 6.1). For what it concerns the latent dimen-
sionality we investigate the following alternatives: {2, [logs(L)], [2%log2(L)]}.

In dense architectures the number of neurons per layer is determined
using the integer part of a geometric progression between the input size
and the required latent dimensionality. In convolutional architectures we
reduce input dimensionality using max-pooling layers with kernel length of
two, and stride of two. The max-pooling function takes the maximum value
over non-overlapping windows of size two. The unpooling function simply
repeats each value twice. We use two max-pooling/unpooling layers if the
number of network layers is set to a value that is greater than one, a single
max-pooling /unpooling layer otherwise. As each max-pooling layer halves its
input length, if such length is not divisible by two the max-pooling function
crops the input by one on the right hand side. This cause a mismatch between
the input and the output length of an auto-encoder: a time series of uneven
length would be reconstructed as a time series of even length. In order to
avoid this issue for all the convolutional networks, considering that we have
at most two max-pooling layers, if x = (L mod 4) is not zero than we crop x
time steps from the right hand side of the time series. As x can be at most
three we argue that this pre-processing step has little impact on performance.

We place the first max-pooling layer after the first convolutional layer.
The second max-pooling layer is placed after the convolutional layer which is
halfway through the layers. Each convolutional layer uses zero padding (to
ensure that output has the same size as input [62]), and has 16 filters. The
kernel length is set to 3% of the length of the input to the layer, rounded
down (with minimum kernel length set to three).

Our implementation is similar to that of related works [70, 118]. For each
data-set we report the model that gives the best AUROC performance [170]
of five runs [118]. Results per architecture reported in Section 6.3 relate to
the average AUROC across all data-sets. The activation function in use is the
hyperbolic tangent, but no activation is used on the middle layer. Weights are
initialised using the Glorot initialisation scheme [88]. As mentioned before,
we avoid weight regularisation to better isolate the effect of the considered
loss functions. All the architectures are trained for 1000 epochs via gradient
descent using the Adam optimiser [127], and mini-batches of 16 samples. The
learning rate is set to 0.001 and it is reduced by a factor of 0.5 whenever the
training loss does not improve for 100 consecutive epochs down to a minimum
of 0.0001 (the minimum improvement is set to 0.0001).

86

Chapter 6 Par. 6.3

6.3 Results

An overview of the experimental results is provided in Section 6.3.1. In
Section 6.3.2, we show that our algorithm can approximate DTW. Finally,
we demonstrate that our approach can enable visualisation of time series
data-sets (Section 6.3.3).

6.3.1 Overview

We begin our analysis with Table 6.2 that shows results in terms of AU-
ROC averaged across all the considered data-sets for all the architectures
and the hyper-parameter configurations. It appears that the number of net-
work layers does not have a major impact on performance, however perfor-
mance increases as the latent dimensionality increases peaking at the largest
value of this hyper-parameter that is 2 x log,(L). In dimensionality reduc-
tion it is important to know the intrinsic dimensionality of data [165], that
can be seen as the minimum number of dimensions needed to describe data
and avoid pathological results. Table 6.2 shows that increasing the latent
dimensionality has a positive impact on performance. We relate the latent
dimensionality with the time series length through the log, function, however
more advanced approaches are available in the literature and their investiga-
tion warrants further research [240]. The best performance we achieve is 77%
AUROC. For what it concerns our dissimilarity-preserving architectures this
result is achieved by different architectures with multiple hyper-parameter
configurations. Conversely, among the typical auto-encoders only the CAE
achieves 77% AUROC. In terms of architectures there is not any that stands
out to be the most consistent across different hyper-parameter configurations
as we can see from the column “Avg.” of Table 6.2.

To better understand our results we need to compare them with the per-
formance of raw data. As mentioned before, if pairwise dissimilarities in
the original space were perfectly preserved in the latent space our approach
would allow the same classification performance of a 1NN classifier on raw
data when equipped with the same measure used to derive the representation.
For the three considered dissimilarity measures, raw data allows the follow-
ing performances: 79% AUROC with DTW, 77% AUROC with ED, 80%
AUROC with MSM (Table 6.4). Our dissimilarity-preserving architectures
achieve at most 77% AUROC with each of the three dissimilarity measures.
We are very close to the performance of raw data for DTW, and we achieve
the same performance as raw data with the ED. However, we are not able to
achieve the same performance of MSM by a 3% margin.

As stated before, our objective is to embed time series in a low-dimensional

87

Chapter 6 Par. 6.3

Layers 1 3 | 1w | 1 | 3 | 10 | 1 | 3 | 10 |

|
Latent Dim. | 2 ‘ log,(L) ‘ 2 x log,y(L) ‘
Architecture ‘

AE
CAE
VAE
CVAE
Avg.

Architecture‘ DTW ‘ Avg. ‘

DissPAE
DissPCAE
DissPE
DissPCE
Avg.

Architecture‘ ED ‘ Avg. ‘

DissPAE
DissPCAE
DissPE
DissPCE
Avg.

Architecture ‘ MSM Avg.

DissPAE
DissPCAE
DissPE
DissPCE
Avg.

Table 6.2: Summary of results. The table shows AUROC averaged across all the
data-sets and rounded to the nearest integer. Table cells get darker as the AUROC
increases. For each architecture, results are broken down by hyper-parameter
configuration (number of layers, latent dimensionality where L is the time series
length, and dissimilarity measure).

88

Chapter 6 Par. 6.3

space where pairwise dissimilarities are preserved and approximated by the
ED. To evaluate how well we achieve this goal we divide data into three sub-
sets: training data (TR), positive test data (TEY), and negative test data
(TEN). Then, we calculate the Pearson correlation (R?) between pairwise
dissimilarities in the original space and in the latent space. Dissimilarities
in the original space are calculated according to a measure of choice, while
dissimilarities in the latent space are calculated using the ED. Even if typ-
ical auto-encoders (e.g. AE) are not explicitly required to preserve pairwise
dissimilarities it is still possible to correlate pairwise dissimilarities in their
latent spaces (in terms of ED) with pairwise dissimilarities in the original
space (in terms of a dissimilarity measure of choice e.g. DTW). All results
are presented in Table 6.3.

First we consider the correlation of pairwise dissimilarities of training
data in the original space and in the latent space (TR-TR). Results show
that for each dissimilarity measure our architectures achieve an average R?
that ranges in [0.81,0.92]. Best average results are achieved by encoder-only
architectures with the DissPCE getting the maximum R? of 0.95. For what
it concerns typical architectures that are not trained to preserve pairwise
dissimilarities the average R? is around 0.6 for the AE/CAE, and around
0.35 for the VAE/CVAE. However, there is one notable exception, the R? of
the AE/CAE with respect to the distortion of ED. These two architectures
seem to preserve ED well (R?~0.85) without being explicitly required to.
Finally, larger networks with more layers, and higher latent dimensionality
show better performance.

We can see that for both pairwise dissimilarities between training data
and positive test data (TR-TEP), and training data and negative test data
(TR-TEY), our architectures preserve dissimilarities better than typical auto-
encoders by a large margin. For TR-TEY with DTW and MSM the average
R? of our architectures ranges in [0.54,0.73], while for typical auto-encoders
it is in [0.2,0.48]. For TR-TEN with DTW and MSM the average R? of our
architectures ranges in [0.44,0.64], while for typical auto-encoders it is in
[0.25,0.41]. Again, the AE/CAE preserve ED well without being explicitly
required to, and achieve the same R? as our architectures. While encoder-
only architectures show an advantage at preserving pairwise dissimilarities for
training data, it is convolution that makes the difference on test data. In fact,
the DissPCAE/DissPCE achieve an R? that is about 10/15% higher than the
DissPAE/DissPE on both positive and negative test data. As per training
data, larger networks with more layers, and higher latent dimensionality
show better performance. Finally, the DissPCE is the architecture that best
preserves dissimilarities on both positive and negative test data, thus we refer
to this as our best architecture as it preserves well pairwise dissimilarities on

89

Chapter 6 Par. 6.3

training data, but also is able to generalise to unseen test data.

In order to provide further details, in Table 6.4 (a)-(b) we show the classi-
fication performance, in terms of AUROC per data-set, of a DissPCAE and a
DissPCE, both with 10 layers and latent dimensionality equal to 2 x log,(L),
where L is the time series length. We show the performance of these architec-
tures for each dissimilarity measure considered in the chapter. Also, for each
dissimilarity measure we show the performance of a 1NN classifier on raw
data. Although performances per data-set are highly correlated, for some
data-sets it happens that the DissPCAE/DissPCE improve on the perfor-
mance of raw data. This could be due to the interaction of the dissimilarity-
preserving and the reconstruction losses. Also, it is possible that elastic
measures (DTW, MSM) overfit for some data-sets while this is somehow
prevented by our architectures.

In Figure 6.2 for each dissimilarity-preserving architecture and each dis-
similarity measure we show the histogram of the differences between pairwise
dissimilarities in the original space and in the latent space for all the con-
sidered data-sets and all the data (train and test). Pairwise dissimilarities
in both the original and the latent space are independently z-normalised in
order to be on the same scale. The DissPCE seems to be the architecture
that best approximates dissimilarities as differences are mostly distributed
around zero. The DissPCAE shows similar distributions of differences but
slightly more spread. When differences are below zero, it means that archi-
tectures tend to expand pairwise dissimilarities, conversely, when differences
are above zero, it means that architectures tend to compress them. For the
ED and MSM, dense architectures show a long tail on the right-hand side
above zero where differences are positive, but most differences are negative.
Considering DTW, it seems that all architectures tend to compress dissimi-
larities as most differences are positive.

Finally, in Table 6.5, we show the correlation between pairwise dissimilar-
ities of raw time series measured according to different dissimilarity measures
and averaged across all the considered data-sets. Both DTW and MSM are
dynamic programming algorithms defined to find the minimum cost align-
ment between two time series. They differ slightly in the way they evaluate
the cost of aligning two unaligned points. Conversely, the ED is quite dif-
ferent from DTW and MSM as it just compares two time series in lock-step.
Thus, we can see that the correlation between DTW and MSM is much higher
than their correlation with the ED (40.26 on average). Considering the ED
as a baseline to approximate DTW and MSM we can see, in the second part
of Table 6.5, that our DissPCE allows better R2. The R? allowed by our
DissPCE is on average +0.18 larger for DTW, and +0.14 larger for MSM,
with respect to the R? between the ED and DTW and MSM.

90

Chapter 6 Par. 6.3

1509 aarysod ‘(
Jyuaye] oY) ul pur ooeds

‘(oImseaw AJLIR[IUIISSIP PUR ‘[[)SUS] SILIOS WY A) ST 77 dIoYM AJ[RUOISUSIIP JUa)e] ‘SIoAR] JO Iaquunu)
uoneISyuo mjourered-1odAy Aq UMOP USY0I(OI8 SHNSOT “DINIONIYDIR YDeD 10,] “((H.L) ©Yep 3803 oA1eSou pue ‘(1) ©yep

W.I) ®erep Sururely :sdnoid 9ot} Ul POPIAIP oIR BIR(] "SOSBIIOUI UOIJR[OLIIOD 9} Se I9NIep 198 S[[00 o[qR],
[euIS1IO oY} Ul SoIjLIR[IUISSIP ostmired Jo

doeds

(£&]) UOIR[PII0d UOSIBOJ O3 SMOUS d[qe} Y, €9 9[qR],

oM 10O O

o

D
0
< b=
o]

™ N
10 I~

0O b
o | — [0 ™

— D~
o A

D~ ho

0

e

00 1O
0

— [in}

“3ay
qOdssd
HdssId
dvOdsstd
qvdssid
HVAD
HVA

avD

qv

nALHL

N ©
D~ 0

65"
VL
€9

©o
—

L0 e
10 I~ 10

—

I~

— O [N =R o]
[N lSELO - 10 I~

"3ay
dOdsstd
qdssid
HVOdsstd
dJvdssid
HVAD
HVA

qVD

av

JdL-YL

N
dOdssta
ddssta
HvOdsstd
dvdssia
HVAD
HVA

avDO

av

YL-4L

INSIN

ay

MILAd

QNI

(7)%801

(7)%301

(7)%3o1

“wi(Juorer]

or] e

01

or] et

01

orlelt

SIoAR #

91

Chapter 6 Par. 6.3

"S9SBAIOUT DYV Y} S Io[Iep 308 S[[9)) "I0TIUI 1S0IeaU 1]} 0} POPUNOI 8T8 ‘g’ UOT}IAG UL PAINPOIIUT $}oS-BIep 9R 91} [[& I10]
‘S)MSoI DOYV SoInseoul AJLIR[IWISSIP POIOPISUO0D o1} oATosaId 03 pourel)) JSSIJ pue FyDJISSI(© Yo Jo uoryejuasordor
Jueye] o) Aq porqeus ooururIojiod oY) SMOTS a[qe)} 9} ‘OS[Y ‘INSIN PU® ‘qd ‘AL :103derd o) Ul paIopISuod SoInseaut
AYLIRTIUIISSID 99I1[} 1} JO [OBD I0] B)RP MRI UO IDYISSR[D NNT © JO 9oururIojiod UoIjesyIssed o) smoys o[qe) oY J, (&) §'9 9[qe],

YeIRIN

LSumusry
Z8uuySIy
soourerddyuaypiryfose]
PURII([I0MO JATRI]
PUNOg eI SUI AN J09sU]
deygouluy

Sule

sonpdepy

sourinQpuRy

weH

JuoJuns)

apiog

vpiod

Ustd

SPIOA AL
dDNsR

MoJo0e,]

Voo
SAOTAD(TPLIPR
SAROALIDDH
00050

002DDd

soyenbiyresy
MIXURERJRISIA
199110)9UIINO)XURRY J[®ISI(]
dnornegyourpinQxue ey J[eIsiq
UOT)ONPAN[IZISUOIRI(]
23D

AVPLD

X1PUD

stoduo))

990D
OSI0LDDADWD
zOﬁﬁhai@UEOOw:EO?—O
d44dD

hite)

URPIOHPIL
ALgen00g

Jood

PROHMOITY

eIpy
®)R([10)9WOINIIIY

MLA-NNT

7 INSIN 7 INSIN Jos-eie(]

ad 7 ad
HOdSSIA | -AVOJSSIA

MIA ML
“HOdSsIA “HVOdSSIa

“HOdssIA “AvVOdssid

7 AI-NNT 7

7 INSIN-NNT 7

92

Chapter 6 Par. 6.3

(4) ¥°9 °I9®L,

8y

©S0x

SSB[D)OMT SULIOA\

SULIOA\

SWAUOUAGPIOA

QWA

I9JeA\

7 ATRIQITOINISON)OARAN)
AATRIQITOINISON)OARAN ()
XATRIQITOINSON)OARA [)
[TV ATRIQITOINISON)OARAN)
SUIYIRJOMT,
DOUPTOTOMT,

Q0Rl],

UOTYRIUOTIS0Go0T,
TUOIRIUOWFOGO0],
[OIUONOOIUAG
s[oquIAg

JeOrTUSIpoMG

A1oqmen)g
SOAIMO)P[STTIRIG
ZeorIIMg10qoY OV AUOS
T99RJIMG10qo O LIV AUog
ouerddyuetpinyrens
Trysodeqg
wigppdeyg
odA1uea10g
SOOTAd(JUOTIRIISLIJOY
M IXue[Ry J[RUWIX0L]
1991I0)QUIIN)X UR[RY J[RUWIXOI]
dnornopgyournOxue[eyJ[eWxolJ
aue[J

duUOY J

109110 soul[IN()soSuR[RY J
JeINSO

OO

CXRIOY [, DHDH[BICIAISRAUTUON
TXRIOY [, HD)H[RIRIIAISRAUTUON
RSO0

MIXURRYIPPIN

199110)QUIINOXUR[RY JI[PPIN
dnornadyourInOxuerey PPN
SO [RIIPOIN

YeaN

(

NS NS ad ad MmLd MLa
NSIN- - - 198-e)e
apdssia | <avodssia | SN gogeaa | avoassa | TTNND | gpgesa | cavodssig | AN d

93

Chapter 6 Par. 6.3

ED MSM
= 0.02 -0.03 -0.03
< 31 rﬁk 0.08 0.16 A 0.17
=™
a
0 T T T T T T
= 0.04 -0.001 -0.001
g 3- 012 - 0.05 - 0.13
-
Q 0 T T T T T T T
0.02 -0.03 -0.04
=3 0.09 017 0.18
wn
2z
2 Mo N
0 T T T T

- 0.04 -0.002 -0.01
O 3 011 0.02 0.05
-
2

-0 4 04 O 05 -04 O 0.5

Figure 6.2: Histograms (with a log vertical scale) of the differences between pair-
wise dissimilarities in the original space and in the latent space for all the con-
sidered data-sets. Numbers on the top-right corner corresponds to the mean and
standard deviation of differences. Results are broken down by architecture and
dissimilarity measure.

| Dissimilarities | TR-TR | TR-TE" | TR-TEN | Avg. |
DTW-ED 0.71 0.58 0.56 0.62
DTW-MSM 0.91 0.88 0.85 0.88
ED-MSM 0.74 0.59 0.52 0.62
‘ Architecture ‘ TR-TR TR-TE? TR-TEN ‘ Avg. ‘
DissPCE-DTW 0.95 0.77 0.69 0.8
DissPCE-MSM 0.94 0.72 0.62 0.76

Table 6.5: The table shows the Pearson correlation (R?) between pairwise dissimi-
larities of raw time series measured according to different dissimilarity measures on
different sub-sets of data. In the second part of the table is shown the correlation
between pairwise dissimilarities of raw time series and their latent representa-
tion according to a DissPCE with 10 layers and latent dimensionality equal to
2 x logy(L), where L is the time series length.

94

Chapter 6 Par. 6.3

6.3.2 Learned DTW

In this section we illustrate some examples of how time series appear in
the latent space (Figures 6.3-6.6), and how dissimilarities in the original
space compare to dissimilarities in the latent space (Figure 6.7). We draw
these data-sets from among those where the difference, in terms of AUROC,
between INN-DTW and INN-ED on raw data is largest (Tables 6.4 (a)-(b)),
in order to select data-sets where DTW has made the difference.

In Figures 6.3-6.6 part (a) we show three time series for a given class of
a given data-set. Specifically, we plot the class medoid in terms of DTW
dissimilarity (—), its nearest neighbour (---+), and its furthest neighbour
(=+=). Then, in part (b) we show the latent representation of these time series
according to a DissPCE trained to preserve DTW dissimilarities, except for
Figure 6.6 where we use a DissPCAE. For all the architectures we use the
configuration with 10 layers, and latent dimensionality equal to 2 x log,(L),
where L is the time series length.

For all the architectures we propose the latent representation is the out-
put of a dense layer with no activation function. Thus, it is not possible to
interpret this embedding as a time series. However, as shown in Figure 6.3
close-by samples of the same class show a similar pattern in their latent rep-
resentation. In principle, for DTW-preserving architectures we may expect
to observe latent representations that account for distortions in the axis, thus
are aligned although the input time series are not. In practice it is difficult
to evaluate whether this is the case or not because networks do not learn the
general DTW function, but only its behaviour in the context of a given class
of a given data-set. Also, we notice that the DissPCE tends to represent time
series as tightly packed around a certain point as shown in Figures 6.4-6.5.
This is not ideal, but also it is not a malfunction as the correlation between
pairwise dissimilarities in the original space and in the latent space remains
high (i.e. around 0.9 for the considered data-sets). Furthermore, we notice
that this behaviour does not occur with the DissPCAE. Comparing Figure 6.5
with Figure 6.6 we can see that the latent representations of the same time
series appear tightly packed for the DissPCE, but are clearly separated for
the DissPCAE. It is expected that this is the effect of the reconstruction loss.
In any case, further research is needed to understand what these latent rep-
resentations can reveal about original time series besides their dissimilarity
to other samples.

In Figure 6.7 we propose an analysis that is somehow equivalent to the
analysis of the correlation between pairwise dissimilarities in the original
space and in the latent space discussed in Section 6.3.1. However, now we
provide some visual insights by focusing only on the training data of each

95

Chapter 6 Par. 6.3

data-set considered in this section. For each class of each data-set we select
the class medoid in terms of DTW dissimilarity. Then, we order all the
class samples according to their increasing DTW dissimilarity from the class
medoid in the original space. Finally, we use the same ordering to plot the
Euclidean distances of samples from the medoid in the original space, and in
the latent space according to a DissPCE-DTW. First, we notice that DTW
dissimilarities, and Euclidean distances in the original space follow a different
pattern. Also, and more importantly, our DissPCE-DTW is able to closely
approximate DTW dissimilarities in the latent space. However, the observed
correlation between pairwise DTW dissimilarities in the original space and
in the latent space could be spurious due to the ED acting as a confounding
factor, but Figure 6.7 shows that this is not the case.

6.3.3 Visual Exploration of Time Series Data-Sets

Visualisation of time series data is important to enable understanding and
decision making. It is particularly important in the context of several ap-
plications where modellers are not simply concerned with class labels but
are interested in knowing the causes of the classification outcome (e.g. med-
ical diagnosis through sensor readings [52]). In Figure 6.8, we show that our
approach allows us to visualise time series data-sets in a 2-dimensional space.
As shown in Tables 6.2-6.3, when we set the latent dimensionality to two
we achieve results, both in terms of AUROC and preservation of pairwise dis-
similarities, that are inferior to that allowed by a larger latent dimensionality.
However, considering the case with latent dimensionality of size two and 10
layers, we notice that for each dissimilarity-preserving architecture top 30
best performances by data-set achieve an average AUROC that is greater
than 80%. This is a good result that implies that a network has learned an
embedding that is useful for classification. Thus, in Figure 6.8, we show the
2D representation of three data-sets for each dissimilarity-preserving archi-
tecture. We compare our approach with two strong dimensionality reduction
techniques i.e. MDS, and t-distributed stochastic neighbour embedding (t-
SNE) [165]. For all the approaches we calculate pairwise dissimilarities using
DTW on all the training and test data related to a given data-set where
a single class is considered as positive and all the others are considered as
negative. Also, for each approach we show the correlation (R?) between
pairwise dissimilarities in the original space and in the latent space. All the
approaches allow a good separation between the positive and the negative
class with the exception of MDS. However, our dissimilarity-preserving ar-
chitectures have an advantage as they always allow the highest correlation
between dissimilarities in the original space and in the latent space.

96

Chapter 6 Par. 6.3

DissPCE-DTW on “BirdChicken”

0.1 -
2
= 0 (a)
S
-0.1 — - .
1 256 512
Time
0.14
2
011 i i
1 9.5 18
Feature

Figure 6.3: Three time series from the “BirdChicken” data-set (class 1) (a), and
their latent representation according to a DissPCE-DTW (with 10 layers and latent
dimensionality equal to 2 x logy (L), where L is the time series length) (b).

DissPCE-DTW on “TwoLeadECG”
0.3 1

]
§ 0- (a)
-0.3
0.9 4
2
;, 0 (b)
-0.9 T T T
1 7 13
Feature

Figure 6.4: Three time series from the “TwoLeadECG” data-set (class 1) (a),
and their latent representation according to a DissPCE-DTW (with 10 layers and
latent dimensionality equal to 2 x logy(L), where L is the time series length) (b).

97

Chapter 6 Par. 6.3

DissPCE-DTW on “Worms”

0.1

(a)

Value
<

0.5

(b)

Value
(—]

1 10.5 20
Feature

Figure 6.5: Three time series from the “Worms” data-set (class 1) (a), and their
latent representation according to a DissPCE-DTW (with 10 layers and latent
dimensionality equal to 2 x logy (L), where L is the time series length) (b).

DissPCAE-DTW on “Worms”

0.09

Value
[—]

-0.09

0.01 -

Value

1 10.5 20
Feature

Figure 6.6: Three time series from the “Worms” data-set (class 1) (a), and their
latent representation according to a DissPCAE-DTW (with 10 layers and latent
dimensionality equal to 2 x logy(L), where L is the time series length) (b).

98

Chapter 6 Par. 6.3

DissPCE-DTW
“BirdChicken” “TwoLead ECG” “Worms”’

sse[)

Dissimilarity

Samples

Figure 6.7: Dissimilarities of all training samples from the class medoid for three
data-sets. For each class of each data-set samples are ordered according to their
DTW dissimilarity from the class medoid in the original space. Then, using the
ordering found the following dissimilarities from the class medoid are calculated.
DTW dissimilarities in the original space (—), Euclidean distances in the original
space (--*+), and Euclidean distances in the latent space according to a DissPCE-
DTW (with 10 layers and latent dimensionality equal to 2 x logy(L), where L is
the time series length) (===). The graph demonstrates that the correlation between
DTW dissimilarities in the original space and dissimilarities in the latent space is
not spurious due the ED acting as a confounding factor.

99

Chapter 6 Par. 6.3

R?2=0.9 R?2=0.93
037 5 0.02 0.09
@
. X ey
<)
& o° ©
é %G%O 0o
o
-0.21 e -0.02 -0.12 +2
-0.01 0.26 -0.06 -0.03 -0.09 -0.01
R?2=0.78 R?2=0.81 R?2=0.77
0.06 5 -0.1 S o 0.05
=
<
&)
"
Z
=)
-0.74 ‘e -0.13 o® -0.05 ’
-0.42 0.03 0.02 0.05 -0.06 0.11
R?*=0.91 R?=0.97 R?2=0.74
0.05 5 0.08 —5 0.38
oo .00 20
= o0 5P
Dm- e} ® o]
7)) @ @
.- @ (p
R |
0.5 o 0.05 9 0.26 9
-0.1 026 035 0.47 0.64
R?2=0.87 R?2=0.79
0.56 < -1.71 -1.37
®
=
&)
-7
&
=)
-0.23 -1.77 -1.5
_ -0. 42 124
0.77 0.8 0.81
wn
a
=
-0.79 -0.73 -0.82
-0. 0.78 -0. 075 -0.
30.57 - 26.59 - 53.73
2 ®
-32.01 -41.35 ' -51.38 . Il
-26.58 44.52 -24.11 2123 -69.43 44.8
(a) (b) (c)

Figure 6.8: O Positive samples. @ Negative samples. (a) “Adiac”, positive class: 9.
(b) “DistalPhalanxTW?”, positive class: 8. (c) “NonInvasiveFatalECGThorax1”,
positive class: 33.

100

Chapter 6 Par. 6.4

6.4 Conclusions

We propose to embed time series in a latent space where pairwise ED be-
tween samples are equal to pairwise dissimilarities in the original space, for a
given elastic measure. To this end we use simple auto-encoder and encoder-
only neural networks. We show that our approach allows savings in terms of
computational complexity, with limited impact on classification performance.
Specifically, as learned representations have generally remarkably lower di-
mensionality than the raw data our approach reduces storage requirements.
Also, as the geometric structure of data is preserved in latent spaces and
approximated by the ED, it is possible to evaluate the dissimilarity between
two time series for elastic measures (e.g. DTW) with linear complexity.

We show that dissimilarities between samples in the original space are
highly correlated with ED between samples in the latent spaces learned
through our approach for both training and test data. Also, we show that the
AUROC enabled by representations learned through our approach is close to
that achieved by a 1NN classifier on raw data when equipped with the same
measure used to derive the representation. The 1NN on raw data sets an
upper bound to the maximum performance we could achieve with our ap-
proach if pairwise dissimilarities in the original space were perfectly preserved
in the latent space. Overall these results confirm that we have succeeded in
preserving pairwise dissimilarities in latent spaces.

We evaluate several alternatives in terms of network type (dense, con-
volutional, and variational), and loss functions (reconstruction loss, and
dissimilarity-preserving loss). We find that classical architectures like AE/-
CAE preserve the ED between samples well without being explicitly required
to. However, in relation to elastic measures like D'TW or MSM, dissimilarity-
preserving convolutional networks are the best at preserving pairwise dissim-
ilarities. Specifically, the DissPCE is the best architecture in this sense.

The analysis of latent representations reveals that encoder-only architec-
tures tend to represent time series as tightly packed around a certain point.
This is not a malfunction as pairwise dissimilarities are well preserved. Fur-
ther research is needed to understand what these latent representations can
reveal about original time series besides their dissimilarity to other sam-
ples. However, our approach can provide useful insights by enabling the 2D
visualisation of time series. In fact, in a good number of cases latent dimen-
sionalities of size two allow a good separation between positive and negative
data enabling 2D visualisation of time series.

Future work could extend our approach to multivariate time series by
adapting the convolutional layers to 2D data, and using a suitable dissimi-
larity measure as for instance multivariate DTW [91].

101

Chapter 7

Comparing the Representations

In this chapter we provide a concise overview of the different time series rep-
resentations described in Chapters 4-5-6. In Section 7.1, we report a selection
of experimental results to allow a comparative analysis of different represen-
tations. In Section 7.2, we propose a small experiment to demonstrate how
combining different representations can lead to better classification perfor-
mance. Finally, we evaluate some common dimensionality reduction tech-
niques in Section 7.3, and we summarise the chapter in Section 7.4.

7.1 Comparing Representations

In this section we compare the different representations discussed throughout
the thesis. In our comparative analysis we consider three main aspects: (1)
the AUROC performance, (2) the computational complexity (CC) both to
achieve the representation, and to classify with a 1-nearest neighbour (1NN)
classifier, (3) the compression rate (CR) allowed by the representation as
defined in Eq. 7.1 where L is the time series length, and [is the dimensionality
of the representation.

l
CR = l1 - L] x 100 (7.1)

In each experimental chapter (Chapters 4-5-6) we have proposed a dif-
ferent time series representation evaluating several variants. To improve
clarity, we report, here, and specifically in Tables 7.1 (a)-(b)-(c), only the
most important results. First, we report results related to raw data (RD)
as this is a fundamental benchmark for our work. For RD, we do not have
a CR as, in fact, we are using the entire time series, thus [= L. In re-
lation to dissimilarity-based representations (DBR) we consider the variant

102

Chapter 7 Par. 7.1

DBRyyy because it is the best in the classification performance vs. dimension-
ality reduction trade-off. In DBRygy, the representation has dimensionality
[= 0.2 x N where N is the number of training samples. Within the vari-
ant DBRogy, we select the prototype method “Centers-k-means” because it
allows the best average performance across the considered dissimilarity mea-
sures. In respect of feature-based representations via grammatical evolution
(FBRGE), we select the first three extracted features, thus [= 3. Again,
this is our best result in the classification performance vs. dimensionality
reduction trade-off. Finally, in regard of auto-encoder-based representations
(AEBR) we report results related to the “DissPCE” architectures discussed
in Section 6.3 as they are the best in preserving pairwise training samples
dissimilarities in the latent space. All the selected “DissPCE” architectures
allow the same dimensionality [= 2 x log,(L), and have 10 layers.

Most of the representations we propose, as well as time series classification
with RD, require a dissimilarity measure to work. In the present discussion
we consider three dissimilarity measures. The first one is dynamic time
warping (DTW) as this is a measure of central importance for time series
classification [12]. Then, we consider the Euclidean distance (ED) as this is
one of the simplest measures, but still able to compete with far more complex
ones. Finally, we consider the move-split-merge dissimilarity (MSM) as this
measure allows the highest classification performance we have recorded.

7.1.1 Results

In Tables 7.1 (a)-(b)-(c) is shown the AUROC performance for all the 86
data-sets introduced in Section 3.2. The tables’ cells get darker as the AU-
ROC increases. Also, the tables show the CC, and the CR allowed by each
representation. Where applicable results are broken down by dissimilarity
measure. The columns “Min” and “Max” show the minimum and maximum
performance on a given data-set regardless of the representation.

Results averaged across all data-sets are shown in Table 7.1 (c). Specif-
ically, the row “Avg.” shows results averaged across all the 86 data-sets,
on the other hand, the row “Avg. FBRGE” shows results averaged across
the subset of 30 data-sets used in Chapter 5 where we have presented our
evolutionary algorithm for feature extraction. The same applies to the rows
“St. Dev.”/“St. Dev. FBRGE” and “Skew.”/“Skew. FBRGE” that show the
standard deviation and the skewness of results respectively.

The distributions of AUROC performances across data-sets are approxi-
mately symmetric. In fact, the skewness of each representation is within the
range +0.5 (row “Skew.”). The same applies to the subset of problems consid-
ered in Chapter 5 where only DBR-DTW appear to be moderately skewed

103

Chapter 7 Par. 7.1

to the right (row “Skew. FBRGE”). Average performances range between
74% AUROC (DBR-ED) and 80% AUROC (RD-MSM), and between 68%
AUROC (DBR-ED) and 77% AUROC (FBRGE) for the subset of problems
considered in Chapter 5. A detailed discussion about average AUROC perfor-
mances is provided in the rest of this section. Finally, AUROC performances
across data-sets show large variations indicating that for each distribution
some problems are more difficult than others. While most representations
have a standard deviation around 14/15% AUROC, AEBR-DTW-MSM and
FBRGE have a slightly lower standard deviation around 13% AUROC.

The difference between the best and the worst AUROC performance,
shown by the “Min” and “Max” columns, can be as little as 1% AUROC
as on the data-set “Plane”, or quite large as 38% AUROC as on the data-
set “CinCECGTorso”. This demonstrates that some problems are “simple”
to solve, thus the difference between the best and the worst performance is
almost nothing. In contrast, for other problems the “right” representation
can have a remarkable impact on classification performance.

Concluding, in regard of the CR, FBRGE allow the best average result
equal to 98.5% with the lowest standard deviation equal to 1.5%. The second
best CR is allowed by AEBR with an average of 96.2% and a standard
deviation of 3.1% across all data-sets.

- AUROC Performance

The shading in Table 7.1 reveals that for a given data-set different rep-
resentations achieve similar AUROC confirming that some problems are just
more difficult than others. Nevertheless, a representation can do much better
than the others on a case by case basis. AUROC scores between representa-
tions are highly correlated with a minimum Pearson correlation of 0.8.

As shown in Table 7.1 (c), RD achieves the best classification perfor-
mance. For the three dissimilarity measures considered i.e. DTW, ED, MSM,
the AUROC is equal to 78%, 77%, and 80% respectively. The second best
representation is given by AEBR where results by dissimilarity measure are
7%, 77%, and 77% AUROC. In relation to DTW, the difference is limited
to 1%, for the ED we have a tie, however for the MSM dissimilarity the
difference is quite large and equal to 3% AUROC in favour of RD. Con-
sidering DBRygy, results by dissimilarity measure are 75%, 74%, and 76%
AUROC. While these results appear to be lower with respect to RD it is im-
portant to recall that the variant DBR;gy achieves results by dissimilarity
measure equal to 78%, 76%, and 80% AUROC, thus equalling RD. Never-
theless, there are two reasons for us to report results related to DBRygy;, and
not to DBRgg% here. First, DBRygy allow a much higher CR than DBRgg%
(87.2% vs. 35.8%). Also, and more importantly, DBR;goy do not require
any prototype method as the representation is derived using all the available

104

Chapter 7 Par. 7.1

training samples. Conversely, DBRqygy require a prototype method to derive
the representation easing the CC needed to represent as well as to classify.
Taking into account scalability, we prefer to focus on DBRygy, although fur-
ther research is needed to investigate prototype methods that can improve on
using all the available training samples (i.e. DBRjgo%). Finally, considering
FBRGE we report an AUROC performance of 77% that is at least 4% higher
than any other representation on the specific subset of data-sets. Also, this
representation allows the highest CR of 98.5%. Although this is a positive
outcome further research is needed to make this approach completely unsu-
pervised as at the present time the class label is required during the feature
extraction phase.

Continuing our discussion about AUROC performance, in Figure 7.1, we
show the critical difference diagram [50] commonly used in the time series
classification literature to compare the performance of multiple classifiers over
multiple data-sets [12]. In this case, we consider each representation paired
with the INN classifier as a different classifier. For each representation the
average rank is calculated with regard to the AUROC over all the data-sets,
then results are arranged on a line where lowest rank is best. Finally, group
of representations that are not significantly different in their ranking are
connected by a horizontal bar. Significance is evaluated using the two tailed
Wilcoxon signed rank test with Holm’s correction and a = 0.05 [18, 82].
Figure 7.1 (a) shows the performance of all the considered representations
except FBRGE that is evaluated in Figure 7.1 (b) where only the relevant
subset of data-sets is considered. In both parts of the figure ranks are in
line with the average results shown at the bottom of Table 7.1 (c¢). For
instance, Figure 7.1 (a) shows that RD performs better than AEBR, that in
turn performs better than DBR. Also, the figure shows that RD paired with
the MSM dissimilarity is significantly better than the other representations;
there is not a significant difference between all the remaining variants of RD
and the AEBR; DBR fall behind. Figure 7.1 (b) shows that there is a group
of representations that not perform significantly worse than FBRGE that
allow the best performance. Finally, all the representations except FBRGE
have not a significantly different performance.

We continue our analysis considering the maximum AUROC score per
data-set. As illustrated in Figures 7.2-7.3, we group AUROC scores in two
ways: (1) by representation (RD, DBR, AEBR) regardless of the dissimi-
larity measure; (2) by dissimilarity measure (DTW, ED, MSM) regardless
of the representation. In both cases, we count the number of times a given
group achieves the maximum score, then we break results down by data-set
characteristics i.e. application domain, time series length, and average num-
ber of training samples (Section 3.2.1). We do not include FBRGE in this

105

Chapter 7 Par. 7.1

analysis as this approach is evaluated only on a subset of data-sets.

In Figure 7.2 we consider grouping by representation. RD allow the max-
imum score nearly as frequently as DBR and AEBR combined (41 times
vs. 21 and 24 times). RD seem to work well with ECG, image outlines, and
simulated data. AEBR seem to work well with spectrographs data. It is
difficult to draw any conclusion about the impact of the time series length as
there is not a clear pattern. Finally, in terms of number of training samples
it seems that the ability of RD to allow the maximum score decreases as
the number of training samples increases, while it is the opposite for DBR.
Conversely, the ability of AEBR to allow the maximum score seems to be
steady with respect to the number of training samples.

In Figure 7.3 we consider grouping by dissimilarity measure. MSM allows
the maximum score nearly as frequently as the other two measures combined.
In fact, MSM allows the maximum score 40 times, DTW 25 times, and the
ED 21 times. MSM seems to work well with image outlines, and motion
captures; the ED with ECG data. DTW seems to be the most consistent
measure as it allows the maximum score at least a few times for almost every
application domain. Finally, it is difficult to draw any conclusion about the
impact of the time series length, and the average number of training samples,
as there is not a clear pattern.

- Computational Complexity

For each of the considered approaches we show the CC to both represent
and classify in Table 7.2. At prediction time when paired with a 1NN classifier
all our representations allow linear CC in the new dimensionality | < L. In
fact, all the representations we propose allow the 1NN classifier to work
with the ED that has linear CC in the number of dimensions. In contrast,
approaches based on raw data and elastic dissimilarity measures like DTW
or MSM have quadratic CC in the time series length L > [.

The CC of representing with DBR depends on the dissimilarity measure
in use, and the number of prototypes. Thus, for measures like DTW and
MSM the CC is quadratic in the number of prototypes [, that is the number
that determine the dimensionality of the representation. In contrast, the CC
to represent with DBR is linear in [if we use the ED. To represent with
AEBR we need to consider only the CC of the encoder as the decoder is not
needed to this end. In this case, we consider the CC of the encoder to be
equal to the CC of the first convolutional layer that is the layer with highest
CC. The CC of a 1-dimensional convolutional layer with stride equal to 1,
zero-padding, and f filters of size k is equal to O(f x k x L) [244] for a time
series of length L. According to our implementation we have f = 16 and
k = 0.03 x L, thus substituting and removing constants this would yield a
quadratic CC. However, this CC is not realistic as it is common practice to

106

Chapter 7 Par. 7.1

have k = {3,5,8} [70], thus we consider the CC of representing with AEBR
linear. Finally, to represent with FBRGE the CC is equal to O(L x log(L))
that corresponds to the highest CC in the set of primitives, namely the CC
of a fast Fourier transform.

In Figure 7.4, we show the CC of each approach as a function of the time
series length L. The CC shown in the figure corresponds to the sum of the
CC needed to represent and to classify. The number of training samples N,
and the dimensionality of the representation [are derived in accordance to
the actual use cases presented in Table 7.1. Thus, we set N = 100 as it
is roughly equal to average number of training samples across all the data-
sets, continuing, for DBR we have [= 0.2 x N, for AEBR we have [=
2 x logy(L), and for FBRGE we have [= 3. For the representations that
need a dissimilarity measure we assume a quadratic CC in L as required
by DTW and MSM. The figure shows that RD and DBR have highest CC
although the latter is slightly less requiring. On the other hand, FBRGE and
AEBR have a similar CC that is several orders of magnitude lower than RD.
- Compression Rate

RD achieve, although by a limited margin, the best AUROC performance.
Classification with the 1NN classifier and RD requires the entire time series
to work. Vice versa, all the representations we propose make it possible to
work with a highly compressed version of RD. The DBRyyy allow a CR of
87.2%, furthermore this number rises to 92.7% if we exclude two cases where
the DBR has actually increased the dimensionality with respect to RD. As
mentioned before, the FBRGE allow the highest CR of 98.5%. Finally, the
AEBR allow a CR of 96.4%. These CR are remarkably high especially if
compared to the limited loss of AUROC performance, that is at most 3%.

For some applications, e.g. embedded systems [8, 23], storage and compu-
tational savings enabled by our representations may be more important than
a slight loss in classification performance. Branco et al. [23] report that most
embedded devices have flash memory and RAM in the order of kilobytes. In
this regard, using AEBR-DTW as an example, we observe that the average
data-set size drops from 1,657kb to 35kb, with the largest data-set reduced
from 21,164kb to 94kb. This is considering the training data of all classes
of a given data-set stored in NumPy format [100]. We do not consider the
impact of time series length on storage requirements as these two quantities
are not strongly correlated in the data-sets of the UCR/UEA archive. Fi-
nally, although the CR allowed by our representations are high, even higher
CR may be required by extremely large data-sets.

- A Note on the “AccelerometerData” Data-Set

Concluding, we comment on the data-set “AccelerometerData”. This

data-set, presented in Section 3.2.2, is related to a subject authentication

107

Chapter 7 Par. 7.1

problem through accelerometer data collected using wrist-worn devices. Em-
bedded devices have often quite limited memory and computational resources.
Thus, it is a very good outcome that our representations not only allow the
best classification performance on this problem (83% and 85% AUROC for
DBR and FBRGE respectively) but also a high CR equal to 99.8%.

Classification performance allows us understanding how well recorded ac-
celerometer data can be used to solve the subject authentication problem at
hand. In addition to classification performance, interpretability of learned
features is important in order to explain why a certain model has come out
with a certain outcome. Individual features of DBR, or FBRGE give some
insights. For instance, in Chapter 5, through the analysis of evolved feature-
extractors, we have shown that each subject is characterised by her/his ac-
tivity during a specific part of the day. Future research may leverage our
representations to gain further insights through the analysis of the distribu-
tion of individual features. In this respect, it would be good to have more
samples and meta-data like age, gender, occupation, commute type, etc. In
that case even non-interpretable features like those provided by AEBR could
give useful insights.

108

Chapter 7 Par. 7.1

‘uo1Ye)uasaIdol 91} JO A}[RUOISUSWIIP 1) SI] PUR [)SUS[SOLIOS SUIIY oY} ST T

‘uoryejuasaldol Yoro Aq pamo[[e YD) 9} Pue ‘D) Y} SMOYS d[e) 9} ‘OSTy "SoseaIOUI DYV Y} St IoIep 308 S[[eo a[qe],
"g’€ UOI109G UI POONPOIUT $19S-IRP R Y} [[B I0] ‘I089JUl 1S0Iedll o)) 03 PoPUNol ‘HOYNV 92Ul Smoys o[qe) oy], :(®) T'L 9[qr],

99 ¢S ¢'86 VPIiog
a6 8L 186 7'66 3 66 98 L8 USLI
<6 €8 0°L6 68 G6 SPIOA AT
96 08 976 68 96 qDNseoR]
96 z8 9'L6 68 16 INOo0R]
6 8 | 976 6 76 IEREC
6L 0L 1°€6 SOOTAJ(TOLIIOI[H
€8 €4 876 sLe(PATIDDH
a8 3L 676 28 000SDDHA
€8 €9 1°€6 LL 696 002904
z8 0S [8 7'66 sosenbyyrey]
z8 6L 126 3 ¢'96 MIXTRrRYRISI
€9 LS 1726 DOXUETRY J[eISI(]
08 29 126 ¢'96 DvoxuerydreIsta
00T 16 9°L6 UOT)ONPIOZISUIOIRI(]
06 L. €'L6 7903011
16 8L €16 L plk)
06 LL €'L6 X10¥OLI)
99 16 L'86 966 s1onduwio))
66 16 1°L6 66 0[O
86 09 €66 0SI1I0T,HDHDULD)
69 4 9'G6 a UOTJRIFUIOUO)SULIOTY)
00T €L 76 00T 0] A0
98 €9 786 a8 L. 1e)
LL 99 G'86 L1 U P
08 €q ¢'86 08 A7 g01399g
a8 8L 186 6. Joog
6L 89 8°96 6. peOHMOLIY
16 a8 8'G6 16 JRIPY
a8 PAS] £'66 866 L.)R ([191OUOIS[DIDY
[xepy | won | w0 [wsw | ad [maal o | a0 | WS | ad |mia | wsw| ad | mad Jos-eye(y
WDo + (1)o (DO + (T)%1T)0 (NDO + (1z1)0 (NDO | (NT)O | (NZT)O 0D

Hdav q€o4dd qdda ay uoryejuasaidayy

109

Chapter 7 Par. 7.1

(q) 1°L °I9®L,

79 6V L'86 966 SOOIAQ(JUOTIRIISIIJOY
c6 g8 1°¢6 96 MIXueey J[RWIXOI]
79 89 1°¢6 DOXUR[RY J[RUWIXOL]
18 L9 126 96 HYOXURRY J[RWIXOI]
00T 66 0°G6 oue[]
¢l 09 0°66 MO J
09 94 1°¢6 DOseSuereyq
96 €L 0'86 €66 JeTNSO
06 6L 786 [TORATIO
66 L6 1’86 CLODMTRYRIAISRAUTUON
86 96 L86 TLOOHIBYEIPAISBAUTUON
L8 1L ¥'c6 UreI}gol0N
€L 1L 1°¢6 ¢'96 MIXuerey JoPpiN
19 19 1°¢6 DOXUeTRY JO[PPIN
19 (4 126 96 i 84 DVOXURIRYJOIPPIN
€6 78 €'¢6 88 06 SoSew[eIIPII
00T €6 0'86 €66 €6 76 YeoN
66 96 0°66 96 66 Yeq[eIN
88 4) 726 78 G/ LSuruyysry
7L 8¢ | <86 G'66 E Z8urmySy
6L 96 | L'S6 9'66 | 65 | 9 soowerddy uotpIrseSIer|
c6 6L 6°08 98 88 ¢ puewo(JIomoJA eI
16 G 696 L. 68 3 punogyeaqIuI AN 109su|
04 LS 7766 25 ogeygauIu]
a9 16 ¢'86 7'66 €3 8'86 19 Suliy
€9 6% 1°66 1’66 €9 766 sondery
9L L9 9'66 9'86 seupnOpuey
L9 16 | 086 €66 p.6 | s | 18 | wepy
L6 GL ¢'S6 86 1’96 98 08 juroJursy
8¢ 87 ¢'86 8'¢8 gpiog
[xey | wgv | wp WS | ad [maal uo | M0 | WS | ad [maa | wsw| ad [mia Jos-epe(
(NDO + (T)o (NDO + (T)SerT)O (NDO + (1z1)0 NeDo | (NTDo | (NzTO oD

Hdav Jodadd qda ay uoryejuasordoy]

110

Chapter 7 Par. 7.1

() T°L 91q®L,

| ero | 280 | ¥60- | 9vo | vro | zgo | 901- | 9r0 | g6 | 190 | se0 | ¥80 | 680 | 260 | ¢o | AU “MoNS |
L zer | evr | 62 | gvr | ot | 991 o1 | eer | g9 | eyt | vvr | wer | et | 9er | Tt | AOUL 400 IS |
[60 [oo | voo CHNNGIN ADUL Y |
| avo- | o | ¥8T-| 600- | 610~ | 200~ Mg |
L oet | Lyt | e | ger | gt | et | A9 8 |
s | oor | zos VIV Say |
12 g9 830X
0L vs SSB[)OMT SULIOA
6 09 SULIOA\
16 ¢l SwWAUOUAGPIOAN
19 LS QUM
86 €6 I9Jep\
98 08 7 ATRIQITTOINISON)IARAN)
88 c8 AAIRIQITINISONRARA)
68 18 YAIRIQITOIN)SOO)OARA ()
86 68 IV ATRIQUTOINISON)OARAN)
00T 1L SUIO}IRJOMT,
06 a9 DOHAPRITOMT,
00T c6 90R1],
8L i ZUOIRIUOMSIGI0]T,
69 PAS] TUOIIRIUOUIFOGIO],
66 98 [OIITO)OTRYIUAS
66 76 s[oquAg
a6 a8 98 JeIrTSIPOMG

L8 €8 18 A119qme1)g
G6 16 G6 SOAIN) ST TIRIG
a8 €9 8 7P9RIING10qOY O VAUOG
08 €9 T00eJING10qo O gy Auog
18 0s soouerdd yuayry[[rewg
L6 68 Iy sedeysg
2 16 wirgjeedeyg
19 16 966 19 adA 1 usa10g

[xe | wn | D WS | ad [mad| o | o | WS | ad |maa | wsw| ad | mid Jos-eye(]
WDo + (1o (WO + (131 7)0 (WNDO + (1z1)0 WeDo | (NT)o | (N0 0D

adaav HoUdd ada a4y uoryejuesardoy]

111

Chapter 7 Par. 7.1

(a) 8 7 6 5 4 3 2 1
1 1 1 1 1] L1 1 1 1
DBR-ED &2 _:-= B 348 RD-MSM
DBR-DTW 372 48 RD-DTW
DBR-MSM 3% 433 AEBR-ED
AEBR-DTW % 487 RD-ED
AEBR-MSM 238

(b) 9 8 7 6 5 4 3 2 1
1 1 1 1 1 1 1 1 1 1 1 1 1
DBR-ED Z5__| | 26 FBRGE
RD-EDZL_____ | 452 RD-MSM
DBR-DTW &2 475 AEBR-MSM
DBR-MSM 3% 49 AEBR-DTW
AEBR-ED 2 518 RD-DTW

Figure 7.1: Critical difference diagram for the AUROC of all representations.
Groups of representations that are not significantly different are connected by a
horizontal bar. (a) Shows the performance of all the considered representations
except FBRGE that is considered in (b).

112

Chapter 7 Par. 7.1

Application Domain

15
s 10
S
S
0 I-_I:l
o = A
a o &} &~ D =
< L @ = = = =
= £ ¥ 8 2 = &
g € = § E ¢
2 = =2 @ @ g
o
&
»n
Time Series Length
15
s 10
=
S
0
= =~ =
n S S S
c Q i s o
< < = I
= e S N
N <
15 g. N. of Training Samples
= 10
=
s
o [L
0
n c\ wn W
o % a o
< 2 4 3 7
) A

Figure 7.2: Count of max AUROC performance by representation according to
Table 7.1. RD (OJ), DBR (M), AEBR (H).

113

Chapter 7 Par. 7.1

Application Domain

15
s 10
=
S
© s
0 w w 175}
a o &} &~ D =
< L @ = = = =
=t ¥ £ g = £
g € = § E ¢
E - = @9 % g
s}
&
N
Time Series Length
15
s 10
=
o
o ’_. M ’_J ’_l
0
=) = = =
0 S S S
c I < =~ =
o = = Il
= e S N
3 <
15 Avg. N. of Training Samples
< 10
El
S
0
N Q wn
o % 4 o
< 2 4 3 7
) AN

Figure 7.3: Count of max AUROC performance by dissimilarity measure according
to Table 7.1. DTW (O), ED (M), MSM (H).

114

Chapter 7 Par. 7.1

‘ To Represent ‘ To Classify ‘

‘ Dissimilarity Measure ‘

| Repr. | DTW | ED | MSM | DTW | ED | MSM |
RD - - - O(L?xN) | O(Lx N) | O(L*xN)
DBR | 0(2x1) | OLx1) | OL*x1) | O1xN) | O1xN) | O@xN)
AEBR O(L) O(L) O(L) O(IxN) | OlxN) | O(lxN)

| FBRGE | O(L x log(L)) | O(l x N) |

Table 7.2: The table shows the CC to represent, and to classify with the considered
approaches and a 1NN classifier equipped with the ED. L is the time series length,
[is the dimensionality of the representation, and N is the number of training
samples.

100 500 1000 1500 2000
L

Figure 7.4: CC as a function of the time series length L. This is the CC to

represent, and to classify with the considered approaches and a 1NN classifier
equipped with the ED. — RD. --- DBR. --- FBRGE. - AEBR.

115

Chapter 7 Par. 7.2

7.2 Combining Representations

In this thesis we have presented three novel algorithms for time series rep-
resentation (Chapters 4-5-6). For each approach we have evaluated several
variants gathering a remarkable number of representations. In the field of
time series classification ensemble methods have often led to better perfor-
mance than the single algorithms combined [155, 161, 235]. In this section,
we propose a small experiment to show that ensembling different representa-
tions, in the context of one-class time series classification, can lead to better
performance than any representation alone, and it is worth further research.

Diversity is a key aspect of ensemble schemes as samples that are in-
correctly classified by some classifiers can be correctly classified by others
in such a way that the voting system allows a performance that is greater
than that of any single classifier [243]. Some ensembles allow diversity us-
ing different classifiers, some train the same classifier on different subsets of
data, others, as in our approach, train the same classifier on different subsets
of features [166]. In this experiment we select two representations and we
compare their individual and combined performance. The ensemble schemes
we implement are arguably the simplest possible. (1) First, we concatenate
the two representations into a single vector that then is used for classifica-
tion. We refer to this approach as “Concatenation”. (2) Then, we average
the classification scores achieved by the two representations independently
and we calculate the AUROC using the resulting average score. We refer to
this approach as “Averaging”. Considering the “Concatenation” approach we
notice a major limitation, by concatenating an increasing number of repre-
sentations, we increase data dimensionality, and so we may incur in the curse
of dimensionality [17].

We select two representations that are conceptually distinct. We select
the DBR “Centers-k-means-DTW?” from Chapter 4. This representation
achieves 72% AUROC on its own. We select the prototype method “Centers-
k-means” as it is the one that achieves the highest average AUROC across
different dissimilarity measures (Table 4.1, DBRy). Then, we select the AE-
based representation “DissPCE-DTW?” from Chapter 6. This representation
achieves 68% AUROC on its own. We select the dissimilarity-preserving ar-
chitecture that has best preserved pairwise dissimilarities on training data.
The representations we select are both 2-dimensional as we want them to
have equal contribution towards the dissimilarity estimation carried out by
the INN classifier. We use two representations derived through the DTW
dissimilarity because this is a measure of central importance in the time se-
ries classification domain [12]. We do not include our evolutionary algorithm
in this experiment as that algorithm exploits the class label to derive the

116

Chapter 7 Par. 7.3

representation, and thus it is different from the other methods which are
completely unsupervised. Furthermore, this algorithm is evaluated only on
a subset of data-sets.

7.2.1 Results

The two ensembling schemes described before are evaluated on the 86 data-
sets introduced in Section 3.2 using a 1NN classifier. All the features are
standardised to have zero mean and unit variance (with reference to the
training set). Results, in terms of AUROC averaged across all data-sets, are
shown in Table 7.3. Both the ensemble schemes we evaluate are able to im-
prove on the performance of a single representation on its own. Specifically,
Concatenation enables +3% AUROC, and Averaging enables +2% AUROC
with respect to the best representation (Centers-k-means-DTW). Although
there is a large difference in the “quality” of the representations we ensemble
(72% vs. 68% AUROC), together they improve on their individual perfor-
mance proving that they have learned different characteristics of data.

‘ Representation ‘ Ensemble Scheme ‘
Centers-k- DissPCE- Concatenation| Averaging
means-DTW DTW
| 72 | 68 | 75 | 74 |

Table 7.3: The table shows AUROC averaged across all the data-sets and rounded
to the nearest integer.

7.3 More Benchmark Methods

In this section we evaluate the classification performance of four common
dimensionality reduction techniques. All the selected techniques are unsu-
pervised thus they can be used in the one-class scenario without requiring
any adjustment. Although we have already evaluated all our experiments
against several benchmark methods, now our goal is to understand how off-
the-shelf and general purpose techniques compare against our algorithms that
are specifically defined to enable good classification performance.

The techniques we consider are: discrete Fourier transform (DFT) [39],
piecewise aggregate approximation (PAA) [122], principal component analy-
sis (PCA) [108], and kernel principal component analysis (KPCA) [216].

PCA is a widely used technique which aims at reducing the dimension-
ality of data with minimal loss of information. PCA uses an orthogonal

117

Chapter 7 Par. 7.3

transformation to convert possibly correlated variables into a set of linearly
uncorrelated variables called principal components. This transformation is
defined in such a way that the first principal component accounts for as
much as possible of the variability in the data. Each subsequent component
in turn accounts for as much as possible of the variability in the data under
the constraint that it is orthogonal to the preceding components. Standard
PCA is not effective if data has a structure which cannot be well represented
in a linear subspace. Thus, KPCA allows us to generalize PCA to nonlinear
dimensionality reduction using kernel methods. In our implementation we
use KPCA with radial basis function kernel.

DF'T decomposes a time series into a finite sum of sinusoidal components.
The coefficients of these components are the DFT of the time series. The
DFT has the same dimensionality of the original time series, however, in most
applications is selected only the subset of coefficients with largest magnitude.
The coefficients with largest magnitude allow the reconstruction of the orig-
inal time series with [little loss of information through an operation called
inverse Fourier transform. The inverse transform expresses a time series as
a sum of sines and cosines waves sampled at frequencies that are multiples
of 2 x & (where L is the time series length). Thus, we think of the DFT as
a change of basis from the time domain to the frequency domain.

PAA breaks down a time series in adjacent, and equally sized sub-sequences
and then takes their mean value. When the time series cannot be exactly
divided in the desired number of sub-sequences adjacent sub-sequences share
some points proportionally to their length.

7.3.1 Results

We evaluate the algorithms discussed above at different levels of compres-
sion on all the 86 data-sets introduced in Section 3.2 using a 1NN classifier.
Specifically, we consider all values {2,0.1 x L,0.2 x L} (where L is the time
series length). All the features are standardised to have zero mean and unit
variance (with reference to the training set). Results, in terms of AUROC
averaged across all data-sets, are shown in Table 7.4.

Results appear to be weak when compared with those achieved by our
algorithms. While the best performance in Table 7.4 is equal to 68% AUROC,
our algorithms achieve a performance well above 70% AUROC in the majority
of cases. However, this is not surprising. In fact, algorithms like PCA and
KPCA are not defined to work with time series, thus they are not able to
account of the temporal ordering of this particular data type. Conversely,
algorithms like DFT and PAA are more suitable for time series, but as they
work on one time series at a time they are not able to learn any characteristic

118

Chapter 7 Par. 7.4

about a data-set as a whole.

‘ Dimensionality ‘

| Algorithm | 2 0.1x L 02xL |
DFT 66 66 66
KPCA 65 66 66
PAA 61 64 64
PCA 66 68 68

Table 7.4: The table shows AUROC averaged across all the data-sets and rounded
to the nearest integer. L is the time series length.

7.4 Conclusions

In this chapter we compare the different representations discussed throughout
the thesis considering three main aspects: the AUROC, the CC, and the CR.

Our best performance in terms of AUROC is 3% lower than the best
performance allowed by RD. Nevertheless, we show that on a case by case
basis our representations can do better than RD providing some insights
into the underlying reasons [14]. In terms of CC, we show that all our
representations have lower CC than RD at prediction time. While the CC
required to represent and classify a sample using DBR is close to that of RD,
FBRGE and AEBR have a CC that is several orders of magnitude lower.
Also, our representations allow a CR that spans from 87.2% to 98.5%. These
results are practically relevant. In fact, while it is extremely easy to acquire
new time series e.g. through sensors, it is less straightforward to store and
mine this data type in its raw form.

Secondly, we show that it is possible even with simple ensemble schemes
to combine multiple representations and improve their individual classifica-
tion performance. This provides a good starting point for further research.
Finally, we show that some common dimensionality reduction techniques al-
low a much lower classification performance than our representations.

119

Part 111

Conclusions

120

Chapter 8

Conclusions

In this chapter we summarise the research carried out in this thesis. In
Section 8.1, we discuss our scientific contributions. We conclude by discussing
the main limitations of our work in Section 8.2, and a number of avenues for
future research in Section 8.3.

8.1 Scientific Contributions

The primary objective of this thesis is to investigate the one-class time series
classification problem. To the best of our knowledge we are the first to thor-
oughly explore this topic. Thus, one of the major contributions of this work
is to investigate this useful variant of the classification problem. The com-
mon thread of our research is to represent time series as feature-vectors then
used for classification. We demonstrate that, with respect to the use of raw
time series, feature-based representations can reduce storage requirements,
ease computational complexity, facilitate the interpretability of the solutions
found, and enable visualisation of time series data-sets.

We benchmark our work against a 1NN classifier, paired with several
dissimilarity measures, on raw time series. In particular, the 1NN classi-
fier paired with DTW is a fundamental approach to time series classifica-
tion [2, 12]. We find that the advantages of feature-based representations
come at the cost of a slight loss in terms of average classification perfor-
mance across all the considered data-sets. However, the difference in terms
of classification performance between our representations and raw data is
found to be statistically significant only for the MSM measure, as shown
in Figure 7.1. Furthermore, by examining data-sets one by one it can be
shown that our representations can outperform raw time series. For some
applications, e.g. embedded systems [8, 23], storage and computational sav-

121

Chapter 8 Par. 8.1

ings may be more important than a slight loss in classification performance
(Section 7.1.1). Not to mention that the approach we propose in Chap-
ter 5, feature-based representations via grammatical evolution, outperforms
the INN-DTW on raw data by a 4% margin in terms of AUROC.

The representations we propose are: (1) dissimilarity-based representa-
tions (DBR) (Chapter 4), (2) feature-based representations via grammatical
evolution (Chapter 5), and (3) auto-encoder-based representation (Chap-
ter 6). We now highlight the main contributions of each chapter.

In Chapter 2, we have provided a broad review of the state of the art in
time series classification. Furthermore, we have expanded the discussion on
time series data mining with a specific focus on anomaly detection showing
how this problem relates to one-class time series classification. This chapter
can be considered as a knowledge repository on time series, and one of the
most comprehensive discussions available in the field.

In Chapter 3, we have detailed the experimental design underlying our
one-class time series classification experiments. We have discussed how to
adapt existing resources (benchmark data-sets and classifiers) to the one-
class scenario. Along with the GitHub repository where our code is publicly
available, this can be considered as a great resource for researchers who want
to investigate one-class time series classification.

In Chapter 4, we have evaluated the performance of a 1NN classifier
paired with an extensive set of dissimilarity measures on raw time series.
This is a fundamental baseline for research on one-class time series classifica-
tion that is here introduced for the first time. However, the more important
contribution of this chapter is that for the first time in the one-class scenario,
we have evaluated and discussed a thorough set of methods to derive DBR.
Our results have shown that DBR are particularly suited for problems where
class membership depends on the global time series shape. Also, we have
found that DBR perform better than raw data as the number of training
samples increases (Figure 4.4 and Figure 7.3). We have introduced a proto-
type method named “percentiles” that allows good classification performance
with just two features. Finally, we have demonstrated that DBR can allow
the 2D visualisation of time series data-sets, and in doing so we have shown
that the right combination of dissimilarity measure and prototype method
can have a substantial impact on classification performance.

In Chapter 5, for the first time in the one-class scenario, we have pro-
posed a feature extraction framework based on grammatical evolution. In
the field of evolutionary computation there is a lack of consistent comparison
of feature extraction methods for time series with relevant benchmarks. We
have addressed this gap, not only by testing our approach on a large set of
problems, but also comparing our performance with that of several bench-

122

Chapter 8 Par. 8.2

mark methods. Also, as the analysis of the literature reveals, it is not clear
how to evolve multiple features that are not redundant, a problem we have
tackled through our fitness function. We have shown that the classification
performance allowed by the features extracted by our algorithm is superior
to that of all the benchmark methods. We have shown how evolved features
offer insights on the sub-sequences and functions that are relevant to the
classification problem at hand, and allow the 2D visualisation of time se-
ries data-sets. Finally, using our subject authentication case study, we have
shown that features extracted in a one-class classification scenario are able
to generalise to classes unseen during the feature extraction phase.

In Chapter 6, we have combined the non-linear dimensionality reduc-
tion power of auto-encoders with elastic dissimilarity measures which are of
central importance to the time series classification problem. We have demon-
strated how our approach can be used to reduce the dimensionality of raw
time series while preserving pairwise dissimilarities between samples with
respect to a measure of choice. We have demonstrated that this approach
does not only allow a low-dimensional embedding useful for classification,
but also allows us to approximate the dissimilarity measure used during the
training phase. Once again we have carried extensive analysis beyond raw
performance, including in particular 2D visualisation of time series data-sets.

In Chapter 7, we have compared the different representations introduced
throughout the thesis. We have shown that feature-based representations
can reduce, by several orders of magnitude, the computational complexity
required by a 1NN classifier on raw time series paired with elastic dissimi-
larity measures, a strong baseline [12]. In addition, we have shown that our
representations can reduce the dimensionality of raw time series by 87.2%-
98.5%, with a limited loss in terms of classification performance. These are
remarkable results that can allow the deployment of machine learning ap-
proaches to time series classification at scale. In fact, while the time series
classification literature is richly populated by algorithms that have quadratic
computational complexity or worse [12], we have shown that our feature-
based representation can be used with a 1NN classifier paired with the Eu-
clidean distance that has linear complexity in the representation dimension-
ality. Finally, we have shown that it is possible to improve the classification
performance of single representations even through simple ensemble schemes.
Also, we have shown that dimensionality reduction techniques that do not
account for the temporal ordering of time series (e.g. PCA), or are not data-
driven (e.g. PAC), give substantially lower classification performance than
our representations.

123

Chapter 8 Par. 8.2

8.2 Limitations

Our research has several limitations that we discuss in this section. All the
data-sets of the UCR/UEA archive we use are z-normalised, and their un-
normalised version is not available (Section 3.2.1). The rationale is that this
transformation enables effective shape comparison of two time series by re-
moving shifts in the mean value, and noise. However, it can be shown that
other pre-processing techniques may lead to significant improvements of clas-
sification performance [187]. We have not been able to test this hypothesis,
therefore we cannot draw any conclusion on how our algorithms would be
affected by different pre-processing techniques.

In almost every experiment we have evaluated our algorithms over 86
data-sets. Performance evaluation over multiple data-sets is fundamental for
machine learning research. In our work, this is important to identify if a given
representation is more suited for general learning than another. However,
while designing experiments that can be deployed over all the considered
data-sets we may have disregarded some data-set specific peculiarities that,
if took into account, may have led to better performance.

The one-class assumption requires that only the data related to a sin-
gle class is available at training time. Thus, due to the lack of validation
data, we have not been able to tune the hyper-parameters of some of the
dissimilarity measures used in some of our experiments (Chapters 4-6). This
may be regarded as a limitation of our work as hyper-parameter tuning is
known to significantly improve performance in the supervised classification
domain [12]. We have not been able to overcome this issue as there is a lack
of methods for unsupervised hyper-parameter tuning of dissimilarity mea-
sures [187]. However, the impact on our findings is limited. This is because
results related to classification with raw data described in Chapter 4 agree
with related results described in the supervised classification domain e.g. the
MSM dissimilarity achieves best performance [230]. Similarly, in Chapter 6
the objective is to evaluate whether auto-encoders can approximate elastic
dissimilarity measures or not. The fact that the hyper-parameters of these
measures are not optimised is marginal to this question.

Again, due to the one-class assumption we have not been able to tune
the hyper-parameters related to some classifiers considered in some of our
experiments e.g. the OC-SVM classifier. This may have led to sub-optimal
performance for these classifiers. Hyper-parameter tuning in one-class classi-
fication is a known challenge [249], that however has only marginally affected
our research. This is because most of our research relies on the evaluation of
the dissimilarity between time series that is best assessed through the 1NN
classifier. Although we have evaluated the performance of other classifiers

124

Chapter 8 Par. 8.3

to make our research more comprehensive, the non-parametric INN classi-
fier is the algorithm that is most suited for our experiments and it has no
hyper-parameters (Section 3.3).

Concluding, despite a large investigation in this area, we have been able to
provide only weak guidelines to decide when and why a certain representation
is expected to enable better classification performance than another given
some properties like: application domain, length of the time series, or number
of training samples (Figure 3.1). As discussed in Chapter 2, time series class
membership may depend on a variety of reasons that are disentangled from
the elements of differentiation at our disposal (e.g. time series length).

8.3 Future Work

In this section we gather all the considerations related to future research as
they have arisen from each experimental chapter. In addition, we add some
final thoughts to account for the present body of work as a whole. We believe
that each limitation discussed in the previous section (Section 8.2) is not just
an absolute limit but rather a good opportunity for improvement.

In Chapter 4 we have investigated dissimilarity-based representations
for one-class time series classification, evaluating a large number of dissimi-
larity measures and prototype methods. Future research may consider novel
dissimilarity measures and prototype methods that frequently appear in the
literature [136, 187]. Also, our study has pointed out the lack of methods for
unsupervised tuning of dissimilarity measures hyper-parameters. The same
finding is confirmed by Paparrizos et al. [187] in a comprehensive study on
dissimilarity measures for time series. We believe this will be an impor-
tant area for future research. Finally, the possibility of ensembling multiple
dissimilarity-based representations warrants further investigation. This idea
is supported by other studies that have combined multiple dissimilarity mea-
sures, demonstrating a significant improvement of performance [154, 235].

In Chapter 5 we have developed an evolutionary algorithm for auto-
mated feature extraction. The algorithm combines a number of primitive
functions to create new functions which are used to extract features from
time series. The algorithm evaluates the quality of a candidate solution ac-
cording to its classification performance on validation data through a 1NN
classifier equipped with the Euclidean distance. In this regard, it would be
interesting to investigate the effect of different classifiers on extracted fea-
tures. A remaining issue of our algorithm is the tendency to overfit. This
suggests that our results could be improved through regularisation strategies,
thus this is an interesting topic for future work.

125

Chapter 8 Par. 8.3

In Chapter 6 we have investigated auto-encoders as tools to reduce the
dimensionality of time series while preserving pairwise dissimilarities between
samples. We have evaluated a variety of architectures, however there are
several alternatives that are unexplored [70]. Again, Rakhshani et al. [204]
show that neural architecture search [196] can have a significant impact on the
performance of supervised neural network classifiers for time series. Future
research may investigate neural architecture search in the context of semi-
supervised and unsupervised time series representation learning.

In Chapter 7 we have compared the time series representations proposed
throughout the thesis. Secondly, we have shown that combining multiple
representations through simple ensemble schemes can have a positive im-
pact on classification performance. This result, extensively discussed in the
supervised time series classification domain [12], warrants further research.
By leveraging our time series representations, future research could further
develop feature selection or construction methods, or ensemble learning tech-
niques for one-class time series classification.

Finally, we point out six major topics that could fuel the research in the
field of one-class time series classification, and as far as we know, no pre-
vious research has investigated. (1) It would be of interest to extend our
methods and research on one-class classification to multivariate time series.
(2) In line with AutoML research [75], we believe that any effort made to
automate the one-class time series classification pipeline (e.g. pre-processing,
representation, model, and hyper-parameter selection) would be valuable.
(3) One-class classifiers can be used to solve binary or multi-class problems.
For instance, Krawczyk et al. [134] show that the decomposition of multi-
class classification problems into a number of one-class problems has some
advantages with respect to other related strategies. Thus, we suggest this
is a promising direction for future research. (4) One-class classification may
be useful to detect anomalous time series within a given data-set. However,
for matters of time we have not presented any study specifically focused on
time series anomaly detection. This is an interesting topic for future work.
(5) The literature related to supervised time series classification is rich in
classifiers specifically designed for time series [12]. Future research should
certainly try to adapt the most successful classifiers from the supervised to
the one-class domain. In particular, online learners [106] may make a differ-
ence in terms of scalability of time series classification solutions. (6) Lastly,
considering how easily sensors can generate time series we believe that learn-
ing strategies able to leverage the abundance of data, whether labelled or
not, like active learning, or transfer learning could prove beneficial to sev-
eral practical applications e.g. active anomaly detection [45]. In the context
of transfer learning for supervised time series classification, and using the

126

Chapter 8 Par. 8.3

data-sets of the UCR/UEA archive, it has been shown that the choice of
the source and target data-set can have a significant impact on classification
performance [68]. Further research is needed to develop transfer learning ap-
proaches in the context of one-class time series classification. Also, it would
be of interest to investigate which application domain (Section 3.2.1) could
work best as source domain for classification tasks related to wearable sensor
data as per our subject identification problem (Section 3.2.2). In this regard,
some data-sets related to human movement can be found in the version of
the UCR/UEA archive considered in this thesis (“GunPoint”, “InlineSkate”,
“ToeSegmentation”, “UWaveGestureLibrary”, etc.), and some more have
been recently added.

127

Bibliography

1]

Martin Abadi, Ashish Agarwal, Paul Barham, Fugene Brevdo, Zhifeng
Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, lan Goodfellow, Andrew Harp,
Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz
Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat Monga,
Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker,
Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiao-
giang Zheng. TensorFlow: Large-scale machine learning on heteroge-
neous systems, 2015. Software available from tensorflow.org.

Amaia Abanda, Usue Mori, and Jose A Lozano. A review on distance
based time series classification. Data Mining and Knowledge Discovery,
pages 1-35, 2018.

Hervé Abdi. Holm’s sequential bonferroni procedure. Encyclopedia of
research design, 1(8):1-8, 2010.

Abubakar Abid and James Y Zou. Learning a warping distance from
unlabeled time series using sequence autoencoders. In Advances in
Neural Information Processing Systems, pages 10547-10555, 2018.

Saeed Aghabozorgi, Ali Seyed Shirkhorshidi, and Teh Ying Wah. Time-
series clustering—a decade review. Information Systems, 53:16-38, 2015.

Subutai Ahmad, Alexander Lavin, Scott Purdy, and Zuha Agha. Un-
supervised real-time anomaly detection for streaming data. Neurocom-
puting, 262:134-147, 2017.

Robert J Alcock, Yannis Manolopoulos, et al. Time-series similarity
queries employing a feature-based approach. In 7th Hellenic conference
on informatics, pages 27-29, 1999.

128

Chapter 8 Par. 8.3

8]
[9]

[10]

[11]

[12]

[15]

[16]

Cesare Alippi. Intelligence for embedded systems. Springer, 2014.

Samaneh Aminikhanghahi and Diane J Cook. A survey of methods
for time series change point detection. Knowledge and information
systems, 51(2):339-367, 2017.

Luigi Atzori, Antonio lera, and Giacomo Morabito. The internet of
things: A survey. Computer networks, 54(15):2787-2805, 2010.

Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. Segnet: A
deep convolutional encoder-decoder architecture for image segmenta-

tion. IEEFE transactions on pattern analysis and machine intelligence,
39(12):2481-2495, 2017.

Anthony Bagnall, Jason Lines, Aaron Bostrom, James Large, and Ea-
monn Keogh. The great time series classification bake off: a review and
experimental evaluation of recent algorithmic advances. Data Mining
and Knowledge Discovery, 31(3):606-660, 2017.

Pierre Baldi. Autoencoders, unsupervised learning, and deep architec-
tures. In Proceedings of ICML workshop on unsupervised and transfer
learning, pages 37-49, 2012.

Gustavo EAPA Batista, Eamonn J Keogh, Oben Moses Tataw, and
Vinicius MA De Souza. Cid: an efficient complexity-invariant distance
for time series. Data Mining and Knowledge Discovery, 28(3):634-669,
2014.

Gustavo EAPA Batista, Xiaoyue Wang, and Eamonn J Keogh. A
complexity-invariant distance measure for time series. In Proceedings

of the 2011 SIAM international conference on data mining, pages 699—
710. STAM, 2011.

Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Rec-
onciling modern machine-learning practice and the classical bias—

variance trade-off. Proceedings of the National Academy of Sciences,
116(32):15849-15854, 2019.

Richard Bellman. Dynamic programming. Science, 153(3731):34-37,
1966.

Alessio Benavoli, Giorgio Corani, and Francesca Mangili. Should we
really use post-hoc tests based on mean-ranks? The Journal of Machine
Learning Research, 17(1):152-161, 2016.

129

Chapter 8 Par. 8.3

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

28]

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation
learning: A review and new perspectives. IEEFE transactions on pattern
analysis and machine intelligence, 35(8):1798-1828, 2013.

Vineetha Bettaiah and Heggere S Ranganath. An analysis of time
series representation methods: data mining applications perspective. In
Proceedings of the 2014 ACM Southeast Regional Conference, page 16.
ACM, 2014.

Davis Blalock, Samuel Madden, and John Guttag. Sprintz: Time series
compression for the internet of things. Proceedings of the ACM on
Interactive, Mobile, Wearable and Ubiquitous Technologies, 2(3):1-23,
2018.

George EP Box, Gwilym M Jenkins, Gregory C Reinsel, and Greta M
Ljung. Time series analysis: forecasting and control. John Wiley &
Sons, 2015.

Sérgio Branco, André G Ferreira, and Jorge Cabral. Machine learning
in resource-scarce embedded systems, fpgas, and end-devices: A survey.
Electronics, 8(11):1289, 2019.

Henry Brighton and Chris Mellish. Advances in instance selection for
instance-based learning algorithms. Data mining and knowledge dis-
covery, 6(2):153-172, 2002.

Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard Séickinger, and
Roopak Shah. Signature verification using a" siamese" time delay neural
network. In Advances in neural information processing systems, pages

737744, 1994.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared
Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish
Sastry, Amanda Askell, et al. Language models are few-shot learners.
arXiw preprint arXi:2005.14165, 2020.

Krisztian Buza, Julia Koller, and Kristof Marussy. Process: projection-
based classification of electroencephalograph signals. In International
Conference on Artificial Intelligence and Soft Computing, pages 91—
100. Springer, 2015.

Van Loi Cao, Miguel Nicolau, and James McDermott. One-class clas-
sification for anomaly detection with kernel density estimation and ge-
netic programming. In European Conference on Genetic Programming,
pages 3—18. Springer, 2016.

130

Chapter 8 Par. 8.3

[29]

[30]

[31]

[34]

[35]

[36]

[37]

[38]

Van Loi Cao, Miguel Nicolau, and James McDermott. Learning neural
representations for network anomaly detection. IEEE Transactions on
Cybernetics, 49(8):3074-3087, 2018.

Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly de-
tection: A survey. ACM computing surveys (CSUR), 41(3):15, 2009.

Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly de-
tection for discrete sequences: A survey. IEEE Transactions on Knowl-
edge and Data Engineering, 24(5):823-839, 2012.

Zhengping Che, Xinran He, Ke Xu, and Yan Liu. Decade: a deep
metric learning model for multivariate time series. In KDD workshop
on mining and learning from time series. sn, 2017.

Lei Chen, M Tamer Ozsu, and Vincent Oria. Robust and fast similarity
search for moving object trajectories. In Proceedings of the 2005 ACM
SIGMOD international conference on Management of data, pages 491—
502. ACM, 2005.

Weiwei Chen, Fangang Kong, Feng Mei, Guiqin Yuan, and Bo Li. A
novel unsupervised anomaly detection approach for intrusion detection
system. In 2017 ieee 3rd international conference on big data secu-
rity on cloud (bigdatasecurity), IEEE international conference on high
performance and smart computing (hpsc), and IEEE international con-
ference on intelligent data and security (ids), pages 69-73. IEEE, 2017.

Haibin Cheng, Pang-Ning Tan, Christopher Potter, and Steven
Klooster. Detection and characterization of anomalies in multivariate
time series. In Proceedings of the 2009 SIAM international conference
on data mining, pages 413-424. SIAM, 20009.

Dhruv Choudhary, Arun Kejariwal, and Francois Orsini. On the
runtime-efficacy trade-off of anomaly detection techniques for real-time
streaming data. arXiv preprint arXiv:1710.04735, 2017.

Maximilian Christ, Nils Braun, Julius Neuffer, and Andreas W Kempa-
Liehr. Time series feature extraction on basis of scalable hypothesis
tests (tsfresh—a python package). Neurocomputing, 307:72-77, 2018.

M Bishop Christopher. PATTERN RECOGNITION AND MACHINE
LEARNING. Springer-Verlag New York, 2016.

131

Chapter 8 Par. 8.3

[39]

[46]

William T Cochran, James W Cooley, David L Favin, Howard D Helms,
Reginald A Kaenel, William W Lang, George C Maling, David E Nel-
son, Charles M Rader, and Peter D Welch. What is the fast fourier
transform? Proceedings of the IEEE, 55(10):1664-1674, 1967.

Taco S Cohen, Mario Geiger, Jonas Kohler, and Max Welling. Spherical
cnns. arXiv preprint arXiw:1801.10150, 2018.

Andrew Cook, Goksel Misirli, and Zhong Fan. Anomaly detection for
iot time-series data: A survey. IEEE Internet of Things Journal, 2019.

Michael AA Cox and Trevor F Cox. Multidimensional scaling. In
Handbook of data visualization, pages 315-347. Springer, 2008.

Wei Cui, Anthony Brabazon, and Michael O'Neill. Evolving efficient
limit order strategy using grammatical evolution. In IEEE Congress
on Evolutionary Computation, pages 1-6. IEEE, 2010.

Gautam Das, King-Ip Lin, Heikki Mannila, Gopal Renganathan, and
Padhraic Smyth. Rule discovery from time series. In KDD, volume 98,
pages 16-22, 1998.

Shubhomoy Das, Md Rakibul Islam, Nitthilan Kannappan Jayakodi,
and Janardhan Rao Doppa. Active anomaly detection via en-
sembles: Insights, algorithms, and interpretability. arXiv preprint
arXiw:1901.08930, 2019.

Hoang Anh Dau, Anthony Bagnall, Kaveh Kamgar, Chin-Chia Michael
Yeh, Yan Zhu, Shaghayegh Gharghabi, Chotirat Annh Ratanama-
hatana, and Eamonn Keogh. The ucr time series archive. IEEE/CAA
Journal of Automatica Sinica, 6(6):1293-1305, 2019.

Luke M Davis, Barry-John Theobald, Jason Lines, Andoni Toms, and
Anthony Bagnall. On the segmentation and classification of hand ra-
diographs. International journal of neural systems, 22(05):1250020,
2012.

Jan G De Gooijer and Rob J Hyndman. 25 years of time series fore-
casting. International journal of forecasting, 22(3):443-473, 2006.

Angus Dempster, Francois Petitjean, and Geoffrey I Webb. Rocket:
Exceptionally fast and accurate time series classification using ran-

dom convolutional kernels. Data Mining and Knowledge Discovery,
34(5):1454-1495, 2020.

132

Chapter 8 Par. 8.3

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

Janez Demsar. Statistical comparisons of classifiers over multiple data
sets. Journal of Machine learning research, 7(Jan):1-30, 2006.

Houtao Deng, George Runger, Eugene Tuv, and Martyanov Vladimir.
A time series forest for classification and feature extraction. Informa-
tion Sciences, 239:142—-153, 2013.

Nilanjan Dey, Amira S Ashour, Simon James Fong, and Chintan Bhatt.
Wearable and Implantable Medical Devices: Applications and Chal-
lenges. Academic Press, 2019.

Hui Ding, Goce Trajcevski, Peter Scheuermann, Xiaoyue Wang, and
Eamonn Keogh. Querying and mining of time series data: experimental

comparison of representations and distance measures. Proceedings of
the VLDB Endowment, 1(2):1542-1552, 2008.

Gregory Ditzler and Robi Polikar. Incremental learning of concept drift
from streaming imbalanced data. IFEE transactions on knowledge and
data engineering, 25(10):2283-2301, 2012.

Finale Doshi-Velez and Been Kim. Towards a rigorous science of inter-
pretable machine learning. arXiv preprint arXiv:1702.08608, 2017.

Yueqi Duan, Jiwen Lu, Jianjiang Feng, and Jie Zhou. Deep localized
metric learning. IEFE Transactions on Circuits and Systems for Video
Technology, 28(10):2644-2656, 2017.

Richard O Duda, Peter E Hart, and David G Stork. Pattern classifi-
cation. John Wiley & Sons, 2012.

Robert PW Duin and Elzbieta Pekalska. Open issues in pattern recog-
nition. In Computer Recognition Systems, pages 27—42. Springer, 2005.

Robert PW Duin and Elzbieta Pekalska. Structural inference of sensor-
based measurements. In Joint IAPR International Workshops on Sta-
tistical Techniques in Pattern Recognition (SPR) and Structural and
Syntactic Pattern Recognition (SSPR), pages 41-55. Springer, 2006.

Robert PW Duin and Elzbieta Pekalska. The dissimilarity representa-
tion for structural pattern recognition. In Iberoamerican Congress on
Pattern Recognition, pages 1-24. Springer, 2011.

Robert PW Duin, Fabio Roli, and Dick de Ridder. A note on core
research issues for statistical pattern recognition. Pattern recognition
letters, 23(4):493-499, 2002.

133

Chapter 8 Par. 8.3

[62]

[63]

[64]

[65]

[66]

[68]

[69]

[70]

Vincent Dumoulin and Francesco Visin. A guide to convolution arith-
metic for deep learning. arXiv preprint arXiv:1603.07285, 2016.

Damian Eads, Karen Glocer, Simon Perkins, and James Theiler.
Grammar-guided feature extraction for time series classification. In

Proceedings of the 9th Annual Conference on Neural Information Pro-
cessing Systems (NIPS’05), 2005.

Saba Ale Ebrahim, Javad Poshtan, Seyedh Mahboobeh Jamali, and
Nader Ale Ebrahim. Quantitative and qualitative analysis of time-
series classification using deep learning. IFEE Access, 2020.

Andrew Emmott, Shubhomoy Das, Thomas Dietterich, Alan Fern, and
Weng-Keen Wong. A meta-analysis of the anomaly detection problem.
arXiv preprint arXi:1503.01158, 2015.

Bahaeddin Eravci and Hakan Ferhatosmanoglu. Diverse relevance feed-
back for time series with autoencoder based summarizations. [EFEFE
Transactions on Knowledge and Data Engineering, 30(12):2298-2311,
2018.

Suilan Estevez-Velarde, Yoan Gutiérrez, Yudivian Almeida-Cruz, and
Andrés Montoyo. General-purpose hierarchical optimisation of machine
learning pipelines with grammatical evolution. Information Sciences,
2020.

Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane
Idoumghar, and Pierre-Alain Muller. Transfer learning for time series
classification. In 2018 IEEFE International Conference on Big Data (Big
Data), pages 1367-1376. IEEE, 2018.

Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane
Idoumghar, and Pierre-Alain Muller. Adversarial attacks on deep neu-

ral networks for time series classification. In 2019 International Joint
Conference on Neural Networks (IJCNN), pages 1-8. IEEE, 2019.

Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane
Idoumghar, and Pierre-Alain Muller. Deep learning for time series clas-
sification: a review. Data Mining and Knowledge Discovery, 33(4):917—
963, 2019.

Hassan Ismail Fawaz, Benjamin Lucas, Germain Forestier, Charlotte
Pelletier, Daniel F Schmidt, Jonathan Weber, Geoffrey I Webb, Lhas-
sane Idoumghar, Pierre-Alain Muller, and Frangois Petitjean. Incep-

134

Chapter 8 Par. 8.3

[80]

[81]

tiontime: Finding alexnet for time series classification. arXiv preprint
arXiv:1909.04939, 2019.

Michael Fenton, James McDermott, David Fagan, Stefan Forstenlech-
ner, Erik Hemberg, and Michael O’Neill. Ponyge2: Grammatical evo-
lution in python. In Proceedings of the Genetic and Evolutionary Com-
putation Conference Companion, pages 1194-1201. ACM, 2017.

Gilberto Fernandes, Joel JPC Rodrigues, Luiz Fernando Carvalho,
Jalal F Al-Muhtadi, and Mario Lemes Proenca. A comprehensive
survey on network anomaly detection. Telecommunication Systems,
70(3):447-489, 2019.

Enrique Fernandez-Blanco, Daniel Rivero, Marcos Gestal, and Julian
Dorado. Classification of signals by means of genetic programming.
Soft Computing, 17(10):1929-1937, 2013.

Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springen-
berg, Manuel Blum, and Frank Hutter. Efficient and robust automated
machine learning. In Advances in neural information processing sys-
tems, pages 2962-2970, 2015.

Michael Flynn, James Large, and Tony Bagnall. The contract random
interval spectral ensemble (c-rise): the effect of contracting a classifier
on accuracy. In International Conference on Hybrid Artificial Intelli-
gence Systems, pages 381-392. Springer, 2019.

Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The elements

of statistical learning, volume 1. Springer series in statistics New York,
2001.

Tak-chung Fu. A review on time series data mining. Engineering
Applications of Artificial Intelligence, 24(1):164-181, 2011.

Pedro Galeano and Daniel Pella Pefia. Multivariate analysis in vec-
tor time series. Resenhas do Instituto de Matemdtica e Estatistica da
Universidade de Sao Paulo, 4(4):383-403, 2000.

Eric K Garcia, Sergey Feldman, Maya R Gupta, and Santosh Srivas-
tava. Completely lazy learning. IEEFE Transactions on Knowledge and
Data Engineering, 22(9):1274-1285, 2010.

Salvador Garcia, Joaquin Derrac, Jose Cano, and Francisco Herrera.
Prototype selection for nearest neighbor classification: Taxonomy and

135

Chapter 8 Par. 8.3

[84]

[85]

[89]

[90]

[91]

empirical study. IEEE transactions on pattern analysis and machine
intelligence, 34(3):417-435, 2012.

Salvador Garcia and Francisco Herrera. An extension on“statistical
comparisons of classifiers over multiple data sets”for all pairwise com-
parisons. Journal of machine learning research, 9(Dec):2677-2694,
2008.

Dominique Gay and Vincent Lemaire. Should we reload time series clas-
sification performance evaluation?(a position paper). arXiv preprint
arXiw:1903.03500, 2019.

Pierre Geurts. Pattern extraction for time series classification. In Fu-
ropean Conference on Principles of Data Mining and Knowledge Dis-
covery, volume 1, pages 115-127. Springer, 2001.

Mohamed F Ghalwash and Zoran Obradovic. Early classification
of multivariate temporal observations by extraction of interpretable
shapelets. BMC' bioinformatics, 13(1):195, 2012.

Nikolaos Gianniotis, Sven D Kiigler, Peter Tino, and Kai L. Polsterer.
Model-coupled autoencoder for time series visualisation. Neurocomput-
ing, 192:139-146, 2016.

Rafael Giusti, Diego F Silva, and Gustavo EAPA Batista. Improved
time series classification with representation diversity and SVM. In
2016 15th IEEE International Conference on Machine Learning and
Applications, pages 1-6. IEEE, 2016.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of
training deep feedforward neural networks. In Proceedings of the thir-
teenth international conference on artificial intelligence and statistics,
pages 249-256, 2010.

Markus Goldstein and Seiichi Uchida. A comparative evaluation of
unsupervised anomaly detection algorithms for multivariate data. PloS
one, 11(4):e0152173, 2016.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
MIT Press, 2016. http://www.deeplearningbook.org.

Tomasz Gorecki and Maciej Luczak. Multivariate time series classifica-
tion with parametric derivative dynamic time warping. Ezpert Systems
with Applications, 42(5):2305-2312, 2015.

136

http://www.deeplearningbook.org

Chapter 8 Par. 8.3

[92]

[93]

[94]

[100]

Frank E Grubbs. Procedures for detecting outlying observations in
samples. Technometrics, 11(1):1-21, 1969.

Jiuxiang Gu, Zhenhua Wang, Jason Kuen, Lianyang Ma, Amir
Shahroudy, Bing Shuai, Ting Liu, Xingxing Wang, Gang Wang, Jianfei
Cali, et al. Recent advances in convolutional neural networks. Pattern
Recognition, 77:354-377, 2018.

Yasmine Guerbai, Youcef Chibani, and Bilal Hadjadji. The effective
use of the one-class svm classifier for handwritten signature verifica-
tion based on writer-independent parameters. Pattern Recognition,
48(1):103-113, 2015.

David Guijo-Rubio, Pedro Antonio Gutiérrez, Anthony Bagnall, and
César Hervas-Martinez. Ordinal versus nominal time series classifica-
tion.

Manish Gupta, Jing Gao, Charu C Aggarwal, and Jiawei Han. Outlier
detection for temporal data: A survey. IFEE Transactions on Knowl-
edge and Data Engineering, 26(9):2250-2267, 2013.

Isabelle Guyon and André Elisseeff. An introduction to feature extrac-
tion. In Feature extraction, pages 1-25. Springer, 2006.

Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensionality reduc-
tion by learning an invariant mapping. In 2006 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR’06),
volume 2, pages 1735-1742. IEEE, 2006.

Guo Haixiang, Li Yijing, Jennifer Shang, Gu Mingyun, Huang
Yuanyue, and Gong Bing. Learning from class-imbalanced data: Re-
view of methods and applications. Ezpert Systems with Applications,
73:220-239, 2017.

Charles R. Harris, K. Jarrod Millman, St’efan J. van der Walt, Ralf
Gommers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Tay-
lor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus,
Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Hal-
dane, Jaime Fern’andez del R0, Mark Wiebe, Pearu Peterson, Pierre
G’erard-Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser,
Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array pro-
gramming with NumPy. Nature, 585(7825):357-362, September 2020.

137

Chapter 8 Par. 8.3

[101]

[102]

103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

Dustin Y Harvey and Michael D Todd. Automated feature design for
numeric sequence classification by genetic programming. IEFE Trans-
actions on Evolutionary Computation, 19(4):474-489, 2015.

Haibo He and Yunqgian Ma. Imbalanced learning: foundations, algo-
rithms, and applications. John Wiley & Sons, 2013.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep resid-
ual learning for image recognition. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pages 770-778, 2016.

Jon Hills, Jason Lines, Edgaras Baranauskas, James Mapp, and An-
thony Bagnall. Classification of time series by shapelet transformation.
Data Mining and Knowledge Discovery, 28(4):851-881, 2014.

Victoria Hodge and Jim Austin. A survey of outlier detection method-
ologies. Artificial intelligence review, 22(2):85-126, 2004.

Steven CH Hoi, Doyen Sahoo, Jing Lu, and Peilin Zhao. Online learn-
ing: A comprehensive survey. arXiv preprint arXiv:1802.02871, 2018.

Kurt Hornik, Maxwell Stinchcombe, Halbert White, et al. Multilayer
feedforward networks are universal approximators. Neural networks,
2(5):359-366, 1989.

Harold Hotelling. Analysis of a complex of statistical variables into
principal components. Journal of educational psychology, 24(6):417,
1933.

Lu Hou, James T Kwok, and Jacek M Zurada. FEfficient learning of
timeseries shapelets. In Proceedings of the Thirtieth AAAI Conference
on Artificial Intelligence, pages 1209-1215, 2016.

Shima Imani and Eamonn Keogh. Natura: Towards conversational
analytics for comparing and contrasting time series. In Companion
Proceedings of the Web Conference 2020, pages 46-47, 2020.

Brian Kenji Iwana, Volkmar Frinken, Kaspar Riesen, and Seiichi
Uchida. Efficient temporal pattern recognition by means of dissimi-
larity space embedding with discriminative prototypes. Pattern Recog-
nition, 64:268-276, 2017.

Brian Kenji Iwana and Seiichi Uchida. An empirical survey of data
augmentation for time series classification with neural networks. arXiv

preprint arXiv:2007.15951, 2020.

138

Chapter 8 Par. 8.3

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

Brian Kenji Iwana and Seiichi Uchida. Time series classification using
local distance-based features in multi-modal fusion networks. Pattern
Recognition, 97:107024, 2020.

Brijnesh Jain and Stephan Spiegel. Dimension reduction in dissimi-
larity spaces for time series classification. In International Workshop
on Advanced Analysis and Learning on Temporal Data, pages 31-46.
Springer, 2015.

Aren Jansen, Manoj Plakal, Ratheet Pandya, Daniel PW Ellis, Shawn
Hershey, Jiayang Liu, R Channing Moore, and Rif A Saurous. Unsuper-
vised learning of semantic audio representations. In 2018 IEEFE interna-

tional conference on acoustics, speech and signal processing (ICASSP),
pages 126-130. IEEE, 2018.

Young-Seon Jeong, In-Ho Kang, Myong-Kee Jeong, and Dongjoon
Kong. A new feature selection method for one-class classification prob-
lems. IEEE Transactions on Systems, Man, and Cybernetics, Part C
(Applications and Reviews), 42(6):1500-1509, 2012.

Yoshihide Kakizawa, Robert H Shumway, and Masanobu Taniguchi.
Discrimination and clustering for multivariate time series. Journal of
the American Statistical Association, 93(441):328-340, 1998.

Fazle Karim, Somshubra Majumdar, and Houshang Darabi. Insights
into Istm fully convolutional networks for time series classification.
IEEE Access, 7:67718-67725, 2019.

Rohit J Kate. Using dynamic time warping distances as features for
improved time series classification. Data Mining and Knowledge Dis-
covery, 30(2):283-312, 2016.

Ravneet Kaur and Sarbjeet Singh. A survey of data mining and so-
cial network analysis based anomaly detection techniques. FEgyptian
informatics journal, 17(2):199-216, 2016.

Louise A Kelly, Duncan GE McMillan, Alexandra Anderson, Morgan
Fippinger, Gunnar Fillerup, and Jane Rider. Validity of actigraphs
uniaxial and triaxial accelerometers for assessment of physical activity
in adults in laboratory conditions. BMC medical physics, 13(1):5, 2013.

Eamonn Keogh, Kaushik Chakrabarti, Michael Pazzani, and Sharad
Mehrotra. Dimensionality reduction for fast similarity search in large

139

Chapter 8 Par. 8.3

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

time series databases. Knowledge and information Systems, 3(3):263—
286, 2001.

Eamonn Keogh, Selina Chu, David Hart, and Michael Pazzani. Seg-
menting time series: A survey and novel approach. In Data mining in
time series databases, pages 1-21. World Scientific, 2004.

Murphy Kevin. Machine learning: a probabilistic perspective, 2012.

Shehroz S Khan and Amir Ahmad. Relationship between variants
of one-class nearest neighbors and creating their accurate ensembles.
IEEFE Transactions on Knowledge and Data Engineering, 30(9):1796—
1809, 2018.

Shehroz S Khan and Michael G Madden. One-class classification: tax-
onomy of study and review of techniques. The Knowledge Engineering
Review, 29(3):345-374, 2014.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes.
arXiv preprint arXw:1312.6114, 2013.

Judy L Klein. Statistical visions in time: a history of time series
analysis, 1662-1938. Cambridge University Press, 1997.

Donald E Knuth. Backus normal form vs. backus naur form. Commu-
nications of the ACM, 7(12):735-736, 1964.

Satoru Kobayashi, Kazuki Otomo, Kensuke Fukuda, and Hiroshi Esaki.
Mining causality of network events in log data. IEEE Transactions on
Network and Service Management, 15(1):53-67, 2017.

John R Koza. Genetic programming: on the programming of computers
by means of natural selection, volume 1. MIT press, 1992.

Bartosz Krawczyk and Michat Wozniak. Dynamic classifier selection
for one-class classification. Knowledge-Based Systems, 107:43-53, 2016.

Bartosz Krawczyk, Michal Wozniak, and Francisco Herrera. On the
usefulness of one-class classifier ensembles for decomposition of multi-
class problems. Pattern Recognition, 48(12):3969-3982, 2015.

140

Chapter 8 Par. 8.3

[135]

[136]

[137]

138

[139]

[140]

[141]

[142]

[143]

[144]

[145]

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet
classification with deep convolutional neural networks. In Advances in
neural information processing systems, pages 1097-1105, 2012.

Ludmila I Kuncheva. Prototype classifiers and the big fish: The case of
prototype (instance) selection. IEEE Systems, Man, and Cybernetics
Magazine, 6(2):49-56, 2020.

Ludmila I Kuncheva and James C Bezdek. Nearest prototype clas-
sification: Clustering, genetic algorithms, or random search? [FEFE
Transactions on Systems, Man, and Cybernetics, Part C; 28(1):160—
164, 1998.

Martin Langkvist, Lars Karlsson, and Amy Loutfi. A review of unsu-
pervised feature learning and deep learning for time-series modeling.
Pattern Recognition Letters, 42:11-24, 2014.

Oscar D Lara and Miguel A Labrador. A survey on human activity
recognition using wearable sensors. [EEE Communications Surveys
and Tutorials, 15(3):1192-1209, 2013.

James Large, Paul Southam, and Anthony Bagnall. Can automated
smoothing significantly improve benchmark time series classification
algorithms? In International Conference on Hybrid Artificial Intelli-
gence Systems, pages 50-60. Springer, 2019.

Lei Le, Andrew Patterson, and Martha White. Supervised autoen-
coders: Improving generalization performance with unsupervised regu-

larizers. In Advances in Neural Information Processing Systems, pages
107-117, 2018.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning.
nature, 521(7553):436, 2015.

Qi Lei, Jinfeng Yi, Roman Vaculin, Lingfei Wu, and Inderjit S Dhillon.
Similarity preserving representation learning for time series clustering.
In IJCAI volume 19, pages 2845-2851, 2019.

Raphael Lenain, Jack Weston, Abhishek Shivkumar, and Emil Fristed.
Surfboard: Audio feature extraction for modern machine learning.
arXiv preprint arXiv:2005.08848, 2020.

Andrew Lensen, Bing Xue, and Mengjie Zhang. Genetic programming
for evolving a front of interpretable models for data visualization. IEEE
Transactions on Cybernetics, 2020.

141

Chapter 8 Par. 8.3

[146]

[147)

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

Daoyuan Li, Jessica Lin, Tegawendé Francois D Assise Bissyande,
Jacques Klein, and Yves Le Traon. Extracting statistical graph features
for accurate and efficient time series classification. In 21st International
Conference on Extending Database Technology, 2018.

Yuangui Li, Zhonghui Hu, Yunze Cai, and Weidong Zhang. Support
vector based prototype selection method for nearest neighbor rules.
In International Conference on Natural Computation, pages 528-535.
Springer, 2005.

Linxia Liao. Discovering prognostic features using genetic program-
ming in remaining useful life prediction. IEEE Transactions on Indus-
trial Electronics, 61(5):2464-2472, 2014.

T Warren Liao. Clustering of time series data—a survey. Pattern
recognition, 38(11):1857-1874, 2005.

Jessica Lin, Eamonn Keogh, Stefano Lonardi, and Bill Chiu. A sym-
bolic representation of time series, with implications for streaming algo-
rithms. In Proceedings of the 8th ACM SIGMOD workshop on Research
issues in data mining and knowledge discovery, pages 2-11. ACM, 2003.

Jessica Lin, Rohan Khade, and Yuan Li. Rotation-invariant similarity
in time series using bag-of-patterns representation. Journal of Intelli-
gent Information Systems, 39(2):287-315, 2012.

Jessica Lin and Yuan Li. Finding structural similarity in time se-
ries data using bag-of-patterns representation. In International confer-
ence on scientific and statistical database management, pages 461-477.
Springer, 2009.

Michele Linardi, Yan Zhu, Themis Palpanas, and Eamonn Keogh. Ma-
trix profile goes mad: variable-length motif and discord discovery in
data series. DATA MINING AND KNOWLEDGE DISCOVERY, 2020.

Jason Lines and Anthony Bagnall. Time series classification with en-
sembles of elastic distance measures. Data Mining and Knowledge Dis-
covery, 29(3):565-592, 2015.

Jason Lines, Sarah Taylor, and Anthony Bagnall. Time series classifica-
tion with hive-cote: The hierarchical vote collective of transformation-

based ensembles. ACM Transactions on Knowledge Discovery from
Data, 12(5):52, 2018.

142

Chapter 8 Par. 8.3

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

Luca Lipani, Bertrand GR Dupont, Floriant Doungmene, Frank
Marken, Rex M Tyrrell, Richard H Guy, and Adelina Ilie. Non-
invasive, transdermal, path-selective and specific glucose monitoring
via a graphene-based platform. Nature nanotechnology, 13(6):504-511,
2018.

Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation forest.
In 2008 Fighth IEEFE International Conference on Data Mining, pages
413-422. IEEE, 2008.

Arnaud Lods, Simon Malinowski, Romain Tavenard, and Laurent Am-
saleg. Learning dtw-preserving shapelets. In International Symposium
on Intelligent Data Analysis, pages 198-209. Springer, 2017.

JLEKS Lonardi and Pranav Patel. Finding motifs in time series. In
Proc. of the 2nd Workshop on Temporal Data Mining, pages 53—68,
2002.

Carl H. Lubba, Sarab S. Sethi, Philip Knaute, Simon R. Schultz, Ben D.
Fulcher, and Nick S. Jones. catch22: Canonical time-series character-
istics. Data Mining and Knowledge Discovery, August 2019.

Benjamin Lucas, Ahmed Shifaz, Charlotte Pelletier, Lachlan O’Neill,
Nayyar Zaidi, Bart Goethals, Francois Petitjean, and Geoffrey I Webb.
Proximity forest: an effective and scalable distance-based classifier for
time series. Data Mining and Knowledge Discovery, 33(3):607-635,
2019.

Bo Luo, Haoting Wang, Hongqi Liu, Bin Li, and Fangyu Peng. Early
fault detection of machine tools based on deep learning and dynamic
identification. IEEE Transactions on Industrial Electronics, 66(1):509—
518, 2019.

Ge Luo, Ke Yi, Siu-Wing Cheng, Zhenguo Li, Wei Fan, Cheng He,
and Yadong Mu. Piecewise linear approximation of streaming time
series data with max-error guarantees. In 2015 IEEE 31st International
Conference on Data Engineering, pages 173-184. IEEE, 2015.

Yungian Ma and Yun Fu. Manifold learning theory and applications.
CRC press, 2011.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using
t-sne. Journal of machine learning research, 9(Nov):2579-2605, 2008.

143

Chapter 8 Par. 8.3

[166]

167]

[168]

[169)]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

Utthara Gosa Mangai, Suranjana Samanta, Sukhendu Das, and
Pinaki Roy Chowdhury. A survey of decision fusion and feature fusion
strategies for pattern classification. IETE Technical review, 27(4):293—
307, 2010.

Carlos Martin, David Quintana, and Pedro Isasi. Grammatical
evolution-based ensembles for algorithmic trading. Applied Soft Com-
puting, 84:105713, 2019.

Stefano Mauceri, Louis Smith, James Sweeney, and James McDermott.
Subject recognition using wrist-worn triaxial accelerometer data. In
International Workshop on Machine Learning, Optimization, and Big
Data, pages 574-585. Springer, 2017.

Stefano Mauceri, James Sweeney, and James McDermott. One-class
subject authentication using feature extraction by grammatical evo-
lution on accelerometer data. In International Conference on Meta-
heuristics and Nature Inspired Computing, 2018.

Stefano Mauceri, James Sweeney, and James McDermott.
Dissimilarity-based representations for one-class classification on
time series. Pattern Recognition, 100:107122, 2020.

Brian McFee and Gert R Lanckriet. Metric learning to rank. In Pro-
ceedings of the 27th International Conference on Machine Learning
(ICML-10), pages 775-782, 2010.

Jiangyuan Mei, Meizhu Liu, Yuan-Fang Wang, and Huijun Gao. Learn-
ing a mahalanobis distance-based dynamic time warping measure for
multivariate time series classification. IEEFE transactions on Cybernet-
ics, 46(6):1363-1374, 2015.

Amiel Meiseles and Lior Rokach. Source model selection for deep learn-
ing in the time series domain. IEFE Access, 8:6190-6200, 2020.

Matthew Middlehurst, James Large, and Anthony Bagnall. The canon-
ical interval forest (cif) classifier for time series classification. arXiv
preprint arXiv:2008.09172, 2020.

David J Montana. Strongly typed genetic programming. Fvolutionary
computation, 3(2):199-230, 1995.

Jason H Moore and Moshe Sipper. Grammatical evolution strategies
for bioinformatics and systems genomics. In Handbook of Grammatical
FEvolution, pages 395-405. Springer, 2018.

144

Chapter 8 Par. 8.3

[177]

[178]

[179]

[180)]

[181]

[182]

[183)]

[184]

[185]

[186]

187

[188]

Steffen Moritz and Thomas Bartz-Beielstein. imputets: time series
missing value imputation in r. The R Journal, 9(1):207-218, 2017.

S Mostafa Mousavi, Weigiang Zhu, William Ellsworth, and Gregory
Beroza. Unsupervised clustering of seismic signals using deep convo-

lutional autoencoders. IEFE Geoscience and Remote Sensing Letters,
16(11):1693-1697, 2019.

Alex Nanopoulos, Rob Alcock, and Yannis Manolopoulos. Feature-
based classification of time-series data. International Journal of Com-
puter Research, 10(3):49-61, 2001.

Krystyna Napierala and Jerzy Stefanowski. Types of minority class
examples and their influence on learning classifiers from imbalanced
data. Journal of Intelligent Information Systems, 46(3):563-597, 2016.

Michel Neuhaus and Horst Bunke. Bridging the gap between graph edit
distance and kernel machines, volume 68. World Scientific, 2007.

Ji Ni, Russ H Drieberg, and Peter I Rockett. The use of an analytic
quotient operator in genetic programming. IEEE Transactions on FEvo-
lutionary Computation, 17(1):146-152, 2012.

Miguel Nicolau and Alexandros Agapitos. Understanding grammatical
evolution: Grammar design. In Handbook of Grammatical Evolution,
pages 23-53. Springer, 2018.

Robert M Nosofsky. Attention, similarity, and the identification—
categorization relationship. Journal of experimental psychology: Gen-
eral, 115(1):39, 1986.

Michael O’Neill and Conor Ryan. Grammatical evolution. In Gram-
matical Fvolution, pages 33—47. Springer, 2003.

Victor M Panaretos and Yoav Zemel. Statistical aspects of wasserstein
distances. Annual Review of Statistics and Its Application, 2018.

John Paparrizos, Chunwei Liu, Aaron J Elmore, and Michael J
Franklin. Debunking four long-standing misconceptions of time-series

distance measures. In Proceedings of the 2020 ACM SIGMOD Inter-
national Conference on Management of Data, pages 1887-1905, 2020.

John L Pearce, Lance A Waller, Howard H Chang, Mitch Klein,
James A Mulholland, Jeremy A Sarnat, Stefanie E Sarnat, Matthew J

145

Chapter 8 Par. 8.3

[189)]

[190]

[191]

[192]

193]

[194]

[195]

[196]

[197]

Strickland, and Paige E Tolbert. Using self-organizing maps to develop
ambient air quality classifications: a time series example. Environmen-
tal Health, 13(1):56, 2014.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-
derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and

E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 12(Oct):2825-2830, 2011.

Wenjie Pei, David MJ Tax, and Laurens van der Maaten. Modeling
time series similarity with siamese recurrent networks. arXiv preprint
arXiw:1603.04713, 2016.

Elzbieta Pekalska and Robert PW Duin. Dissimilarity representa-
tions allow for building good classifiers. Pattern Recognition Letters,
23(8):943-956, 2002.

ElZzbieta Pekalska, Robert PW Duin, and Pavel Paclik. Prototype selec-
tion for dissimilarity-based classifiers. Pattern Recognition, 39(2):189—
208, 2006.

Davi Pereira-Santos, Ricardo Bastos Cavalcante Prudéncio, and An-
dré CPLF de Carvalho. Empirical investigation of active learning
strategies. Neurocomputing, 326:15-27, 2019.

Francois Petitjean, Germain Forestier, Geoffrey I Webb, Ann E Nichol-
son, Yanping Chen, and Eamonn Keogh. Dynamic time warping aver-
aging of time series allows faster and more accurate classification. In
2014 IFEFE international conference on data mining, pages 470-479.
IEEE, 2014.

Florian Pfisterer, Laura Beggel, Xudong Sun, Fabian Scheipl, and
Bernd Bischl. Benchmarking time series classification—functional data
vs machine learning approaches. arXiv preprint arXiv:1911.07511,
2019.

Hieu Pham, Melody Y Guan, Barret Zoph, Quoc V Le, and Jeff
Dean. Efficient neural architecture search via parameter sharing. arXiv
preprint arXiv:1802.05268, 2018.

Clifton Phua, Vincent Lee, Kate Smith, and Ross Gayler. A compre-
hensive survey of data mining-based fraud detection research. arXiv
preprint arXiv:1009.6119, 2010.

146

Chapter 8 Par. 8.3

[198]

[199]

200]

[201]

[202]

203]

[204]

205

206]

[207]

208]

Stjepan Picek, Erik Hemberg, Domagoj Jakobovic, and Una-May
O’Reilly. One-class classification of low volume dos attacks with ge-
netic programming. In Genetic Programming Theory and Practice XV,
pages 149-168. Springer, 2018.

Roberto HW Pinheiro, George DC Cavalcanti, and Ren Tsang. Com-
bining dissimilarity spaces for text categorization. Information Sci-
ences, 406:87-101, 2017.

Riccardo Poli, William B Langdon, Nicholas F McPhee, and John R
Koza. A field guide to genetic programming. Lulu. com, 2008.

Warren B Powell. Perspectives of approximate dynamic programming.
Annals of Operations Research, 241(1-2):319-356, 2016.

Kenneth V Price. Differential evolution. In Handbook of Optimization,
pages 187-214. Springer, 2013.

Han Qiu, Hoang Thanh Lam, Francesco Fusco, and Mathieu
Sinn. Learning correlation space for time series. arXiv preprint
arXiw:1802.03628, 2018.

Hojjat Rakhshani, Hassan Ismail Fawaz, Lhassane Idoumghar, Ger-
main Forestier, Julien Lepagnot, Jonathan Weber, Mathieu Brévilliers,
and Pierre-Alain Muller. Neural architecture search for time series clas-
sification.

Thanawin Rakthanmanon, Bilson Campana, Abdullah Mueen, Gus-
tavo Batista, Brandon Westover, Qiang Zhu, Jesin Zakaria, and Ea-
monn Keogh. Addressing big data time series: Mining trillions of time

series subsequences under dynamic time warping. ACM Transactions
on Knowledge Discovery from Data (TKDD), 7(3):10, 2013.

Chotirat Ann Ratanamahatana and Eamonn Keogh. Making time-
series classification more accurate using learned constraints. In Pro-

ceedings of the 2004 SIAM international conference on data mining,
pages 11-22. STAM, 2004.

Conor Ryan, Michael O’Neill, and JJ Collins. Handbook of Grammatical
Fvolution. Springer, 2018.

Hasim Sak, Andrew W Senior, and Francoise Beaufays. Long short-
term memory recurrent neural network architectures for large scale
acoustic modeling. 2014.

147

Chapter 8 Par. 8.3

209]

[210]

[211]

[212]

[213]

[214]

[215]

[216]

[217)

[218]

[219]

Yoshifumi Sakai and Shunsuke Inenaga. A reduction of the dynamic
time warping distance to the longest increasing subsequence length.
arXiv preprint arXi:2005.09169, 2020.

Ruslan Salakhutdinov and Geoff Hinton. Learning a nonlinear embed-
ding by preserving class neighbourhood structure. In Artificial Intelli-
gence and Statistics, pages 412-419, 2007.

Patrick Schéfer. The boss is concerned with time series classifica-
tion in the presence of noise. Data Mining and Knowledge Discovery,
29(6):1505-1530, 2015.

Patrick Schéfer and Ulf Leser. Fast and accurate time series classifica-
tion with weasel. In Proceedings of the 2017 ACM on Conference on
Information and Knowledge Management, pages 637-646, 2017.

Patrick Schéfer and Ulf Leser. Teaser: Early and accurate time series
classification. Data Mining and Knowledge Discovery, pages 1-27, 2020.

Robert E Schapire. Explaining adaboost. In Empirical inference, pages
37-52. Springer, 2013.

Thomas Schlegl, Philipp Seebock, Sebastian M Waldstein, Ursula
Schmidt-Erfurth, and Georg Langs. Unsupervised anomaly detection
with generative adversarial networks to guide marker discovery. In In-

ternational Conference on Information Processing in Medical Imaging,
pages 146-157. Springer, 2017.

Bernhard Scholkopf, Alexander Smola, and Klaus-Robert Miiller. Ker-
nel principal component analysis. In International conference on arti-
ficial neural networks, pages 583-588. Springer, 1997.

Bernhard Schoélkopf, Robert C Williamson, Alex J Smola, John Shawe-
Taylor, and John C Platt. Support vector method for novelty detection.

In Advances in neural information processing systems, pages 582—588,
2000.

Thomas Schreiber and Andreas Schmitz. Discrimination power of mea-
sures for nonlinearity in a time series. Physical Review E, 55(5):5443,
1997.

Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A
unified embedding for face recognition and clustering. In Proceedings of

the IEEE conference on computer vision and pattern recognition, pages
815-823, 2015.

148

Chapter 8 Par. 8.3

[220]

[221]

[222]

[223]

[224]

[225]

[226]

[227]

[228]

[229]

230]

Matthias Seeger. Learning with labeled and unlabeled data (technical
report). Edinburgh University, 2000.

Razieh Sheikhpour, Mehdi Agha Sarram, Sajjad Gharaghani, and Mo-
hammad Ali Zare Chahooki. A survey on semi-supervised feature se-
lection methods. Pattern Recognition, 64:141-158, 2017.

Kejian Shi, Hongyang Qin, Chijun Sima, Sen Li, Lifeng Shen, and
Qianli Ma. Dynamic barycenter averaging kernel in rbf networks for
time series classification. IEEE Access, 7:47564-47576, 2019.

Hyun Joon Shin, Dong-Hwan Eom, and Sung-Shick Kim. One-class
support vector machines—an application in machine fault detection
and classification. Computers & Industrial Engineering, 48(2):395-408,
2005.

Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside
convolutional networks: Visualising image classification models and
saliency maps. arXiv preprint arXiv:1312.603/4, 2013.

Bharat Singh and Larry S Davis. An analysis of scale invariance in ob-
ject detection snip. In Proceedings of the IEEE conference on computer
viston and pattern recognition, pages 3578-3587, 2018.

Dominik Sobania and Franz Rothlauf. Challenges of program synthe-
sis with grammatical evolution. In Furopean Conference on Genetic
Programming (Part of EvoStar), pages 211-227. Springer, 2020.

Sumit Soman et al. High performance eeg signal classification using
classifiability and the twin svm. Applied Soft Computing, 30:305-318,
2015.

Lauge Sgrensen, Marco Loog, Pechin Lo, Haseem Ashraf, Asger Dirk-
sen, Robert PW Duin, and Marleen De Bruijne. Image dissimilarity-
based quantification of lung disease from ct. In International Confer-
ence on Medical Image Computing and Computer-Assisted Interven-
tion, pages 37-44. Springer, 2010.

Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Mar-
tin Riedmiller. Striving for simplicity: The all convolutional net. arXiv
preprint arXiv:1412.6806, 2014.

Alexandra Stefan, Vassilis Athitsos, and Gautam Das. The move-split-
merge metric for time series. IEEE transactions on Knowledge and
Data Engineering, 25(6):1425-1438, 2012.

149

Chapter 8 Par. 8.3

[231]

[232]

233]

[234]

[235]

[236]

237]

238

[239]

[240]

Christian Szegedy, Sergey loffe, Vincent Vanhoucke, and Alex Alemi.
Inception-v4, inception-resnet and the impact of residual connections
on learning. arXiv preprint arXiv:1602.07261, 2016.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew
Rabinovich. Going deeper with convolutions. In Proceedings of the
IEEFE conference on computer vision and pattern recognition, pages 1—
9, 2015.

Chang Wei Tan, Christoph Bergmeir, Francois Petitjean, and Geof-
frey I Webb. Time series regression. arXiv preprint arXiv:2006.12672,
2020.

Chang Wei Tan, Francois Petitjean, Eamonn Keogh, and Geoffrey I
Webb. Time series classification for varying length series. arXiv
preprint arXiv:1910.04341, 2019.

Chang Wei Tan, Frangois Petitjean, and Geoffrey I Webb. Fastee: Fast
ensembles of elastic distances for time series classification. Data Mining
and Knowledge Discovery, 34(1):231-272, 2020.

Wensi Tang, Lu Liu, and Guodong Long. Interpretable time-series
classification on few-shot samples. arXiv preprint arXiv:2006.02031,
2020.

David MJ Tax and Robert PW Duin. Support vector data description.
Machine learning, 54(1):45-66, 2004.

[saac Triguero, Joaquin Derrac, Salvador Garcia, and Francisco Her-
rera. A taxonomy and experimental study on prototype generation
for nearest neighbor classification. IEEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications and Reviews), 42(1):86—
100, 2012.

Kwok L Tsui, Nan Chen, Qiang Zhou, Yizhen Hai, and Wenbin Wang.
Prognostics and health management: A review on data driven ap-
proaches. Mathematical Problems in Engineering, 2015, 2015.

Claudio Turchetti and Laura Falaschetti. A machine learning method
to determine intrinsic dimension of time series data. In 2017 IEEE
Global Conference on Signal and Information Processing (GlobalSIP),
pages 303-307. IEEE, 2017.

150

Chapter 8 Par. 8.3

[241]

[242]

[243]

[244]

[245]

[246]

[247]

[248]

[249]

[250]

Arijit Ukil, Soma Bandyoapdhyay, Chetanya Puri, and Arpan Pal.
Iot healthcare analytics: The importance of anomaly detection. In
2016 IEEE 30th International Conference on Advanced Information
Networking and Applications (AINA), pages 994-997. IEEE, 2016.

Lev V Utkin, Vladimir S Zaborovsky, Alexey A Lukashin, Sergey G
Popov, and Anna V Podolskaja. A siamese autoencoder preserving
distances for anomaly detection in multi-robot systems. In 2017 In-

ternational Conference on Control, Artificial Intelligence, Robotics &
Optimization (ICCAIRO), pages 39-44. IEEE, 2017.

Merijn Van Erp, Louis Vuurpijl, and Lambert Schomaker. An overview
and comparison of voting methods for pattern recognition. In Pro-
ceedings Fighth International Workshop on Frontiers in Handwriting
Recognition, pages 195-200. IEEE, 2002.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, L.ukasz Kaiser, and Illia Polosukhin. Attention

is all you need. In Advances in neural information processing systems,
pages 5998-6008, 2017.

Cédric Villani. Topics in optimal transportation. American Mathemat-
ical Soc., 2003.

Marco Virgolin, Tanja Alderliesten, and Peter AN Bosman. On explain-
ing machine learning models by evolving crucial and compact features.
Swarm and Evolutionary Computation, 53:100640, 2020.

Haishuai Wang, Qin Zhang, Jia Wu, Shirui Pan, and Yixin Chen. Time
series feature learning with labeled and unlabeled data. Pattern Recog-
nition, 89:55-66, 2019.

Jiang Wang, Zicheng Liu, Ying Wu, and Junsong Yuan. Learning
actionlet ensemble for 3d human action recognition. IEEFE transactions
on pattern analysis and machine intelligence, 36(5):914-927, 2013.

Siqi Wang, Qiang Liu, En Zhu, Fatih Porikli, and Jianping Yin. Hy-
perparameter selection of one-class support vector machine by self-
adaptive data shifting. Pattern Recognition, 74:198-211, 2018.

Xiaoyue Wang, Abdullah Mueen, Hui Ding, Goce Trajcevski, Peter
Scheuermann, and Eamonn Keogh. Experimental comparison of rep-
resentation methods and distance measures for time series data. Data
Mining and Knowledge Discovery, 26(2):275-309, 2013.

151

Chapter 8 Par. 8.3

[251]

[252]

253

[254]

[255]

[256]

[257]

[258]

259

260]

Zhiguang Wang, Weizhong Yan, and Tim Oates. Time series classifi-
cation from scratch with deep neural networks: A strong baseline. In
2017 International joint conference on neural networks (IJCNN), pages
1578-1585. IEEE, 2017.

James Wayman, Anil Jain, Davide Maltoni, and Dario Maio. An in-
troduction to biometric authentication systems. Biometric Systems,
pages 1-20, 2005.

Kilian @ Weinberger and Lawrence K Saul. Distance metric learning
for large margin nearest neighbor classification. Journal of Machine
Learning Research, 10(2), 2009.

Frank Wilcoxon. Individual comparisons by ranking methods. Biomet-
rics bulletin, 1(6):80-83, 1945.

Seunghye J Wilson. Data representation for time series data mining:
time domain approaches. Wiley Interdisciplinary Reviews: Computa-
tional Statistics, 9(1), 2017.

Akihiro Yamaguchi and Takeichiro Nishikawa. Oclts: One-class learn-
ing time-series shapelets. International Journal of Data Mining Sci-
ence, 1(1):24-32, 2019.

Shanchao Yang, Jing Liu, Kai Wu, and Mingming Li. Learn to generate
time series conditioned graphs with generative adversarial nets. arXiv
preprint arXiv:2003.01436, 2020.

Lexiang Ye and Eamonn Keogh. Time series shapelets: a novel tech-
nique that allows accurate, interpretable and fast classification. Data
mining and knowledge discovery, 22(1-2):149-182, 2011.

Chin-Chia Michael Yeh, Yan Zhu, Liudmila Ulanova, Nurjahan Begum,
Yifei Ding, Hoang Anh Dau, Diego Furtado Silva, Abdullah Mueen,
and Eamonn Keogh. Matrix profile i: all pairs similarity joins for time
series: a unifying view that includes motifs, discords and shapelets. In
Data Mining (ICDM), 2016 IEEE 16th International Conference on,
pages 1317-1322. IEEE, 2016.

Chin-Chia Michael Yeh, Yan Zhu, Liudmila Ulanova, Nurjahan Begum,
Yifei Ding, Hoang Anh Dau, Zachary Zimmerman, Diego Furtado Silva,
Abdullah Mueen, and Eamonn Keogh. Time series joins, motifs, dis-
cords and shapelets: a unifying view that exploits the matrix profile.
Data Mining and Knowledge Discovery, 32(1):83-123, 2018.

152

Chapter 8 Par. 8.3

[261] Yi Zheng, Qi Liu, Enhong Chen, J Leon Zhao, Liang He, and Guangyi
Lv. Convolutional nonlinear neighbourhood components analysis for
time series classification. In Pacific-Asia Conference on Knowledge
Discovery and Data Mining, pages 534-546. Springer, 2015.

153

	Statement of Original Authorship
	Abstract
	Acknowledgements
	Publications Arising
	List of Figures
	List of Tables
	I Background
	Introduction
	Why is this Research Important?
	One-Class Classification
	Time Series Representations
	Scientific Contributions

	Related Work
	Time Series Mining
	Time Series Classification
	Intra-Class Variance
	One-Class Classification
	Anomaly Detection

	Instance-Based Classification
	Neural Networks-Based Classification

	Feature-Based Classification
	Dissimilarity-Based Representations
	Evolutionary Computation Techniques

	Problem Statement and Experimental Design
	Main Concepts
	Experimental Data
	The UCR/UEA Archive
	Accelerometer Data
	One-Class Labelling

	Classifiers
	Performance Evaluation
	Dissimilarity Measures
	Implementation Details

	II Experimental Research
	Dissimilarity-Based Representations
	Proposed Method
	Overview
	Prototype Methods

	Results
	Overview
	Dissimilarity Measures and Prototype Methods
	Dimensionality Reduction
	Visual Exploration of Time Series Data-Sets

	Conclusions

	Feature-Based Representations via Grammatical Evolution
	Proposed Method
	Overview
	Grammatical Evolution
	Grammar and Primitives
	Fitness Evaluation

	Benchmark Methods
	Random Search
	1NN with DTW
	Function and Sub-Sequence Selection

	Experimental Design
	Experimental Data
	GE Configuration
	Implementation Details

	Results
	Overview
	Subject Authentication
	Limitations

	Feature-extractors and Interpretability
	The Features to Extract
	The Sub-sequences from which to Extract

	Conclusions

	Auto-Encoder-Based Representations
	Proposed Method
	Overview
	Neural Network Architectures

	Experimental Design
	Dissimilarity Measures
	Classification Framework and Data-Sets
	Benchmark Methods
	Implementation Details

	Results
	Overview
	Learned DTW
	Visual Exploration of Time Series Data-Sets

	Conclusions

	Comparing the Representations
	Comparing Representations
	Results

	Combining Representations
	Results

	More Benchmark Methods
	Results

	Conclusions

	III Conclusions
	Conclusions
	Scientific Contributions
	Limitations
	Future Work

	Bibliography

