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ABSTRACT
Grammar-based Genetic Programming systems are capa-
ble of generating identical phenotypic solutions, either by
creating repeated genotypic representations, or from dis-
tinct genotypes, through their many-to-one mapping pro-
cess. Furthermore, their initialisation process can generate a
high number of duplicate individuals, while traditional vari-
ation and replacement operators can permit multiple indi-
viduals to percolate through generations unchanged. This
can lead to a high number of phenotypically identical in-
dividuals within a population. This study investigates the
frequency and effect of such duplicate individuals on a suite
of benchmark problems. Both Grammatical Evolution and
the CFG-GP systems are examined. Experimental evidence
suggests that these useless evaluations can be instead be
used either to speed-up the evolutionary process, or to de-
lay convergence.

CCS Concepts
•Mathematics of computing → Evolutionary algo-
rithms; •Computing methodologies → Genetic pro-
gramming;

Keywords
Genetic Programming; Fitness evaluation; Speedup tech-
nique; Running time analysis

1. INTRODUCTION
Evolutionary algorithms rely on populations of candidate

solutions to probe the search space, but also on a conver-
gence process to focus the search in promising areas. De-
pending on their rate of convergence, this can result in com-
bination and variation operators generating similar solu-
tions, with an associated probability of generating previ-
ously seen solutions.

This is particularly the case for Genetic Programming
(GP) [12] systems. As the solutions generated are combi-
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nations of symbols that obey a pre-defined syntax, the solu-
tion space is discrete in nature (albeit potentially very large
or even infinite). Thus, without any mechanisms in place,
previously evaluated solutions can reappear. Depending on
the problem being solved, the associated cost of evaluating
candidate solutions (time and/or other resources) might be
a cost worth minimising.

In the Grammatical Evolution system (GE) [19], this ef-
fect can be even more pronounced. GE typically explores
a linear representation of integers, which are mapped into
syntax-respecting solutions through the use of a grammar,
by mapping integers to the number of choices associated
with grammatical symbols. This means that multiple inte-
gers can map to the same grammar choices, thus giving rise
to a many-to-one mapping process, and the exploration of
neutral landscapes [2].

This is also the case with Context-Free Grammar GP
(CFG-GP) [25], to a lesser extent. The CFG-GP approach
evolves derivation-tree structures, created using a grammar.
Depending on the grammar, several different derivation trees
result in the same phenotypic solution, thus employing a
many-to-one mapping process as well.

In this study, both GE and CFG-GP are examined with
respect to their propensity to generate repeated solutions.
A series of symbolic regression experiments were run to test
several approaches to manage repetition. The results show
that detection of repeated solutions can provide a substan-
tial reduction in fitness evaluations, without an adverse ef-
fect in algorithm performance.

This paper is structured as follows. Section 2 gives an
overview of the literature in the area. Section 3 presents
the repetition-avoidance approaches used in this study. Sec-
tion 4 provides details of datasets used, global as well as
specific setups for both systems, grammar design, and re-
initialisation approaches. The results obtained from all ex-
periments are discussed in Section 5, and finally Section 6
draws conclusions and recommendations for future work.

2. RELATED WORK
Tabu Search (TS) is a local search technique devised by

Glover [5]. It generates a neighbourhood around solutions
consisting of other solutions created using a single step of a
variation operator. From a neighbourhood around a gener-
ator, the best solution not yet in a fixed-length tabu list t is
chosen as the new generator, and the previous generator is
appended to t. Measures have to be taken if all neighbours
of the current generator are already listed in t.

There have been many studies combining a Genetic Al-
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gorithm (GA) with TS. Glover et al. [6] devised the Scat-
ter Search approach, combining the global search provided
by GAs with the local search capabilities of TS. Miller and
Thomson [14] combined a Genetic Algorithm with Tabu
Search to restrict evaluations of an expensive fitness func-
tion, while also avoiding the over-exploitation of confined
search neighbourhoods. Many other studies have combined
GAs with TS, mostly as a local search heuristic; Ting et
al. [23] give a substantial overview.

TS is harder to combine with GP, although Balicki de-
signed a method called Tabu Programming [1], combining
GP and TS by using a short term memory of previously
generated solutions, to avoid revisiting the most recently
evaluated solutions. This is achieved by modifying the stan-
dard GP operators, allowing the creation of neighbourhoods
of possible steps around solutions.

Most efforts for dealing with repeated solutions (or part of
solutions) in the GP community seem to be addressed as im-
plementation details, and these are detected with the aim to
shorten evaluation time, without affecting the evolutionary
cycle. Perhaps the largest body of research in this area has
been with Subtree caching for GP: Keijzer [11] gives an ex-
cellent overview of its implementation, along with other GP
implementation techniques for speedup such as vectorised
evaluation. Other studies include that of Wong [27], who
combined subtree caching with algebraic equivalence hash-
ing, showing significant reduction in CPU time required,
without statistically affecting the performance of GP. More
recently, Langdon et al. [13] used unlimited tabu lists both
at genotypic (syntax tree) and phenotypic (conditional ex-
ecution of code) level, to substantially reduce compilation
and execution time when improving software. Finally, other
GP representations such as Cartesian GP have also been
analysed in terms of repeated evaluation avoidance [7].

There are a few studies to address the issue of repeated so-
lutions with GE. Ryan and Azad [21] highlighted the propen-
sity of GE towards generating repeated solutions when using
random initialisation of the initial population, and proposed
a Sensible Initialisation approach, based on GP’s ramped
half-and-half [12]. Harper [8] further studied the distribu-
tion of tree depths resulting from both random and ramped
half-and-half initialisation in GE, highlighting the high prob-
abilities of repetition. Finally, Hemberg et al. [9] combined
GE and an NSGA-II, and used a tabu list containing all pre-
viously evaluated individuals, with the aim to both restrict
the re-evaluation of repeated solutions, and also to better
explore the resulting pareto front.

3. MANAGING REPETITION
Given the propensity for these systems to generate re-

peated individuals, it makes sense to reduce the (wasted)
CPU time required to reevaluate those repeated candidates.
This is particularly the case for time-consuming fitness func-
tions, such as regression of very large datasets, compilation
of code, or use of complex simulation environments.

In this study, only full syntactically equivalent repeated
solutions are examined (e.g. sub-tree equivalence or code
simplification is not used); this is in order to keep the ap-
proach as general as possible. Note that most of the findings
in this study are applicable to tree-based GP as well.

A total of four approaches were examined; each of these
was used with both GE and CFG-GP.

3.1 No tabu list (control scenario)
This setup is used as a control scenario. Duplicate indi-

viduals are not treated differently, and are monitored purely
to observe the total number of occurrences across a run.

3.2 Tabu list fitness lookup
This setup uses a typical tabu or lookup list, as often seen

in the literature. Every time a solution is generated, the
tabu list is checked: if it is not present, it is added, along
with its measured fitness; if it is already present, the pre-
recorded fitness is used instead of full fitness evaluation.

This approach preserves the population dynamics of the
original versions of both systems, and thus their conver-
gence rates, while considerably reducing the number of fit-
ness function calls.

3.3 Tabu list as penalty list
This setup also employs a tabu list, but instead of being

used to lookup a corresponding fitness value, it is used to
penalise repeated solutions. New candidate solutions which
already exist in the tabu list are assigned the worst possible
fitness (otherwise they are added to the list).

Although repeated solutions are heavily penalised, they
remain in the population (albeit with a very poor fitness).
Therefore, they still have a small chance of being selected,
particularly when smaller tournament sizes are employed.
Depending on the evolutionary setup, this can lead to a lower
number of fitness evaluations, and/or further exploration of
the search space.

3.4 Tabu list as forbidden list
This final setup also employs a tabu list, but it is used to

prevent repeated solutions entering the evolutionary cycle.
If a solution is found in the list, it is dropped from the popu-
lation, and the algorithm’s initialisation process (detailed in
Section 4) is repeatedly used to create a replacement, until
a previously unseen solution candidate is generated.

This is the only approach that re-uses the initialisation
process during the run, and aims at maximising the diver-
sity of candidate solutions evaluated. It substantially affects
the convergence rate of the base systems, and continuously
inserts newly generated solutions into the population.

4. EXPERIMENTAL SETUP
In order to test these approaches, both GE and CFG-

GP were applied to three recommended symbolic regression
benchmarks [26]:

• Keijzer-6 [10]: y =
∑

i x
1
i
;

• Vladislavleva-4 [24]: y = 10
5+

∑5
i=1(xi−3)2

;

• Dow Chemical dataset [3].

Both the Keijzer-6 (K6) and Vladislavleva-4 (V4) prob-
lems were chosen as they required both interpolation and
extrapolation of their training set variable range, and ex-
hibit no erratic response distribution in those ranges [17]:
K6 is a relatively easy problem with a single input vari-
able, while V4 is a harder problem, with 5 input variables.
The Dow Chemical Dataset (Dow) is a high-dimensionality
dataset (57 predictors), and was used for the EvoCompeti-
tions event at the EvoStar 2010 conference. All these prob-
lems were attempted using the recommended training and
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Table 1: Experimental Setup

GE CFG-GP Parameter Value

x x Population Size 500
x x Generations 50
x x Max. Evaluations 25000
x x Initialisation Sensible
x x Initialisation Max. Depth 10

x Global Depth Limit 20
x Initialisation Tails 0.5× l
x x Tournament Size 1%
x x Crossover prob. 50%
x x Wrapping OFF
x Integer mutation prob. 1.0/l

x CFG-GP mutation Subtree
x x Elitism 1%

test sets, but with a common function set, detailed in Sec-
tion 4.3 (protected operators were used when required).

Experimental parameters are given in Table 4, with spe-
cific system setups detailed in Sections 4.1 (GE) and 4.2
(CFG-GP). As the number of fitness evaluations at the 50th

generation is smaller when repeat detection is in place, ex-
periments were allowed to keep running until 25000 fitness
evaluations (500 × 50) were reached. Results are reported
both at the end of generation 50, and after 25000 evaluations
were performed.

4.1 Grammatical Evolution
GE was setup in a standard manner, with some modifica-

tions (seen in many studies in recent literature):

• An integer-string is used as the genotype;

• Integer-mutation is employed;

• Random integer tails are appended to genotype strings
at initialisation [18];

• Genetic operators are applied only to the used portions
of the genotype1;

• Non-mapping solutions are assigned worst fitness.

Note that no maximum size control was used for the so-
lutions generated by GE.

4.2 CFG-GP
CFG-GP was setup identically to the GE implementation

described above, but with all operations being performed on
derivation tree structures rather than linear genomes:

• Standard GP-style subtree mutation is employed [12]
whereby a randomly selected subtree is replaced by a
new randomly generated subtree from the same root
node. Mutated subtrees can have any depth up to a
maximum overall tree depth of 20.

• Subtrees are selected at their root non-terminal value.
This means that both standard subtree mutation and
leaf mutation (whereby a single terminal is replaced
with a new randomly selected terminal with the same
root non-terminal) are possible.

1The whole linear genotype string may not have been used
during the mapping process.

• All individuals are guaranteed a single subtree muta-
tion event.

• Depth limits are imposed in subtree crossover by only
crossing over subtrees such that newly generated indi-
viduals will not exceed the depth limit.

4.3 Grammars
Grammar-based evolutionary algorithms are susceptible

to poor performance if a combination of bad initialisation
and poorly designed grammars are used [8, 15]. Historically,
random initialisation has been a preferred method in many
implementations of GE [4, 19, 21], despite its associated
downfalls. The example grammar in Figure 1 illustrates
this. Since there are only two production choices for the
start rule, an average of 50% of all individuals in the first
generation will be either x1 (25%) or x2 (25%), leading to a
very large rate of repeated solutions in the initial population.

<e> ::= <o> <e> <e> | <v>

<v> ::= x1 | x2

<o> ::= + | - | * | /

Figure 1: Trivial example grammar.

The use of ramped half-half (sometimes called sensible ini-
tialisation when applied to GE [21]) improves this situation
by generating a variety of trees from a range of given depths
[20]. However, depending on the size of the initial popu-
lation and the ramping range, a large number of duplicate
individuals can still be generated at initialisation.

With the use of variation operators, there is again a high
chance of duplication occurring. Taking once again the ex-
ample grammar, a genetic operation that replaces the pro-
duction <o> <e> <e> with <v> reduces the resulting pheno-
type to either x1 or x2, regardless of the size of the origi-
nal solution, thus increasing the likelihood of generating re-
peated solutions. This is particularly the case with mutation
on GE’s linear representation.

Figure 2 shows the grammar used for the K6 experiments;
it was designed to minimise biases [15], minimise the num-
ber of non-terminal symbols (to reduce the crossover ripple-
effect in linear GE [16]), and to be balanced in the sense
of choice of producing vs. consuming rules [22, 8]. Gram-
mars for all three problems were designed in this way, using
the same operators and functions, but with obvious differ-
ences in the number of predictors (x1..x5 for V4, x1..x57
for Dow), and with corresponding adapted number of arith-
metic operator choices, to re-balance biases.

<e> ::= + <e> <e> | - <e> <e>

| * <e> <e> | / <e> <e>

| sqrt <e> | sin <e> | tanh <e>

| exp <e> | log <e>

| x1 | x1

| <c><c>.<c><c> | <c><c>.<c><c>

<c> ::= 0 | 1 | 2 | 3 | 4

| 5 | 6 | 7 | 8 | 9

Figure 2: Grammar for K6 experiments.
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Table 2: Generalisation (test fitness) results, Linear GE

Baseline Lookup Penalty ReInit
Fitness Final Fitness Final

@ Gen 50 Fitness @ Gen 50 Fitness

K6
0.0024 0.0024 0.0050 0.0026 0.0029 0.0162
±0.0085 ±0.0085 ±0.0228 ±0.0098 ±0.0139 ±0.1167

V4
0.0480 0.0480 0.0696 0.0431 0.0435 0.0452
±0.0296 ±0.0296 ±0.1840 ±0.0081 ±0.0128 ±0.0182

Dow
0.1089 0.1089 0.1044 0.1113 0.1033 0.1089
±0.0085 ±0.0085 ±0.0257 ±0.0395 ±0.0078 ±0.0166

Table 3: Generalisation (test fitness) results, CFG-GP

Baseline Lookup Penalty ReInit
Fitness Final Fitness Final

@ Gen 50 Fitness @ Gen 50 Fitness

K6
0.0065 0.0065 0.0069 0.0060 0.0059 0.0157
± 0.0208 ± 0.0208 ± 0.0232 ± 0.0327 ± 0.0356 ± 0.0828

V4
0.0433 0.0433 0.04325 0.0441 0.0430 0.0593
± 0.0105 ± 0.0105 ± 0.0114 ± 0.0083 ± 0.0079 ± 0.0832

Dow
0.1124 0.1124 0.1103 0.1081 0.1056 0.1115
± 0.0056 ± 0.0056 ± 0.0060 ± 0.0073 ± 0.0097 ± 0.0062

4.4 Re-initialisation of individuals
The repetition management approach described in Section

3.4 does not allow repeated individuals to undergo the effect
of genetic operators, and instead replaces them with newly
re-initialised solutions. A number of options are available
for re-initialising discarded individuals:

1. Re-initialise using full method;

2. Re-initialise using grow method, to the same depth as
the solution to replace;

3. Re-initialise using grow method, up to and including
a specified maximum depth.

The first of these options seems to be the least desirable.
Bloat is a well-document issue within the GP community
[20]. Generally speaking, the longer a typical GP system
runs, the more likely it is to produce increasingly large indi-
viduals. Since the full initialisation method creates individ-
uals where all branches in the derivation tree are at the same
depth [20], a discarded individual with one deep node would
be replaced with an extremely dense tree. The net effect of
this would be to promote bloat in the overall system.

The second option can also be troublesome. Consider
again the example grammar in Figure 1. The minimum
derivation tree depth of this grammar is 2, with 2 possible
outcomes at that depth (x1 or x2). At a depth of 3, <o> <e>

<e> maps to <o> <v> <v>, thus the total number of possible
combinations is only 4 × 2 × 2 = 16. Even at depth 4, the
total number of distinct possible expressions is only 1280.

In a typically setup evolutionary run (particularly using
ramped-half-and-half initialisation), it is reasonable to ex-
pect that the majority of solutions will be generated using
small derivation trees. Hence, when replacing a repeated
phenotype of a small depth, there might be few or no pos-
sible solutions of the same depth to replace it with (which
have not yet been generated).

The third and final option therefore seems far safer, and
consists of re-initialising discarded repeated individuals by
randomly generating a tree up to a specified maximum depth.
Provided the grammar contains a recursive element, and
provided the maximum depth is not trivially low, this should
return a non-repeated solution in most instances.

5. RESULTS AND DISCUSSION
All four tabu list approaches (baseline, fitness lookup, fit-

ness penalty and re-initialisation) were used with both GE
and CFG-GP, and applied to all three datasets. Tables 2
(GE) and 3 (CFG-GP) show the mean test fitness results
of the best final individuals, averaged across 100 indepen-
dent runs (fitness is minimised). Since the Lookup and
Penalty experiments required a higher number of genera-
tions to reach the total number of 25000 fitness evaluations,
results are shown at both generation 50 and after 25000 total
evaluations.

The results are quite similar between both systems, and
indeed similar between the different approaches. This is very
interesting, given that the Lookup and Penalty approaches
evaluate far less individuals when reaching generation 50.
There is evidence of slight over-fitting in certain experi-
ments, between the results obtained at generation 50 and

768



after 25000 evaluations (note that no overfit preventing ap-
proach was used); this makes it hard to draw conclusions
on the relative fitness performance of all systems and ap-
proaches, and the results obtained are used mainly as a
measure of similarity between all approaches.

The number of repeats and runtimes for all systems were
also monitored, and are shown in Tables 4 (GE) and 5 (CFG-
GP). These results show the large amount of repeated so-
lutions generated by both systems, with some approaches
generating close to 50% repeated solutions for GE, and over
65% repeated solutions for CFG-GP (a result of the ten-
dency of the grow initialisation method to create smaller
derivation tree structures, as discussed in Section 4.4).

These tables also show the runtime of each experiment
(averaged across all 100 runs for each setup); the baseline
average runtimes were used as the reference value, for each
system. These results show the trade-off of keeping a very
large list of previously encountered solutions. The associ-
ated memory and lookup time cost, for some setups, is larger
than the cost of re-evaluating repeated solutions. Note how-
ever that the datasets used are quite small (training set sizes
of 50, 1024 and 747 samples for K6, V4 and Dow, respec-
tively), which combined with vectorised evaluation [11], re-
sulted in extremely fast evaluation times2. With much larger
datasets, or other expensive fitness functions (such as com-
plex simulations or even physical evaluations), one would
expect to achieve a much better trade-off.

Also note that the different results obtained with GE and
CFG-GP are due to the different representations and oper-
ators used. For example, the Lookup approach is relatively
faster with linear GE than with CFG-GP, when compared
to their corresponding baselines; this is because fitness eval-
uation is relatively slower in GE (where management of lin-
ear structures is very fast), whereas it is relatively faster in
CFG-GP (where handling derivation-tree structures results
in slower combination/variation time). Likewise, the Reinit
approach is relatively slower with linear GE than CFG-GP;
this is because initialisation is a derivation-tree based tech-
nique, which is relatively expensive in GE (where all other
operations are linear and hence very fast), and relatively
very fast in CFG-GP (where all operators are derivation-
tree based).

Finally, more effective caching and lookup algorithms can
be used [11], to speedup the list-management process.

Figure 3 shows the average number of repeated solutions
present in each generation, and the average solution size, for
the V4 experiment (results for the K6 and Dow experiments
were similar). Size is meant as the number of used codons
in GE, and the number of derivation tree nodes associated
with production choices for CFG-GP (which are identical
measures). Results for the Lookup setup are not shown, as
they are identical to Baseline up to generation 50.

This figure again shows the effect that the two different ap-
proaches (linear genotypes for GE, derivation-trees for CFG-
GP) can have. The number of repeats in GE shows a sharp
increase in the first few generations, a result of both the
large number of repeats from its initialisation process, and
also the ripple effect of crossover, when applied to widely dif-
ferent solutions (successful mapping events are more likely
to generate smaller individuals). As exploitation of solu-

2100 runs of baseline linear GE for the K6 experiments took
101.24s, on a single core of a 4GHz Intel Core i7 processor.

tions begins, with an associated growth in solution size, the
number of generated repeated solutions slowly declines.

Note as well the effect of repeat management in solution
size. As smaller solutions are very common in linear GE, and
are more likely to be repeats, they are more likely to be re-
moved from the population with the Penalty and Reinit ap-
proaches, leading to a corresponding increase in average so-
lution size, particularly towards the later generations. This
also partly explains the unexpectedly high relative runtime
of these approaches with GE, as seen in Table 4 (longer so-
lutions are slower to evaluate).

The results obtained with CFG-GP show substantially dif-
ferent repeat/size dynamics. The number of repeat indi-
viduals rises sharply across the first few generations, while
the size of individuals (measured as the number of terminal
nodes in the tree) continues to rise throughout the evolu-
tionary run (with the exception of the Penalty approach for
V4 where size variation is small over time). This indicates
a very low number of repeats in the initial population, in-
creasing to a near-stable level as search progresses. Note
however that the range of both repeated solution numbers
and size of solutions is similar for both systems.

6. CONCLUSIONS & FUTURE WORK
Re-evaluation of repeated solutions is a costly business,

particularly with slow and/or expensive fitness evaluations;
these include large datasets, but also complex computer sim-
ulations, expensive real-world experimentation, and even
interactive fitness evaluation. Two of the most common
grammar-based GP systems, GE and CFG-GP, are particu-
larly prone to produce repeated solutions due to a complex
combination of grammar-design, representation, genetic op-
erators, and mapping-process.

This paper introduced three approaches to eliminate the
re-evaluation of repeated solutions, for both GE and CFG-
GP, all based on an endless tabu list of previously evaluated
solutions. The results obtained show the use of the Lookup
and Penalty approaches produce comparable results to their
baseline systems, while executing far less fitness evaluations.

There are plenty of possible future work avenues. The ap-
proaches presented make use of an infinite tabu list; it would
be interesting to use a finite list, with smarter methods of
both solution lookup, and of removing solutions from the
list, once they have not been encountered for a long time;
this would reduce the computational overhead and memory
requirements of repeat detection.

The Reinit in particular could be vastly improved. Rather
than re-creating random solutions, it could sample solutions
around the repeated individual, either by small mutations
or indeed with a deterministic process (guided by the tabu
list), in order to create a similar solution yet unseen.

The Penalty approach could also be improved. Assigning
a worst fitness value to repeated solutions is an extreme ap-
proach, and in the case of linear GE, effectively gives these
solutions the same fitness as non-mapping solutions. A bet-
ter approach might be gradually increasing penalties for re-
peated solutions.

The list used in this study is only concerned with pheno-
type solutions. Yet there are many other levels where such
a list could potentially be applied: genotypic level for linear
GE, and indeed semantic level for both approaches.

Finally, a comprehensive study of population size and
dataset size vs. effectiveness of repeat detection should be
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Table 4: Repeats and full system runtimes, linear GE

Experiment
Total Total % Avg. runtime

individuals repeats repeats @ Gen 50 Final

K6

Baseline 2,500,000 1,122,630 44.91% 100% 100%
Lookup 4,367,000 1,887,727 43.23% 74.98% 215.49%
Penalty 4,048,500 1,562,002 38.58% 76.53% 195.04%
Reinit 2,500,000 944,451 37.78% 156.62% 156.62%

V4

Baseline 2,500,000 1,150,794 46.03% 100% 100%
Lookup 4,376,000 1,903,558 43.50% 65.97% 208.78%
Penalty 4,067,500 1,585,459 38.38% 79.91% 206.73%
Reinit 2,500,000 980,736 39.23% 150.67% 150.67%

Dow

Baseline 2,500,000 1,172,004 46.88% 100% 100%
Lookup 4,632,500 2,145,514 46.31% 74.19% 192.09%
Penalty 4,310,500 1,844,761 42.80% 74.03% 145.60%
Reinit 2,500,000 958,797 38.35% 340.72% 340.72%

Table 5: Repeats and full system runtimes, CFG-GP

Experiment
Total Total % Avg. runtime

individuals repeats repeats @ Gen 50 Final

K6

Baseline 2,500,000 1,035,230 41.41% 100% 100%
Lookup 4,433,500 1,951,446 43.27% 102.32% 192.29%
Penalty 3,884,000 1,368,036 35.22% 66.51% 106.13%
Reinit 2,500,000 1,253,537 50.14% 82.73% 82.73%

V4

Baseline 2,500,000 1,199,971 48.0% 100% 100%
Lookup 5,115,500 2,603,631 50.9% 98.9% 223.3%
Penalty 4,255,000 1,740,174 40.9% 56.6% 98.06%
Reinit 2,500,000 1,645,270 65.81% 73.71% 73.71%

Dow

Baseline 2,500,000 876,812 35.07% 100% 100%
Lookup 3,976,500 1,461,153 36.74% 100.81% 163.43%
Penalty 3,694,500 1,176,643 31.85% 75.37% 112.73%
Reinit 2,500,000 1,035,056 41.40% 92.95% 92.95%

performed, so as to detect the tipping point where these
techniques do indeed improve the overall runtime. Such a
study should be performed across a much wider range of
problems.

Acknowledgments
This research is based upon works supported by the Science
Foundation Ireland under grant 13/IA/1850.

7. REFERENCES
[1] J. Balicki. Tabu programming for multiobjective

optimization problems. IJCSNS International Journal
of Computer Science and Network Security,
7(10):44–51, October 2007.

[2] W. Banzhaf. Genotype-phenotype-mapping and
neutral variation – A case study in genetic
programming. In Y. Davidor, H.-P. Schwefel, and
R. Männer, editors, Parallel Problem Solving from
Nature - PPSN III, volume 866 of LNCS, pages
322–332. Springer-Verlag, 1994.

[3] C. D. Chio, S. Cagnoni, C. Cotta, M. Ebner, A. Ekart,
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Results averaged across 100 independent runs.
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