
Program Synthesis in a Continuous Space
Using Grammars and Variational

Autoencoders

David Lynch1(B), James McDermott2(B), and Michael O’Neill1(B)

1 Natural Computing Research and Applications Group, UCD, Dublin, Ireland
{david.lynch,m.oneill}@ucd.ie

2 School of Computer Science, National University of Ireland, Galway, Ireland
james.mcdermott@nuigalway.ie

Abstract. An important but elusive goal of computer scientists is the
automatic creation of computer programs given only input and output
examples. We present a novel approach to program synthesis based on
the combination of grammars, generative neural models, and evolutionary
algorithms. Programs are described by sequences of productions sampled
from a Backus-Naur form grammar. A sequence-to-sequence Variational
Autoencoder (VAE) is trained to embed randomly sampled programs in a
continuous space – the VAE’s encoder maps a sequence of productions (a
program) to a point z in the latent space, and the VAE’s decoder recon-
structs the program given z. After the VAE has converged, we can engage
the decoder as a generativemodel thatmaps locations in the latent space to
executable programs. Hence, an Evolutionary Algorithm can be employed
to search for a vector z (and its corresponding program) that solves the syn-
thesis task. Experiments on the program synthesis benchmark suite sug-
gest that the proposed approach is competitive with tree-based GP and
PushGP. Crucially, code can be synthesised in any programming language.

1 Introduction

The automatic generation of computer programs has been a goal of researchers
in the field of computer science since the origins of the discipline [34]. There
are reports of primitive program synthesis in the literature dating back to the
1950’s [11,12] with many examples since [13,30,36,37]. The arrival of Genetic
Programming and its variants in the late 1980’s renewed hopes that programs
could be automatically generated by computers. In recent years, researchers in
the wider machine learning community have also started to focus on program
synthesis [1,14,16,22]. This interest is driven by the expectation that real-world
applications of automated program synthesis will have enormous economic and
social impact, and will also have important implications for artificial general
intelligence [4].

The ability to automatically synthesise programs that solve challenging
real-world problems remains an elusive goal. Reasons include the discrete and
variable-length nature of computer programs, the non-local mapping between

c© Springer Nature Switzerland AG 2020
T. Bäck et al. (Eds.): PPSN 2020, LNCS 12270, pp. 33–47, 2020.
https://doi.org/10.1007/978-3-030-58115-2_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58115-2_3&domain=pdf
https://doi.org/10.1007/978-3-030-58115-2_3

34 D. Lynch et al.

syntax and semantics, the “all or nothing” aspect of program correctness, and
the vast search space.

Genetic Programming (GP) [2,25,35], and its grammar-based variants [29,
33], is a form of evolutionary computation [5,21] which can be used for program
synthesis. GP routinely achieves human-competitive performance [24] in diverse
domains including symbolic regression, architecture, and network optimisation.
However, GP has yet to realise its full potential as an engine for automatic
programming.

Recently, GP researchers have been calling for an increased focus on pro-
gram synthesis that embraces techniques drawn from the wider fields of analytics
and machine learning [32,34]. One promising research direction looks to combine
grammars with autoencoders [20,23]. For instance, Kusner et al. [28] used a com-
bination of grammars and a Variational Autoencoder (VAE) [23] to learn repre-
sentations for two domains: symbolic regression and drug discovery. The VAE dis-
covers a latent-space encoding of the neighbourhood of sentences in the language
expressed by the grammar. The learned representation has appealing properties:
it is continuous, approximately normally-distributed, and relatively syntactically
and semantically smooth. Thus, powerful numerical optimisation algorithms can
be employed to search for new arithmetic expressions or drug molecules.

In this study, we adopt a VAE with a sequence-to-sequence structure, in
conjunction with grammars that represent a subset of the Python programming
language. The VAE discovers a latent-space encoding of Python programs. An
Evolutionary Algorithm [5] is used to successfully search this representation for
novel programs. We examine a subset of problems with a range of difficulty
drawn from the program synthesis benchmark suite [18].

The remainder of this paper is organised as follows. The grammars, VAE,
and evolutionary algorithms are developed in Sect. 2. Our experimental set-up is
described in Sect. 3. The proposed approach is benchmarked against canonical
grammar-based GP and PushGP [39] in Sect. 4. Finally, we draw conclusions
and outline how the algorithms could be improved in Sect. 5.

2 Methods

The main components of our approach are described in this section. Grammars
that enable the creation of Python code to solve arbitrary program synthesis
tasks are outlined. Our goal is to learn a latent representation of programs using
a Variational Autoencoder (VAE). The VAE architecture is presented, and an
Evolutionary Algorithm (EA) is developed to search its latent space.

2.1 Grammar Design Pattern

Grammars have commonly been used to represent program spaces in GP [29,33].
However, bespoke grammars had to be written for different program synthesis
tasks. Forstenlechner et al. introduced a grammar design pattern to address this
inflexibility [9,10]. Their idea is to create a separate grammar for the Boolean,

Program Synthesis in a Continuous Space Using Grammars 35

float, integer, and string data types (see [8]). These sub-grammars are combined
depending on what data types are required to solve a problem. An additional
grammar constrains the control flow, such as the arrangement of conditionals
and loops. Grammars guarantee type safety and they ensure that all individuals
are syntactically correct. Runtime exceptions are further reduced via protected
methods. Crucially, code can be created in any programming language including
Python, Java, C, etc. We synthesise Python code in this paper.

2.2 Variational Autoencoder

VAEs are generative neural models consisting of an encoder and a decoder. In
this section, we present an encoder that embeds discrete programs as vectors z
in a continuous latent space. The decoder maps points in this latent space back
to programs. Our goal is to search for fit programs by performing numerical
optimisation in the latent space.

Fig. 1. A toy grammar is displayed in Plot (a). The derivation tree in Plot (b) is
realised by expanding production rules 0, 2, and 5. In Plot (c), the program is given by
a sequence of one-hot vectors (including an ‘EOS’ token). Finally, each one-hot vector
is associated with a learned embedding vector in Plot (d).

Initially, a grammar for the program synthesis task is formed as outlined in
Sect. 2.1. The VAE is trained on a corpus of programs sampled from this gram-
mar. For example, consider the toy grammar and the sampled program displayed
in Fig. 1. The production rules used to generate the program are represented by
a sequence of one-hot vectors õ = (o0, o2, o5, o8). The associated embeddings
ẽ = (e0, e2, e5, e8) are then passed as inputs to the encoder.

We adopt a bidirectional [38] gated recurrent unit network [3] (BiGRU) as
the encoder. A recurrent model lends itself naturally to modelling sequences of
production rules. Furthermore, the BiGRU can deal with input sequences of an
arbitrary length (that is, programs of different sizes). The flow of information
through the encoder is illustrated in Fig. 2. A sequence of embeddings1 ẽ is
provided as an input to the BiGRU. The function

−→
G(·) is a GRU cell [3] that

1 Only (e2, e5) are displayed for clarity, but in practice (e0, e2, e5, e8) would be used.

36 D. Lynch et al.

z

Fig. 2. The encoder maps embeddings ẽ of the production rules used to generate a
program to a latent representation z.

integrates the current embedding vector ẽt with the previous forward hidden
state

−→
h t−1 to give

−→
ht . Similarly,

←−
G(·) updates the previous backward hidden

state. The hidden states emerging from the BiGRU are concatenated to yield a
summary of the program h. Hence, the latent code z is given by:

z = (Whμh + bμ) + ε (Whσh + bσ) = μ + εσ, (1)

where the weight matrices W and bias vectors b are learned parameters of the
model. Variables μ and σ are interpreted as the mean and standard deviation of a
multivariate normal distribution N (μ, σ), and ε is sampled from the multivariate
standard normal distribution N (0, 1). The auxiliary variable ε allows gradients
to flow backwards through the network [23].

Fig. 3. The decoder reconstructs the sequence of one-hot vectors õ that encode a
program given its latent representation z.

The decoder in Fig. 3 reconstructs the program given z. We implement the
decoder as a forward GRU network. The outputs are one-hot vectors or, which
indicate the predicted production rule at a given timestep. Two inputs are

Program Synthesis in a Continuous Space Using Grammars 37

provided to the GRU cell
−→
G(·) at each timestep. The first input is the pre-

vious hidden state (initialised to
−→
h0 = z). The second input is the vector ẽt−1

concatenated with z, where ẽt−1 is the embedding of the production rule from
the previous timestep (initialised to ẽ0 = e0). Utilising an autoregressive input
helps the decoder keep track of previously selected production rules.

Recall that the program in Fig. 2b is described by one-hot vectors õ =
(o0, o2, o5, o8), mediating the expansion 〈start〉 → 〈code〉 → 〈int〉 → 3 plus a
final ‘EOS’ token. A sequence of reconstructed one-hot vectors or are computed
by the decoder as follows:

– t = 0: we can set or
0 = [1, 0, 0, 0, 0, 0, 0, 0, 0] since all derivation trees have

〈start〉 at their root node.
– t = 1: the non-terminal to be expanded at t = 1 is 〈code〉. In order to

select a production rule, the GRU cell emits a hidden state h1 from which
the logit l1 = softmax (mask(Whlh1 + bl)) is computed. The logit defines a
probability distribution over production rules – a mask is applied because
〈code〉 can only be expanded using rules 1 or 2 (see Fig. 2a). Since the max-
imum value of l1 occurs at index 2, it follows that rule 2 is selected and
or
1 = [0, 0, 1, 0, 0, 0, 0, 0, 0].

– t = 2: the 〈int〉 non-terminal can be expanded using rules 3, 4, or 5. Rule 5
is selected giving or

2 = [0, 0, 0, 0, 0, 1, 0, 0, 0].
– t = 3: finally the ‘EOS’ token is reached indicating that the decoding process

has terminated, and or
3 = [0, 0, 0, 0, 0, 0, 0, 0, 1].

At test time, we disregard the encoder and engage the decoder as a generative
model to search for fit programs. A program is constructed by passing a point z
in the latent space to the decoder. Non-terminals are expanded in a depth-first
manner using the one-hot vectors (that is, production rule choices) produced by
the decoder.

VAE Loss Function: In summary, a program is described by a sequence of
one-hot vectors (production rules) õ and their corresponding embeddings ẽ. We
propose to learn a continuous latent representation of programs using a VAE.
The encoder qφ(z|ẽ) maps ẽ to a latent code z. The decoder pθ(õ|z) is a generative
model that reconstructs õ given z. Parameters φ and θ are jointly optimised via
gradient descent on the loss function:

L
(
φ, θ; õ, l̃, z

)
= LAE

(
õ, l̃

)
+ LREG(z), (2)

where LAE

(
õ, l̃

)
denotes the reconstruction loss, and LREG(z) is a regularisation

loss encouraging latent codes to be normally distributed.
The reconstruction loss is defined as the cross entropy between õ and the

logits l̃ (see Fig. 3) emitted by the decoder:

LAE

(
õ, l̃

)
= − 1

|õ|
|õ|∑
t=1

õt · loge

(
l̃t

)
.

38 D. Lynch et al.

To shape the latent space, we adopt the maximum-mean discrepancy (MMD)
regularisation loss proposed by Zhao et al. [41]:

LREG(z) = MMD(z, z′),

where z ∼ qφ(z|õ) is the latent vector produced by the encoder, and z′ is sam-
pled from a multivariate standard normal distribution. The latent space realised
by minimising Eq. 2 should exhibit two properties that enable effective search.
Firstly, programs should be densely distributed near the origin. Secondly, nearby
points should decode to syntactically similar programs (high syntactic locality).

2.3 Evolutionary Algorithms

Evolutionary Algorithm: An Evolutionary Algorithm (EA) is implemented
to search the real-valued space discovered by the VAE. Programs are represented
by real vectors considered as locations in the learned representation. Initialisa-
tion, mutation, and crossover are defined on real vectors. An initial population
is obtained by sampling 1000 individuals z from a standard normal distribution.
This initial population is evolved over 300 generations as follows.

In every generation, individuals are assigned a fitness by decoding z to give a
derivation tree (program), which is then evaluated on the program synthesis task.
Fit programs are selected using tournament selection or lexicase selection [19].
Selected individuals undergo mutation and crossover. An individual z is mutated
by adding to it a vector Δz sampled from a standard normal. Crossover is applied
to every pair of selected individuals. Elements are marked for crossover with
probability 0.1. Hence, marked elements m in parents p1 and p2 are interpolated
to yield children c1 and c2 such that:

c1m = p1m + i1 × (p2m − p1m),

c2m = p2m + i2 × (p1m − p2m),

where i1 and i2 are drawn from a uniform distribution U(0, 1). Seven elites enter
the next generation without undergoing crossover or mutation.

Hill Climbing: The EA is benchmarked against a hill climbing algorithm in
order to assess the need for population-based search. Here, a single individual
zbest is initialised and evaluated. A new hypothesis zhyp is generated by adding
a sample from a standard normal Δz to zbest . Hypotheses are evaluated over
pop size × gens = 1000×300 iterations. After every iteration, zhyp replaces zbest
if the corresponding program attains a better fitness.

Genetic Programming: The EA and hill climbing algorithm perform search
in a continuous latent space. By contrast, Grammar-based Genetic Programming
(GP) [7,29] explores the discrete space of derivation trees directly. An initial pop-
ulation of 1000 randomly generated derivation trees is formed using the ramped

Program Synthesis in a Continuous Space Using Grammars 39

half-and-half method. In every generation, individuals which are selected using
tournament selection undergo subtree mutation and crossover. Subtree mutation
replaces a randomly selected subtree with a new randomly generated subtree.
Subtree crossover swaps randomly selected subtrees (with the same root node)
between two parents. Every individual undergoes mutation, and the crossover
probability is 0.9. We use generational replacement with elitism (the elite size is
7). Derivation trees are allowed to grow to a maximum depth of 16.

3 Experimental Setup

Within the GP community, a program synthesis benchmark suite has been pro-
posed [18], composed of 29 problems which might typically be assigned as exer-
cises to beginner programming students. The problems are all specified as word
problems, with recommendations for generating correct input/output pairs and
a train/test split. They require the use of multiple data types and control struc-
tures including loops. Recent work on program synthesis has made good progress
on this suite [9,10,17,19]. In this proof of concept study we examined six prob-
lems of varying difficulty drawn from the suite: grade, last index of zero,
median, negative to zero, smallest, and vectors summed.

For each problem, VAEs were trained using training and development sets
containing 49000 and 1000 programs respectively. Programs were sequences of
production rules (encoded as one-hot vectors) sampled from a grammar. The
grammars (one per problem) were assembled based on the data types required
to solve a problem (see Sect. 2.1 and in [8]). The best VAE from ten independent
runs was combined with the EA from Sect. 2.3 to enable program discovery. The
hyperparameters displayed in Table 1 were determined by trial-and-error.

Table 1. VAE hyperparameter settings.

Epochs 100

Initial learning rate 0.01

Learning rate decay rate (per epoch) 0.95

Batch size 128

Dimensionality of the latent space 50

Dimensionality of the hidden states 50

Dimensionality of the embeddings 50

Optimisation algorithm RMSprop

Gradient clipping Norm of gradients ≤ 0.00001

Model selection based on Development set loss

The evolutionary algorithms outlined in Sect. 2.3 were deployed on six prob-
lems drawn from the benchmark suite. For a given problem, 100 independent
runs of the EA-VAE and GP algorithms were carried out. Tournament selection
was adopted in one set of runs, and lexicase selection was used in another set.
Similarly, 100 runs of the hill climbing algorithm were executed for each problem.

40 D. Lynch et al.

4 Results and Discussion

We compare the proposed algorithms for automatically synthesising Python code
in this section. Success rates are reported on the training and test sets of six
problems drawn from the benchmark suite. We illustrate how transitions between
neighbouring points in the latent space map to smooth syntactic transitions
in program space. Finally, analysis of the fitness landscape reveals why some
problems are harder for the EA-VAE to solve than others.

4.1 Success Rates

The EA-VAE and GP success rates are displayed in Table 2. Both algorithms
solve more problems when lexicase selection is used to select parents; GP solves
all six problems, while the EA-VAE discovers solutions for every problem except
grade. Neither algorithm solves vectors summed under tournament selection,
but they both find solutions under lexicase selection.

Table 2. The reported results include: the success rates (out of 100 runs) on training
and test sets, median number of production rules consumed when generating programs,
and the median generation at which solutions were discovered. Results are given under
tournament selection and lexicase selection.

Problem EA-VAE GP

Train Test Rules Gen Train Test Rules Gen

grade 0 0 89 NA 10 4 404 204

median 97 97 22 50 77 27 329 102

last index of zero 5 5 28 155 16 14 299 104

negative to zero 83 83 18 33 50 47 314 13

smallest 100 100 22 18 100 86 149 12

vectors summed 0 0 23 NA 0 0 200 NA

(a) Tournament Selection.

Problem EA-VAE GP

Train Test Rules Gen Train Test Rules Gen

grade 0 0 141 NA 85 31 362 97

median 100 100 22 24 100 49 214 14

last index of zero 2 1 46 147 33 30 267 91

negative to zero 64 64 43 69 72 68 223 21

smallest 100 100 23 12 100 89 86 4

vectors summed 7 7 69 99 20 14 270 120

(b) Lexicase Selection.

Program Synthesis in a Continuous Space Using Grammars 41

Table 3. The proposed approach is benchmarked against hill climbing (HC-VAE), tree-
based GP, and PushGP. Success rates are reported on the test sets of each problem.
Lexicase selection was used in the EA-VAE, GP, and PushGP runs. The results for
PushGP are taken from [18].

Problem EA-VAE HC-VAE GP PushGP

grade 0 0 31 4

median 100 1 49 45

last index of zero 1 0 30 21

negative to zero 64 0 68 45

smallest 100 24 89 81

vectors summed 7 0 14 1

Programs evolved by the EA-VAE algorithm typically generalise perfectly
from train to test cases. The EA-VAE generalises well because it gives rise to
near minimal programs. Comparing the columns labelled “Rules” in Tables 2a
and 2b, we see that GP consumes many more production rules than the EA-
VAE. That is, GP is more susceptible to bloat. Introns may be beneficial to GP
during evolution [31], but their presence impacts generalisation to the test sets.

The success rates displayed in Table 3 confirm that the EA outperforms
greedy hill climbing. A fitness landscape analysis will reveal why the latent space
is not amenable to greedy search. The EA-VAE achieves the highest success rates
on two problems. However, GP is the most consistent algorithm overall, find-
ing multiple solutions to every problem. Unlike PushGP, the grammar-based
techniques generate interpretable Python programs, such as those in Fig. 4.

Fig. 4. We interpolate between a random point in the latent space zr, and one of the
solutions found the EA zEA. Programs are displayed for points zr + δ(zEA − zr), where
δ ∈ [0.0, 0.1, . . . , 1.0]. Note that the “\ n” symbols indicate line breaks.

42 D. Lynch et al.

The interpolations in Fig. 4 suggest that the VAE learns a relatively
smooth and coherent latent space. For example, consider the interpolations for
vectors summed. The concept of a for-loop appears, and is retained, as we move
closer to the solution zEA. Further refinements of the loop body yield a program
(red text) that achieves the desired semantics: it returns a vector ‘res0’, which
is the summation of input vectors ‘in0’ and ‘in1’. Evidence of gradual syntactic
transitions implies that the VAE packs programs densely around the origin. This
property of the latent space arises due the regularisation term in Eq. 2.

4.2 Landscape Analysis

The Cartesian space allows natural methods of landscape analysis. Figure 5
shows how fitness changes over interpolations between solutions (found by EA)
and random points (sampled from a standard normal in the VAE latent space).
The fitness landscape is characterised by neutrality and discrete steps in fitness.
Nonetheless, there is evidence of a positive fitness-distance correlation (FDC).

Fig. 5. Fitness over interpolations. We show 6 repeats, and the median over 30.

To expand on this evidence, we also present FDC results where points are
sampled rather than created by interpolation. In particular, for each trial we
randomly choose a solution z from among those found by the EA, and then
sample a random vector y from a standard normal. Because of the high dimension
(50), this gives a strong bias for Euclidean distance 5 ≤ d(z, y) ≤ 8. A solution
is to then scale y to a desired length, and we have chosen to scale y so that
d(z, y) is distributed uniformly on [0, 10]. The scatter plots in Fig. 6 allow us to
see the fitness-distance relationship over the whole space, and also focus on the
relationship for small distances.

Figure 6 indicates that several solutions exist in the region around a given
solution (where a ‘solution’ has fitness 0). Therefore, the EA is not confronted
with a needle-in-a-haystack fitness landscape. As expected, increasingly fewer
solutions are observed as we move further away from a known solution in the

Program Synthesis in a Continuous Space Using Grammars 43

Fig. 6. Fitness against distance. On the right hand side, we have plotted fitness +1 to
allow a log-plot, so 100 indicates a solution. A few outliers are excluded.

Table 4. FDC values, where R is Pearson’s correlation (excluding outliers), and τ is
Kendall’s. The grade problem is excluded because we found no solutions, and hence
cannot compute an FDC value.

Problem R τ

median 0.30 0.20

smallest 0.23 0.16

negative to zero 0.22 0.15

vectors summed 0.19 0.17

last index of zero 0.07 0.06

Fig. 7. Fitness over interpolation: as in Fig. 5, but showing the error on 3 repeats and
3 individual training cases as indexed on the right.

44 D. Lynch et al.

latent space (lower right). Table 4 shows that last index of zero, a hard prob-
lem for VAE-based search, has FDC near 0, while easier problems show increas-
ingly larger positive FDC values. Thus, FDC partly explains performance.

Because lexicase selection considers errors on individual training cases, it is
interesting to consider them separately as in Fig. 7. As expected we see some
evidence of correlation among cases.

5 Conclusions and Future Work

Variational Autoencoders (VAEs) are effective at learning a coherent continuous
representation of discrete programs. Solutions to non-trivial synthesis problems
are discovered by searching the VAE’s latent space using an Evolutionary Algo-
rithm (EA). The EA-VAE approach to program synthesis is competitive with
tree-based GP and PushGP on problems drawn from the benchmark suite. How-
ever, some problems present a neutral and discretised fitness landscape, resulting
in lower success rates for the EA-VAE versus the benchmarks.

The algorithm could be improved in a variety of ways. Firstly, it will be
interesting to explore techniques for better organising the latent space. One
possibility, inspired by Gómez-Bombarelli et al. [15], is to jointly train a multi-
layer perceptron (MLP) with the VAE. The MLP could be trained to predict
program semantics or the program’s fitness on test cases, given the VAE’s latent
layer z as input. This would encourage program semantics information to be
present, and well-structured, in the latent layer. Secondly, a more informative
fitness function could be used to guide the search algorithm. We used the raw
errors on input/output training pairs. However, program synthesis is not truly a
black-box problem. There is a wealth of additional information that can be made
available to the search algorithm, such as the program execution trace and the
semantics on individual inputs [26,27]. Finally, state of the art natural language
models, such as the transformer [40] or BERT [6], could be easily incorporated
into the VAE’s architecture. These ideas can be assessed on the full benchmark
suite, and on more recently proposed benchmarks such as the ARC problems [4].

Our approach to program synthesis combines the two dominant paradigms
in artificial intelligence: symbolic AI and connectionism. On the one hand, we
evolve symbolic programs that can express abstract concepts, generalise per-
fectly, and that can be interpreted by humans. On the other hand, programs
are embedded in the latent space using a neural network. This class of models
are adept at pattern recognition, data compression, and representation learning.
Discrete search in the space of symbolic programs will be a cornerstone of artifi-
cial intelligence research in the coming decades. We believe that hybridising the
symbolic and connectionist paradigms is a promising research direction.

Acknowledgements. This research is based upon works supported by the Science
Foundation Ireland under grant 13/IA/1850.

Program Synthesis in a Continuous Space Using Grammars 45

References

1. Balog, M., Gaunt, A.L., Brockschmidt, M., Nowozin, S., Tarlow, D.: Deepcoder:
learning to write programs. In: Proceedings International Conference on Learning
Representations 2017. OpenReviews.net (2017)

2. Orzechowski, P., Magiera, F., Moore, J.H.: Benchmarking manifold learning meth-
ods on a large collection of datasets. In: Hu, T., Lourenço, N., Medvet, E., Divina,
F. (eds.) EuroGP 2020. LNCS, vol. 12101, pp. 135–150. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-44094-7 9

3. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for
statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)

4. Chollet, F.: The measure of intelligence. arXiv preprint arXiv:1911.01547 (2019)
5. De Jong, K.A.: Evolutionary Computation: A Unified Approach. MIT Press, Cam-

bridge (2006)
6. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirec-

tional transformers for language understanding. arXiv preprint arXiv:1810.04805
(2018)

7. Fenton, M., McDermott, J., Fagan, D., Forstenlechner, S., Hemberg, E., O’Neill,
M.: PonyGE2: grammatical evolution in python. In: Proceedings of the Genetic
and Evolutionary Computation Conference Companion, pp. 1194–1201 (2017)

8. Forstenlechner, S.: Program Synthesis with Grammars and Semantics in Genetic
Programming. PhD Thesis pp. 162–175 (2019)

9. Forstenlechner, S., Fagan, D., Nicolau, M., O’Neill, M.: A Grammar Design Pattern
for Arbitrary Program Synthesis Problems in Genetic Programming. In: McDer-
mott, J., Castelli, M., Sekanina, L., Haasdijk, E., Garćıa-Sánchez, P. (eds.) EuroGP
2017. LNCS, vol. 10196, pp. 262–277. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-55696-3 17

10. Forstenlechner, S., Fagan, D., Nicolau, M., O’Neill, M.: Extending Program Syn-
thesis Grammars for Grammar-Guided Genetic Programming. In: Auger, A., Fon-
seca, C.M., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds.) PPSN 2018.
LNCS, vol. 11101, pp. 197–208. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-99253-2 16

11. Friedberg, R.M.: A learning machine: part i. IBM J. Res. Dev. 2(1), 2–13 (1958)
12. Friedberg, R.M., Dunham, B., North, J.H.: A learning machine: part ii. IBM J.

Res. Dev. 3(3), 282–287 (1959)
13. Fujiki, C., Dickinson, J.: Using the genetic algorithm to generate LISP source

code to solve the prisoner’s dilemma. In: Proceedings of the 2nd International
Conference on Genetic Algorithms, Cambridge, MA, USA, July 1987. pp. 236–240
(1987)

14. Gaunt, A.L., et al.: TerpreT: A probabilistic programming language for program
induction. CoRR abs/1608.04428 (2016)

15. Gómez-Bombarelli, R.: Automatic chemical design using a data-driven continuous
representation of molecules. ACS central science 4(2), 268–276 (2018)

16. Gulwani, S.: Automating string processing in spreadsheets using input-output
examples. SIGPLAN Notices 46(1), 317–330 (2011)

17. Helmuth, T., McPhee, N.F., Pantridge, E., Spector, L.: Improving generalization of
evolved programs through automatic simplification. In: Proceedings of the Genetic
and Evolutionary Computation Conference, pp. 937–944 (2017)

18. Helmuth, T., Spector, L.: General program synthesis benchmark suite. In: Proceed-
ings of the 2015 Annual Conference on Genetic and Evolutionary Computation,
pp. 1039–1046 (2015)

https://doi.org/10.1007/978-3-030-44094-7_9
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1911.01547
http://arxiv.org/abs/1810.04805
https://doi.org/10.1007/978-3-319-55696-3_17
https://doi.org/10.1007/978-3-319-55696-3_17
https://doi.org/10.1007/978-3-319-99253-2_16
https://doi.org/10.1007/978-3-319-99253-2_16

46 D. Lynch et al.

19. Helmuth, T., Spector, L., Matheson, J.: Solving uncompromising problems with
lexicase selection. IEEE T. Evolut. Comput. 19(5), 630–643 (2014)

20. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neu-
ral networks. Science 313(5786), 504–507 (2006)

21. Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory
Analysis with Applications to Biology. Control and Artificial Intelligence. MIT
Press, Cambridge (1975)

22. Katayama, S.: Recent Improvements of magichaskeller. In: Schmid, U., Kitzelmann,
E., Plasmeijer, R. (eds.) AAIP 2009. LNCS, vol. 5812, pp. 174–193. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-11931-6 9

23. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114 (2013)

24. Koza, J.R.: Human-competitive results produced by genetic programming. Genet.
Program. Evol. Mach. 11(3–4), 251–284 (2010)

25. Koza, J.R., Koza, J.R.: Genetic Programming: On the Programming of Computers
by Means of Natural Selection, vol. 1. MIT press, Cambridge (1992)

26. Krawiec, K., O’Reilly, U.M.: Behavioral programming: a broader and more detailed
take on semantic GP. In: Proceedings of the 2014 Annual Conference on Genetic
and Evolutionary Computation, pp. 935–942 (2014)

27. Krawiec, K., Swan, J.: Pattern-guided genetic programming. In: Proceedings of the
15th Annual Conference On Genetic And Evolutionary Computation, pp. 949–956
(2013)

28. Kusner, M.J., Paige, B., Hernández-Lobato, J.M.: Grammar variational autoen-
coder. In: Proceedings of the 34th International Conference on Machine Learning-
Volume 70. pp. 1945–1954. JMLR. org (2017)

29. Mckay, R.I., Hoai, N.X., Whigham, P.A., Shan, Y., O’Neill, M.: Grammar-based
genetic programming: a survey. Genet. Program. Evol. Mach. 11(3–4), 365–396
(2010)

30. Muggleton, S.: Inductive logic programming: issues, results and the challenge of
learning language in logic. Artif. Intell. 114(1–2), 283–296 (1999)

31. Nordin, P., Francone, F., Banzhaf, W.: Explicitly defined introns and destructive
crossover in genetic programming. Adv. Genetic Program. 2, 111–134 (1995)

32. O’Neill, M., Fagan, D.: The Elephant in the Room: Towards the Application of
Genetic Programming to Automatic Programming. In: Banzhaf, W., Spector, L.,
Sheneman, L. (eds.) Genetic Programming Theory and Practice XVI. GEC, pp.
179–192. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-04735-1 9

33. O’Neill, M., Ryan, C.: Grammatical Evolution: Evolutionary Automatic Program-
ming in a Arbitrary Language (2003)

34. O’Neill, M., Spector, L.: Automatic programming: The open issue? Genetic Pro-
gramming and Evolvable Machines pp. 1–12 (2019)

35. Poli, R., Langdon, W.B., McPhee, N.F., Koza, J.R.: A Field Guide to Genetic
Programming. Lulu.com (2008)

36. Rich, C., Waters, R.C.: Automatic programming: Myths and prospects. Computer
21(8), 40–51 (1988)

37. Samuel, A.L.: Some studies in machine learning using the game of checkers. IBM
J. Res. Dev. 3(3), 210–229 (1959)

38. Schuster, M., Paliwal, K.K.: Bidirectional recurrent neural networks. IEEE Trans.
Signal Process. 45(11), 2673–2681 (1997)

https://doi.org/10.1007/978-3-642-11931-6_9
http://arxiv.org/abs/1312.6114
https://doi.org/10.1007/978-3-030-04735-1_9

Program Synthesis in a Continuous Space Using Grammars 47

39. Spector, L., Klein, J., Keijzer, M.: The Push3 execution stack and the evolution of
control. In: Proceedings of the 7th Annual Conference on Genetic and Evolutionary
Computation, pp. 1689–1696 (2005)

40. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information
Processing Systems, pp. 5998–6008 (2017)

41. Zhao, S., Song, J., Ermon, S.: InfoVAE: Information maximizing variational
autoencoders. arXiv preprint arXiv:1706.02262 (2017)

http://arxiv.org/abs/1706.02262

	Program Synthesis in a Continuous Space Using Grammars and Variational Autoencoders
	1 Introduction
	2 Methods
	2.1 Grammar Design Pattern
	2.2 Variational Autoencoder
	2.3 Evolutionary Algorithms

	3 Experimental Setup
	4 Results and Discussion
	4.1 Success Rates
	4.2 Landscape Analysis

	5 Conclusions and Future Work
	References

